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Abstract: Over the past four decades Delhi, India, has witnessed rapid urbanization and change
in land use land cover (LULC) pattern, with most of the cultivable areas and wasteland being
converted into built-up areas. Presently around 40% land is under built-up area, a drastic rise of
30% from 1977. The effect of changing LULC, at a local scale, on various variables-land surface
temperature (LST), normalized difference vegetation index (NDVI), emissivity, albedo, evaporation,
Bowen ratio, and planetary boundary layer (PBL) height, from 1991–2016, is investigated. To assess
the spatio-temporal dynamics of land-air interactions, we select two different 100 km transects
covering the NE-SW and NW-SE expanse of Delhi and its adjoining areas. High NDVI and emissivity
is found for regions with green cover and drastic reduction is noted in built-up area clusters. In both
of the transects, land surface variations manifest itself in patterns of LST variation. Parametric and
non-parametric correlations are able to statistically establish the land-air interactions in the city.
NDVI, an indirect indicator for LULC classes, significantly helps in understanding the modifications
in LST and ultimately air temperature. Significant, strong positive relationships exist between skin
temperature and evaporation, skin temperature and PBL height, and PBL height and evaporation,
providing insights into the meteorological changes that are associated with urbanization.
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1. Introduction

One of the most notable ways in which humans alter the environment is through the process of
urbanization. Land previously occupied by vegetation, forests, or even barren soils is converted to
built-up areas for residential, commercial and other purposes. Such is the state of affairs, that while
only 3% of the earth’s surface area is urban it supports more than 50% of the world’s population [1].
The rapid pace of urbanization is likely to continue globally, but more so in the developing countries [2].
A city is a functionally complex and a highly dynamic ecosystem [3] composed of high and low-rise
buildings differing in their compactness and interspersed with natural elements e.g., trees, waterbodies
and grasslands [4]. Cities are livelihood and business centers catering to tens of millions of people.
Urban ecosystems as a result are vulnerable to climate change impacts [5–7] and are in turn also
capable of modifying its climate [8–12].

How land-atmosphere interactions at regional scales are coupled in the complex urban ecosystem
along with their feedback systems is still not very well understood [13]. At a local scale, land and
the overlying atmospheric system mutually interact with one another through various exchanges of
energy and moisture [14]. Land surface projects its microclimatic effects to its atmospheric vicinity,
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which impacts the environment both laterally and in the vertical direction [15]. The extent over which
the urban effects can impact the atmosphere is dependent on the magnitude of each variable along with
the atmospheric conditions of stability. Over time in cities, particularly due to rampant urbanization,
changes in land surface- both in the horizontal as well as in the vertical direction are expected.

The land use land cover (LULC) changes are directly responsible for modifications in the surface
radiative fluxes [16]. The LULC changes can induce changes in the energy and water balance,
and as a consequence can alter the local and regional climates [17]. Since intrinsic properties of
urban materials, such as thermal conductivity, emissivity, specific heat capacity, surface roughness,
albedo, and permeability [18–22] differ from elements of the natural environment they propagate as
changes in the urban ecosystems [23]. A prominent effect of urbanization is therefore expected on net
radiation, Bowen ratio (partitioning of the sensible and latent heat flux), soil moisture, and surface
runoff [17,24]. The energy partitioning depends mainly on the amount of moisture that is available
for evapotranspiration from the soil surface and sub-surface layers, and also from vegetation such
as crops, forests, and grasslands [25]. Another noteworthy aspect is the evaporation component in
cities provided by availability of around the year urban piped water supply. This continuous water
supply apart from natural sources is required for the city functioning purposes, such as urban irrigation
and intrinsic functioning [9]. The water used cities, in most cases, does not percolate at all into the soil
owing to the presence of concretized impervious surfaces, and therefore becomes readily available
for evaporation. In addition to evaporation, Bowen ratio by definition is linked to the latent and
surface heat flux (thus indirectly linked to surface temperature), the amount of vegetation and dry air
entrainment in the planetary boundary layer (PBL) [25]. Vegetation via transpiration is effective in
moisture transfer to the overlying atmosphere [26]. Higher vegetation greenness that is typically found
in dense forests is associated with high density of leaves, and therefore greater photosynthetically
active radiation absorption [27]. Furthermore dense canopy provides shade, reducing sensible heat
flux ultimately lowering temperature [28].

