

Supplementary Materials

Performance of smoothing methods for reconstructing NDVI time-series and estimating vegetation phenology from MODIS data

Zhanzhang Cai^{1,*}, Per Jönsson², Hongxiao Jin¹ and Lars Eklundh¹

- ¹ Department of Physical Geography and Ecosystem Science, Lund University, Sölvegatan 12, SE-223 62 Lund, Sweden; E-Mails: <u>zhanzhang.cai@nateko.lu.se</u> (Z.C.); lars.eklundh@natkeo.lu.se (L.E.); hongxiao.jin@nateko.lu.se (H.J.)
- ² Department of Materials Science and Applied Mathematics, Malmö University, SE-205 06 Malmö, Sweden; E-Mail: per.jonsson@mah.se
- * Correspondence: zhanzhang.cai@nateko.lu.se; Tel.: +46-070-680-7494

Academic Editor: name

Received: date; Accepted: date; Published: date

Figure S1. Geographic distributions of ground-based spectral observation sites (marked as red triangles) and Ammar region (marked as red rectangle). Background map sources: Esri, GeLorme, GEBCO, NOAA NGDC, and other contributors.

Site	Temperat	Precipitation	Species
	ure (°C)*	(mm)*	
Abisko	-1.3	60	Birch (Betula pubescens)
Delta			
Abisko	-1.3	60	Sedge (Carex rotundata), and Cottongrass (Eriophorum
Stordale			vaginatum/Eriophorum angustifolium)
n			
Fäjemyr*	6.3	100	Dwarf shrubs (Calluna vulgaris L. Hull/Erica tetralix L. S.),
			Sphagnum-mosses (magellanicum Brid. and S. rubellum Wils.)
			and Sedges (Eriophorum vaginatum L.)
Zackenb	-10.1	20	Moss campion (<i>Silene acaulis</i>), Arctic cottongrass (<i>Eriophorum</i>
erg*			scheuchzeri) and Dark cottongrass (Eriophorum triste)
Hyytiälä	3.1	60	Scots pine (<i>Pinus sylvestris</i> /)
*			1 0
Norunda	4.8	50	Scots pine (<i>Pinus sylvestris</i>) and Norway spruce (<i>Picea abies</i>)
Clear-cut			
Norunda	4.8	50	Scots pine (<i>Pinus sylvestris</i>) and Norway spruce (<i>Picea abies</i>)
Forest*			
Sudan	27.9	20	Grassland
Barah			
Sudan	28.0	50	Grassland
Dilling			
Sudan	27.3	20	Millet
Demoke			
ya			

Table S1: Additional information of ground-based spectral observation sites and flux tower sites	5.

*Mean temperature and precipitation of 1981-2010 [1].

7

Figure S2. Boxplots of RMSEs between ground-based measured NDVI and smoothed satellite NDVI. Each box contains all settings of each smoothing algorithm at the testing sites. Dashed line = RMSE of raw data and ground based measured NDVI. Note: inverted y-scale; lowest RMSE at the high end of the y-axis. Note: dashed line indicates raw data RMSE.

Year

2011

0.2

0

Figure S3. Plots of smoothed curves of each method at all testing sites based on the settings thatprovide the minimum RMSE values.

16**Table S2.** The minimum, median and range of RMSE between smoothed MODIS NDVI from all17settings of each smoothing algorithm and ground measured NDVI from all spectral sensor tower sites.

		SG	LO	SP	AG	DL	Raw
Abisko Delta	Minimum	0.128	0.125	0.140	0.126	0.129	
	Median	0.140	0.139	0.161	0.131	0.135	
	CV	0.171	0.133	0.150	-	-	0.240
	Range	0.097	0.097	0.086	0.078	0.078	
	Improving	100%	100%	100%	100%	100%	
Abisko Stordalen	Minimum	0.077	0.070	0.078	0.096	0.113	
	Median	0.082	0.081	0.090	0.123	0.122	
	CV	0.078	0.071	0.091	-	-	0.150
	Range	0.057	0.064	0.055	0.045	0.015	
	Improving	100%	100%	100%	100%	100%	
Fäjemyr	Minimum	0.049	0.052	0.050	0.053	0.053	
	Median	0.068	0.079	0.093	0.057	0.057	
	CV	0.061	0.052	0.062	-	-	0.190
	Range	0.117	0.113	0.121	0.051	0.039	
	Improving	100%	100%	100%	100%	100%	
Zackenberg	Minimum	0.066	0.062	0.063	0.069	0.068	
	Median	0.077	0.076	0.070	0.077	0.082	
	CV	0.068	0.075	0.079	-	-	0.090
	Range	0.034	0.022	0.043	0.014	0.027	
	Improving	94%	100%	95%	100%	86%	
Hyytiälä	Minimum	0.054	0.047	0.041	0.036	0.037	
	Median	0.084	0.072	0.093	0.053	0.051	
	CV	0.125	0.172	0.058	-	-	0.160
	Range	0.133	0.139	0.153	0.054	0.061	
	Improving	95%	85%	92%	100%	100%	
Norunda Clear-cut	Minimum	0.099	0.099	0.100	0.103	0.106	
	Median	0.106	0.106	0.105	0.105	0.109	
	CV	0.103	0.099	0.104	-	-	0.170
	Range	0.039	0.035	0.041	0.017	0.013	
	Improving	100%	100%	100%	100%	100%	
Norunda Forest	Minimum	0.019	0.017	0.020	0.020	0.025	
	Median	0.036	0.031	0.061	0.034	0.035	
	CV	0.019	0.017	0.044	-	-	0.200
	Range	0.144	0.146	0.149	0.071	0.070	
	Improving	100%	100%	100%	100%	100%	
Sudan Barah	Minimum	0.037	0.037	0.037	0.041	0.040	
	Median	0.044	0.044	0.042	0.053	0.051	
	CV	0.038	0.038	0.047	-	-	0.040
	Range	0.015	0.013	0.016	0.014	0.013	
	Improving	6%	5%	7%	0%	0%	
Sudan Dilling	Minimum	0.063	0.065	0.070	0.071	0.074	
	Median	0.070	0.074	0.083	0.075	0.077	