Urban structures on the other hand, cause heating of sunlit surfaces and cooling in shaded
regions, as well as ‘trap’ radiation in the street canyons and cause changes in the structure of
PBL [10]. Generally a decrease in latent heat flux due to reduced soil moisture and vegetation is
noted in built-up areas. This reduction in latent heat flux in turn is compensated by increased
fraction of sensible heat flux. Urban heat island, wherein temperature of the city core is higher
than its rural surroundings is probably the most well documented modification by urban regions
to the local climate [4,8,29,30]. In the past several decades, using climate records over the United
States (U.S.), Foley et al. [17] attribute LULC changes especially from urbanization to the observed
temperature rise. Focusing on anthropogenic input in the rise of CO2 emissions, they attribute
35% contribution from various land use practices. Similarly, other studies conclude various effects
of urbanization and other LULC changes on the local, regional, and global climate. According to
Stone et al. [6], highly sprawled cities of the U.S. report greater occurrences of extreme heat events
than in compact cities. A 0.05 ◦C per decade rise in mean surface temperature and a decrease in
the range of diurnal temperature in southeast China has been implicated to rapid urbanization [31].
Seneviratne et al. [32] demonstrate the role of land-air interactions specific to eastern and central
Europe. They find through simulations that such coupling influences both the temperature variability
in summer season and the water cycle on the whole. Other modifications in meteorological processes,
such as precipitation extreme [33–35], thunderstorm [36], and lightning [37,38] events exhibit the
potential of built-up areas in inducing changes in the atmosphere. Overall, it can be said that soil
moisture-temperature-precipitation feedbacks are intimately connected with land-air interactions, and
at a regional scale also have the potential to shift climatic zones [32].

There is a scarcity of studies focusing on the role played by local scale LULC changes in
inducing regional modifications in the overlying atmosphere. Therefore, in the present study, we take
this opportunity to study the land-air interactions over Delhi, a very rapidly urbanizing city,
using multiyear satellite dataset. The city (76.84◦–77.35◦ E, 28.41◦–28.88◦ N) lies in the Indo-Gangetic
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plains in northern India, has semi-arid climate characteristics and receives majority of rainfall from the
Indian Summer Monsoon. Over the course of the past four decades, more than 30% land area in Delhi,
otherwise allotted to other land uses has been converted to built-up area. Thus, the gross percentage
of built-up area in the city, in 2014, amounted to approximately 40% [39].

Figure 1a–c shows the qualitative metadata representing LULC changes over the years inside the
administrative boundary of Delhi. We seek to examine the spatio-temporal effects of changing LULC
on various variables that are associated with the atmosphere for two representative transects over
Delhi and its neighbouring areas. In the absence of ground observational data, we employ the use of
remotely sensed data from Landsat satellite and ERA-Interim reanalysis dataset from the European
Centre for Medium Range Weather Forecasts (ECMWF) [40] for the present study. Section 2 details the
selection of transects along with materials and methods that are used in the study. Sections 3 and 4
presents the results and conclusions, respectively.
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Figure 1. Land use land cover (LULC) maps of Delhi, India [39] for the years (a) 1993; (b) 2006; and (c) 2014;
and (d) representative Google Earth map showing two 100 km transects in NE-SW (L1, blue line) and
NW-SE (L2, red line) directions with central business district i.e., Old Delhi at the centre.

2. Materials and Methods

Three variables from Landsat dataset—land surface temperature (LST), normalized difference
vegetation index (NDVI), and emissivity, as derived at 30 m spatial resolution and five variables from
ERA-Interim dataset- skin temperature, albedo, evaporation, Bowen ratio, and PBL height, derived at
0.125◦ spatial resolution are used in the study. ERA-Interim is a global atmospheric reanalysis gridded
dataset available from 1979 (real time dataset from 1989 onwards) [40] at various horizontal resolutions
ranging from 0.125◦ to 3◦ [41]. Meteorological variables and fluxes derived from 0.125◦ resolution
ERA-Interim dataset roughly matches the ground observations in a study performed by Zhou and
Wang [42]. ERA-Interim uses the roughness length and drag coefficient to represent the effects of land
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use as well as dominant vegetation type in its forecast model [40]. Both these introductions alter drag
taking place over land in a complex manner. Dee et al. [40] further elaborate that Tiled ECMWF Scheme
for Surface Exchanges over Land (TESSEL) scheme in the model’s land surface component (based on
Global Land Cover Characterization (GLCC) dataset) is used to update various generated variables.
When compared to other reanalysis products that are available over the Indian region, ERA-Interim
dataset simulates the conditions in a better manner, and is therefore a widely acceptable dataset [43].

The study uses all available cloud free imageries (216 in total) from Landsat database and daily
mean gridded data from ERA-Interim database, over the study region from 1991 to 2016. Flowchart
provided in Figure 2, describes the methodology used in obtaining Landsat derived variables from
the raw satellite data. Landsat data is available on the USGS Glovis portal, in the form of digital
numbers (DN) for different wavelength bands. Thermal infrared (10.4–12.5 µm) band is used to
quantify brightness temperature, while red (0.63–0.69 µm) and near infrared (0.77–0.90 µm) bands are
used for estimation of NDVI and emissivity. Data gaps present in imageries acquired from Landsat
7 SLC-off time period i.e., from 2003 to 2013 are corrected using filtering technique [44] prior to the
calculation of Landsat derived variables. This pre-processing is done for all of the considered bands of
Landsat 7 SLC-off imageries (56 in total).

For each image (216 in total), brightness temperature is estimated [44]. As the first step involved,
DN is converted to spectral radiance values by spectral scaling method elaborated in the Landsat 7
Handbook [45]. The range of DN values is 0–255 for Landsat 5 and 7, and is 0-65536 for Landsat 8.
Since Landsat level-1 products available from the USGS are not atmospherically corrected, the same is
carried out following Sobrino et al. [46]. Planetary reflectance is estimated from the obtained spectral
radiance values (in the earlier step; Figure 2) and is corrected for solar exo-atmospheric irradiance,
sun elevation angle, and the earth-sun distance [45]. The values of sun elevation angle, earth-sun
distance, etc. (gathered from metadata files) depend on the image acquisition date, and are therefore
specific to each set of imagery. NDVI and emissivity for each set of imagery is estimated using
the methodology described by Sobrino et al. [46]. Emissivity, a material property, is not directly
proportional to NDVI, but is a function of wavelength. Although many various methods exist
in literature to quantify emissivity, estimation in the present study is based on NDVI due to the
reasoning that few LULC classes have seasonal behavior e.g., forests, agriculture, and waterbodies [46].
The modified NDVI thresholds method, as described by Sobrino et al. [46], is followed, wherein
different empirical relationships exist between NDVI and emissivity for different threshold classes.
Proportion of vegetation is quantified when NDVI ranges from 0.2 to 0.5 and used further in emissivity
estimation. In the final step, LST is estimated by following the method detailed by Tran et al. [47].

The methodology described in Figure 2 is repeated for all 25 years of considered Landsat imageries
(216 in total). Further detailed methodology is elaborated in Jain et al. [48]. ERA-Interim dataset
provides all of the variables considered in the present study except for Bowen ratio in their database.
Bowen ratio is calculated as a fraction of two other variables-surface sensible heat flux and surface
latent heat flux [24].

Since there is no availability of Landsat thermal data prior to 1990, LULC data of three years—1993,
2006, and 2014, over Delhi is acquired from Jain et al. [39]. This 30m spatial resolution dataset comprises
of nine categories of LULC, namely: (1) Dense Forest (2) Open Forest (3) Scrubs/ Degraded Forest (4)
Plantations (5) Cultivable Area (6) Built-up Area (7) Road/ Rail Network (8) River/ Waterbody, and (9)
Wasteland. The abovementioned LULC years-1993, 2006, and 2014 are used to represent the roughly
decadal time periods 1991–1999 (hereafter as T1), 2000–2008 (hereafter as T2), and 2009–2016 (hereafter
as T3) respectively, for all of the considered variables in the study. The assumption is valid due to the
reason that LULC does not change notably on a monthly or a yearly scale. However, some LULC classes,
such as forests and agriculture, show seasonality in state of vegetation. Thus, the three time periods
are further divided into four seasons: December–January–February (DJF), March–April–May (MAM),
June–July–August–September (JJAS), and October–November (ON). Seasons are defined on the basis of
India Meteorological Department classification. LST is a variable with short autocorrelation length as it
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is highly dependent on absorbed radiation, as well as latent and sensible heat fluxes. Since the average
temperature within a season remains fairly similar, the possible error due to LST autocorrelation is
minimized. Further, to negate the decadal changes in the time series of the variables (which might be
because of climatic conditions such as El-Nino), the study bifurcates the 25-year time series into T1, T2,
and T3, as mentioned above.
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Figure 2. Flowchart of methodology used in obtaining Landsat derived variables—normalized
difference vegetation index (NDVI), emissivity, and land surface temperature (LST) [39].