	CV	0.064	0.066	0.077	-	-	0.110
	Range	0.043	0.040	0.035	0.030	0.029	
	Improving	100%	100%	100%	100%	100%	
Sudan Demokeys	Minimum	0.041	0.042	0.040	0.043	0.045	
	Median	0.050	0.051	0.048	0.050	0.050	
	CV	0.041	0.042	0.045	-	-	0.050
	Range	0.012	0.011	0.012	0.007	0.007	
	Improving	100%	95%	100%	100%	100%	
Average improving rate:		90%	89%	89%	90%	89%	

20 21

		SG	LO	SP	AG	DL	Raw
Fäjemyr	Max	0.340	0.320	0.400	0.690	0.360	
	Median	0.190	0.190	0.170	0.530	0.280	
	CV	0.220	0.294	0.328	-	-	0.070
	Range	0.300	0.300	0.340	0.290	0.110	
	Improving	96%	94%	96%	100%	100%	
Zackenberg	Max	0.790	0.790	0.780	0.760	0.760	
	Median	0.770	0.760	0.770	0.720	0.740	
	CV	0.767	0.773	0.754	-	-	0.560
	Range	0.190	0.070	0.030	0.140	0.090	
	Improving	100%	100%	100%	100%	100%	
Hyytiala	Max	0.780	0.780	0.820	0.740	0.720	
	Median	0.620	0.650	0.650	0.580	0.590	
	CV	0.464	0.604	0.687	-	-	0.430
	Range	0.320	0.250	0.290	0.180	0.170	
	Improving	100%	100%	100%	100%	100%	
Norunda forest	Max	0.630	0.650	0.630	0.500	0.570	
	Median	0.370	0.390	0.430	0.390	0.400	
	CV	0.360	0.441	0.454	-	-	0.290
	Range	0.440	0.360	0.310	0.250	0.290	
	Improving	85%	99%	100%	95%	95%	
Average improving rate:		95%	98%	99%	99%	99%	

Table S3. Maximum, median and range of ρ between smoothed MODIS NDVI from all settings of each smoothing algorithm and ground measured GPP.

23Figure S4. Boxplots of Spearman's rank correlation coefficient of tower GPP and smoothed MODIS24NDVI for each method, showing the distribution with different settings at test sites. Note: dashed line25indicates ρ of raw MODIS NDVI and ground measured GPP.

27 28

Table S4. The maximum, median and range of ρ between elevations and land surface phenology parameters extracted by each smoothing algorithm of all settings on MODIS NDVI.

		SG	LO	SP	AG	DL
	Max	0.877	0.856	0.886	0.904	0.904
SOS	Median	0.682	0.715	0.693	0.887	0.891
	Range	0.670	0.606	0.645	0.103	0.077
	Min	-0.779	-0.753	-0.785	-0.807	-0.831
EOS	Median	-0.585	-0.637	-0.668	-0.767	-0.785
	Range	0.541	0.441	0.483	0.065	0.075
	Min	-0.866	-0.842	-0.868	-0.882	-0.886
LOS	Median	-0.732	-0.765	-0.776	-0.873	-0.874
	Range	0.424	0.346	0.379	0.024	0.020
	Min	-0.631	-0.622	-0.636	-0.638	-0.665
SI	Median	-0.518	-0.566	-0.558	-0.630	-0.655
	Range	0.347	0.303	0.323	0.041	0.044

30 References

311.Willmott, C. J. and K. Matsuura (2001) Terrestrial Air Temperature and Precipitation: Monthly and Annual32Time Series (1950 - 1999), http://climate.geog.udel.edu/~climate/html_pages/README.ghcn_ts2.html.

33

© 2017 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).