It is observed in all the three LULC years (Figure 1a–c) that spatial heterogeneity in terms of nine
categories of LULC classes is highest in the NE-SW and NW-SE direction. Therefore two 100 km line
transects are selected such that they pass through Old Delhi, the central business district of the city,
in the middle (i.e., Old Delhi is at 50 km from both ends of the transect). We represent NE-SW transect
as L1 and NW-SE transect as L2 from here on, and explore the land-air interactions on these transects.
The selected transects are shown in Figure 1d.

A drawback of the present study is the unavailability of LULC data for the considered years 1993,
2006, and 2014 outside the administrative boundary of Delhi. In lieu of this, spatial LULC changes
could not be plotted on the complete stretch of both transects. Also, as many micro-scale land use
fluctuations are observed along both transects from the high spatial resolution (30 m) LULC maps that
were acquired from Jain et al. [39], up-scaling of the original dataset to 250 m using the maximum
likelihood classification approach is performed. This was necessary in order to make the local scale
differences in LULC class distribution (along both transects and within the three time periods) in the
graphs to be clearly visible to the reader. Similar up-scaling (from 30 to 250 m) for the same reason
is performed for all three Landsat derived variables viz. LST, NDVI, and emissivity on L1 and L2
transects, and are then plotted. In spite of the fact that ERA-Interim variables are too coarse, they were
not down-scaled. The reason for this is that the data is already down-scaled to 0.125◦ from 0.75◦ by the
data providers, and in order to reduce the uncertainty arising out of fine scale climate variability no
further down-scaling is attempted. Down-scaled data from native 0.75◦ does not include additional
information and merely makes the finer resolution dataset (0.125◦) look smoother, without increasing
its accuracy. In terms of the ECMWF provided 0.125◦ data, the interpolation might be introducing
spurious spatial homogeneity in fine scale climatic features that are intended to be studied. In-spite
of potentially large bias arising in this dataset (due to observation errors and model interpolation
techniques) it is able to capture inter-seasonal and inter-decadal variability. In the absence of any
other fine resolution meteorological dataset suited for the Indian region, ERA-Interim 0.125◦ dataset
is preferred. Prior to spatial profiling of ERA-Interim variables, all of the files are converted from
netCDF to raster format. Spatial profiles of all Landsat and ERA-Interim variables in each time period
are then superimposed on the representative LULC year data for both transects-L1 and L2, to look
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for possible land-air interactions. Seasonal changes have also been analyzed. Parametric (Pearson’s
r) and non-parametric (Spearman’s $ and Kendall’s τ) correlation tests are performed to study the
relationships existing among the various studied variables.

3. Results and Discussion

3.1. LULC Description along Transects

High local scale spatio-temporal variations in LULC classes are noted along both transects.
Moreover, on comparing between L1 and L2 transect, distinctly unique differences in LULC class
patterns are seen, which is indicative of spatial heterogeneity existing within the city. About 30 km
and 40 km stretch of L1 and L2 transect, respectively, lies inside the administrative boundary of Delhi
(Figure 3). Each grey bar in Figures 3–5 represents one of the nine categories of LULC class (falling
within the administrative boundary of Delhi) observed along the two transects at 250 m intervals.
For each transect, drastic local scale LULC changes have occurred over time. Specifically focusing
inside the city boundary for L1 transect, and moving from NE to SW direction, the following broad
pattern of LULC change is observed- scrubs/degraded forest (41–43 km; T1) along with other forest
classes and agriculture (45–50 km; T1) gets converted to built-up area in the following time periods.
A major portion of dense forest (53–60 km) gets thinner over time. Conversion to predominantly
built-up area from various classes is noted from T1 to T3 along the remaining stretch. Similarly moving
from NW to SE direction along L2 transect, it is observed that most of the cultivated areas get converted
to built-up areas over time (Figure 3). A brief description of LULC class patterns (as interpreted from
Google Earth imagery, Figure 1d) of the remaining transect stretches falling beyond the city boundary
is discussed. Major portion of the NE part (~0–40 km) of L1 transect comprises of cultivable area that is
interspaced with small built-up area patches (wasteland near Delhi boundary), while the SW portion
(~70–100 km) beyond the Delhi border is mainly the rocky terrain of the Aravalli range. When looking
at the NW part (~0–20 km) of L2 transect, the presence of primarily cultivated area is seen along with
patches of wasteland, whereas, the SE part (~60–100 km) of the transect is a mix of built-up area,
open forest, and wasteland.

3.2. Land-Air Interactions over the Transects

Spatial profiling of different Landsat and ERA-Interim variables over two selected transects-L1
and L2, as described in Section 2, has been performed to evaluate the impact of changing land surface
over them. Distribution of LULC regime in both transects is not homogenous within any time period.
Sensible and latent heat fluxes play a crucial role in affecting LST, an important surface variable [21].
However, these fluxes are in turn affected by changes in LST as well. Any change in LST will produce
modifications in the atmosphere as it is linked to air temperature through sensible heat flux [49].
A notable pattern in LST from Figure 3 is observed; it mirrors the LULC class patterns in space and
associated changes in time. For the same time period, both L1 and L2 show markedly distinct LST
patterns. The patterns that were observed in both transects are in general similar across all seasons,
indicating that local land use factors do play a major role in altering LST. Higher local variations in LST
are noted in L1 than in L2. It is a direct manifestation of the type of land surface in each transect and its
inherent characteristics. We explain such manifestation through the surface related changes in NDVI.
The index is defined as the difference of reflected radiances in the visible and near-infrared region of
the electromagnetic spectrum that is normalized by their sum [50]. Since NDVI is used in many studies
used to classify LULC classes [20,51,52], it can be used as a quantitative proxy measure of land surface
related changes. NDVI is in turn related to emissivity through proportion of vegetation [46]. Moreover,
as per Stefan-Boltzmann law, emissivity is related to the fourth power of temperature. Therefore,
even small changes in emissivity produce large variations in LST and ultimately in air temperature.
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Figure 5. Same as Figure 3, but for emissivity.

Figure 4 shows the spatial profile of NDVI and over both transects. Emissivity variations for
the same are illustrated in Figure 5. Consistently high NDVI values ranging from 0.3–0.5 in the first
~25 km of L1 transect suggests a dominant green cover. The green cover density is highest in JJAS,
owing to the monsoon spells. Cropping practices i.e., sowing and harvesting seasons, as well as the
availability of irrigation decide whether or not the land is left barren or is cultivated, thus influencing
NDVI values. Frequent sharp dips in NDVI are noted in between 0–25 km distance; it represents the
presence of small clusters of built-up regions, which are found in between a majorly cultivated area.
High emissivity is found for regions with ample green cover and drastic fall is noted in the small
built-up area clusters. Not much variation in LST is noted in the first ~25 km in L1 transect along
all of the periods, owing to a mostly unchanged LULC. As we approach the city border, a sharp
decline in NDVI, as well as emissivity, is found because of the presence of barren soils and wasteland.
Central ridge, a dense forest in the heart of Delhi (~53–63 km), aids in lowering the temperature inside
the city. Seasonal variation in NDVI for this stretch is due to the shedding season of leaves. In L2
transect, over time, land in the trans-Yamuna region of the city (~35–60 km), has been mostly converted
to dense built-up area. Same can be interpreted from Figures 4 and 5; a lower NDVI and emissivity
values are found for this densely built-up region as compared to those with abundant green cover e.g.,
line transect L1 passing through the central ridge. Simultaneously, LST is found to be lower in the
areas of forests and also along river Yamuna. Another evidence of local scale land-air interactions is
a small patch of forest found at about 48 km in the L2 transect. While it is surrounded by built-up
area on either side of the line transect, yet signatures of local modification in LST due to a different
LULC class present, in between the densely built-up area, is captured. This patch shows remarkably
high NDVI and emissivity, ultimately resulting in lowered LST than for its adjacent LULC classes.
Seasonal variations in both of these variables is found to be fairly non-existent in built-up areas as
its surface characteristics do not vary throughout the year, unlike the phenology seen in vegetation.
Urban morphology and impervious surfaces in built-up areas combine to store heat, lower evaporative
cooling, and increase surface sensible heat flux [17]. This high sensible heat flux leads to an increase
in the LST, while presence of green cover as well as urban irrigation inside the urban areas has an
opposite effect [9,53]. Overall for each individual type of surface i.e., LULC class across both transects,
a distinct NDVI and emissivity value resulting in distinct signatures in LST is noted. Our analysis
shows that LULC change, a local phenomenon is indeed an important temperature governing factor.
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Apart from NDVI and emissivity, we explore the interactions of other variables, such as albedo,
evaporation, Bowen ratio, and PBL height on temperature (Figures S1–S4). However, the study is
also limited due to 0.125◦ spatial resolution dataset available from ERA-Interim suitable for only
mesoscale variations. Nevertheless, in all of the plots, we find one distinct large scale pattern difference
between L1 and L2 transect. As both these transects were chosen due to their differences in LULC,
the patterns of ERA-Interim derived variables do indicate a possible role of local land surface changes
on them. As was the case with Landsat derived variables, more spatial variation is noted for L1
transect from this dataset also. When compared to the NE side of L1 transect, the SW side has a higher
albedo, Bowen ratio, and PBL height and a lower evaporation rate. Since the SW side is mainly the
rocky terrain of the Aravalli range, it will have a higher albedo, reflective of the surface properties.
Such surface as opposed to the cultivated regions in the NE side of L1 transect has higher surface
sensible heat flux. Cultivated regions on the other hand have a higher surface latent heat flux due to
evapotranspiration process. This explains the high Bowen ratio and low evaporation rate in the SW
side. As surface sensible heat is higher on SW part of this transect, it leads to higher temperatures (as is
evident from Figure 3), eventually resulting in an elevated PBL. From a seasonal perspective, LST is
found to be higher in MAM and JJAS, albedo in ON and MAM, evaporation in JJAS, and Bowen ratio,
as well as PBL height in MAM. In order to conclusively find associations between surface changes and
all considered variables, correlation tests are employed and discussed in the next sub-section.

3.3. Statistical Associations among Various Variables

We finally assess the underlying associations existing between each of the variables. For this
purpose, no bifurcation of data in terms of time periods and seasons for each studied variable is made.
Mean and standard deviation (1σ) for both transects is tabulated for all of the variables (Table 1). It is
found that both LST and skin temperature is higher in L1 than in L2 transect. The corresponding,
mean NDVI and emissivity is found to be comparatively higher in L1 than in the other transect.
A lower evaporation rate alongside a higher Bowen ratio is able to justify high temperature in this
transect. As temperature rises, the associated atmospheric energetics is more intense and also leads to
an elevated PBL height. Negligible difference in albedo is noted. Furthermore, as observed in Figure 3,
considerably higher variation of LST in L1 transect is also corroborated from Table 1. In general,
the same is observed for all of the other variables. High standard deviation implies more heterogeneity
in LULC in space, as well as time in L1.

Table 1. Mean and standard deviation of various variables in L1 (NE-SW) and L2 (NW-SE) transect.
Number of samples for Landsat derived variables for L1 = 4572 and for L2 = 3972. For ERA-Interim
derived variables the number of samples is 108 for both transects.

Variable
L1 L2

Mean Std. Deviation Mean Std. Deviation

LST (K) 298.99 6.00 298.98 5.69
NDVI 0.27 0.110 0.24 0.100

Emissivity 0.988 0.00034 0.988 0.00031
Skin Temperature (K) 299.46 6.77 299.33 6.79

Albedo 0.18 0.007 0.1800 0.005
Evaporation (mm/day) 6.04 1.965 6.1 1.960

Bowen Ratio 0.37 0.12 0.34 0.11
PBL Height (m) 1002.96 857.24 996.24 846.92

Results of parametric and non-parametric correlation tests applied for L1 transect are presented
in Tables 2 and 3, and for L2 transect in Tables 4 and 5. Parametric correlation tests e.g., Pearson’s r
assumes an inherent linear relationship in the dataset while non-parametric correlation tests e.g.,
Spearman’s $ and Kendall’s τ do not assume any such linearity in the considered variables.
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Associations for Landsat and ERA-Interim derived variables have been calculated separately due to
differences in the number of samples.

Table 2. Parametric (Pearson’s r) and non-parametric (Spearman’s $ and Kendall’s τ) correlation for
Landsat derived variables in L1 transect. Number of samples = 4572.

Correlation Variable LST NDVI Emissivity

Pearson’s correlation coefficient (r)
LST 1.000

NDVI −0.127 ** 1.000
Emissivity −0.137 ** 0.880 ** 1.000

Spearman rank correlation ($)
LST 1.000

NDVI −0.182 ** 1.000
Emissivity −0.177 ** 0.881 ** 1.000

Kendall rank correlation (τ)
LST 1.000

NDVI −0.125 ** 1.000
Emissivity −0.118 ** 0.702 ** 1.000

** Correlation is significant at the 0.01 level (2-tailed).

Table 3. Parametric (Pearson’s r) and non-parametric (Spearman’s $ and Kendall’s τ) correlation for
ERA-Interim derived variables in L1 transect. Number of samples = 108.

Correlation Variable Skin Temperature Albedo Evaporation Bowen Ratio PBL Height

Pearson’s
correlation

coefficient (r)

Skin Temperature 1.000
Albedo −0.005 1.000

Evaporation 0.872 ** −0.196 * 1.000
Bowen Ratio 0.117 0.274 ** −0.373 ** 1.000
PBL Height 0.815 ** −0.022 0.467 ** 0.616 ** 1.000

Spearman rank
correlation ($)

Skin Temperature 1.000
Albedo 0.233* 1.000

Evaporation 0.724 ** −0.183 1.000
Bowen Ratio 0.210 * 0.282 ** −0.448 ** 1.000
PBL Height 0.786 ** −0.116 0.523 ** 0.393 ** 1.000

Kendall rank
correlation (τ)

Skin Temperature 1.000
Albedo 0.192 ** 1.000

Evaporation 0.417 ** −0.175 ** 1.000
Bowen Ratio 0.094 0.234 ** −0.426 ** 1.000
PBL Height 0.616 ** −0.031 0.124 0.352 ** 1.000

** Correlation is significant at the 0.01 level (2-tailed). * Correlation is significant at the 0.05 level (2-tailed).

Table 4. Parametric (Pearson’s r) and non-parametric (Spearman’s $ and Kendall’s τ) correlation for
Landsat derived variables in L2 transect. Number of samples = 3972.

Correlation Variable LST NDVI Emissivity

Pearson’s correlation coefficient (r)
LST 1.000

NDVI −0.093 ** 1.000
Emissivity −0.136 ** 0.869 ** 1.000

Spearman rank correlation ($)
LST 1.000

NDVI −0.091 ** 1.000
Emissivity −0.102 ** 0.856 ** 1.000

Kendall rank correlation (τ)
LST 1.000

NDVI −0.066 ** 1.000
Emissivity −0.069 ** 0.669 ** 1.000

** Correlation is significant at the 0.01 level (2-tailed).
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Table 5. Parametric (Pearson’s r) and non-parametric (Spearman’s $ and Kendall’s τ) correlation for
ERA-Interim derived variables in L2 transect. Number of samples = 108.

Correlation Variable Skin Temperature Albedo Evaporation Bowen Ratio PBL Height

Pearson’s
correlation

coefficient (r)

Skin Temperature 1.000
Albedo −0.037 1.000

Evaporation 0.880 ** −0.166 1.000
Bowen Ratio 0.152 0.109 −0.325 ** 1.000 0.668 **

PBL Height 0.815 ** −0.099 0.472 ** 0.668 ** 1.000

Spearman rank
correlation ($)

Skin Temperature 1.000
Albedo 0.127 1.000

Evaporation 0.747 ** −0.193 * 1.000
Bowen Ratio 0.179 0.217 * −0.412 ** 1.000
PBL Height 0.775 ** −0.306 ** 0.539 ** 0.413 ** 1.000

Kendall rank
correlation (τ)

Skin Temperature 1.000
Albedo 0.070 1.000

Evaporation 0.491 ** −0.221 ** 1.000
Bowen Ratio 0.047 0.132 * −0.364 ** 1.000
PBL Height 0.597 ** −0.170 ** 0.171 ** 0.383 ** 1.000

** Correlation is significant at the 0.01 level (2-tailed). * Correlation is significant at the 0.05 level (2-tailed).

For both L1 and L2 transects, the correlations reveal a significant (at 99% level of confidence)
negative relationship between LST and NDVI (Tables 2 and 4). Emissivity varies gradually for most
land cover features, as seen from Figure 5. Yet the study is able to capture the significant (at 99% level
of confidence) and dominant negative correlation with LST (as also expected by Stefan- Boltzmann
relation). Similarly, a strong positive relationship exists between NDVI and emissivity. As NDVI is
an indirect indicator for LULC classes, it can be said that LULC does significantly aid in altering LST.
Indeed, LST is not solely dependent on emissivity. Other conditions, including climatic factors, such as
evaporation, PBL height, etc., also play an important role in altering LST. The same is observed from
Tables 3 and 5. Among the five ERA-interim variables, significant strong positive relationships exist
between skin temperature and evaporation, skin temperature and PBL height and PBL height and
evaporation for the two transects. A significant negative relationship exists between Bowen ratio and
evaporation. Albedo has a weak significant relationship with Bowen ratio (positive association) and
evaporation (negative association). Thus, both parametric and non-parametric correlation tests are
able to explain interactions within various land-air variables.

4. Conclusions

This assessment provides significant confidence in the ability to study the urban transects and
the mesoscale/regional land-atmosphere interactions that are influenced by urbanization using a
combination of remote sensing/ satellite based land state and reanalysis products. The study is able
to surmise that LULC change, a local scale phenomenon, indeed has a significant impact on regional
features most directly through changes in the LST. Land surface variables e.g., NDVI, emissivity,
albedo, and Bowen ratio, interact with the overlying atmosphere through various feedback systems
and produce changes in LST, evaporation rates, as well as PBL height. The study looked at these
variables because LST relates to the surface characteristics, evaporation (and latent heat flux) is linked
to the land atmosphere processes coupled to the surface and PBL height is the ultimate indicator of
the energetics of the boundary layer, as influenced by the surface. Indeed, future studies can build off
these and look into factors such as cloudiness, circulation patterns, and vertical profiles at different
transects. As mentioned, this study has provided the confidence to now under take such follow up
assessments. Modifications forced by land surface changes have the ability to change atmospheric
conditions of stability. High local scale spatio-temporal variations in LULC classes are noted in both of
the considered transects. These spatio-temporal surface changes, manifest themselves as variations in
patterns of LST. High NDVI and emissivity is observed in regions with abundant green cover and a
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drastic lowering is noted in built-up area clusters. Small changes in emissivity are linked with high
variations in LST and ultimately in air temperature. For the Delhi city, as compared to the NE side
(mainly cultivable areas) of L1 transect, the SW side (mainly the rocky terrain of the Aravalli range)
has a lower evaporation rate. Low evaporation alongside a higher Bowen ratio and albedo explains
high LST in the SW part of L1 transect. As temperature rises, it also leads to an elevated PBL height.
From a seasonal aspect, generally across both transects, LST is found to be higher in MAM and JJAS i.e.,
summer months, albedo in ON and MAM, evaporation in JJAS, and Bowen ratio, as well as PBL height
in MAM.

Parametric and non-parametric correlations reveal a significant negative relationship between
LST and NDVI, as well as emissivity. As NDVI is an indirect indicator for LULC classes, it can
be statistically said that LULC does significantly aid in altering LST. However LST is not solely
dependent on emissivity or on NDVI. Other conditions, including climatic factors such as evaporation,
PBL height, etc., also play an important role in altering LST. Significant strong positive relationships
exist between skin temperature and evaporation, skin temperature, and PBL height and PBL height
and evaporation. A significant negative relationship exists between Bowen ratio and evaporation.
These associations are able to statistically establish the land-air interactions in the city. In order to
further establish the modifications transpiring in the atmospheric system due to land surface changes,
the alterations in occurrence, frequency and magnitude of extreme weather events in Delhi will be
studied as a part of future investigations.

Supplementary Materials: Figure S1: Spatial profile of albedo calculated from ERA-Interim dataset (0.125◦ spatial
resolution), varying with LULC classes for NE-SW (L1) and NW-SE (L2) transect for various seasons during
time periods: 1991–1999 (T1), 2000–2008 (T2), and 2009–2016 (T3). Representation of LULC classes is as
follows: 1—Dense Forest, 2—Open Forest, 3—Scrubs/ Degraded Forest, 4—Plantations, 5—Cultivable Area,
6—Built-up Area, 7—Road/ Rail Network, 8—River/ Waterbody, and 9—Wasteland, Figure S2: Same as Figure S1,
but for evaporation (mm/day), Figure S3: Same as Figure S1, but for Bowen ratio, Figure S4: Same as Figure S1,
but for PBL height (m).
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