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Abstract: Annotating remote sensing images is a challenging task for its labor demanding annotation
process and requirement of expert knowledge, especially when images can be annotated with multiple
semantic concepts (or labels). To automatically annotate these multi-label images, we introduce an
approach called Multi-Label Classification based on Low Rank Representation (MLC-LRR). MLC-LRR
firstly utilizes low rank representation in the feature space of images to compute the low rank
constrained coefficient matrix, then it adapts the coefficient matrix to define a feature-based graph
and to capture the global relationships between images. Next, it utilizes low rank representation in
the label space of labeled images to construct a semantic graph. Finally, these two graphs are exploited
to train a graph-based multi-label classifier. To validate the performance of MLC-LRR against other
related graph-based multi-label methods in annotating images, we conduct experiments on a public
available multi-label remote sensing images (Land Cover). We perform additional experiments
on five real-world multi-label image datasets to further investigate the performance of MLC-LRR.
Empirical study demonstrates that MLC-LRR achieves better performance on annotating images
than these comparing methods across various evaluation criteria; it also can effectively exploit global
structure and label correlations of multi-label images.

Keywords: remote sensing images; image annotation; multi-label classification; low-rank
representation; graph construction; semantic graph

1. Introduction

Remote sensing image annotation [1] aims to assign one or several predefined labels (semantic
concepts) to a remote sensing image. It is the basis of remote sensing image indexing for organizing and
locating images of interest from a large database. With the development of satellite sensor technology,
remote sensing images can be easily accumulated. On the other hand, manually annotating so many
images is time consuming and expensive, even infeasible. Therefore, it is urgent to develop techniques
that can effectively and efficiently annotate remote sensing images. Most existing remote sensing
image classification methods [2–5] assume that each image is annotated with only one label within a
number of candidate labels and target at annotating only one label to an image. However, in real-world
applications, a remote sensing image can and should be annotated with multiple labels due to the
mixture of multiple signals, the interactions of photons with matter, the atmosphere and phenomenon
attributed to the physical properties of light [6]. For example, in Figure 1, the left image is annotated
with two labels: “Giza Pyramids” and “Egypt”, and the right image is tagged with labels “Train
Station”, “Zurich” and “Switzerland”. Given that, it is necessary to take into account the multi labels’
characteristics of remote sensing images and annotate a set of relevant labels to these images, instead
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of a single label. Recently, multi-label classification [7,8] that studies the problem where an instance
annotated with a set of labels has been applied to annotate multi-label remote sensing images [1,9–11]
and has shown appealing performance in remote sensing applications.

(a) (b)

Figure 1. Examples of multi-label remote sensing images collected by QuickBird satellite and
their annotations. (a) Annotations: Giza Pyramids and Egypt; (b) annotations: Train Station,
Zurich and Switzerland.

The multi-label classification framework has been applied to numerous real-world applications
[12]. One key challenging problem [7,8] in multi-label classification is how to make use of label
correlations. As shown in Figure 1, since the left image is annotated with “Giza Pyramids”, this image
has a higher probability to be annotated with the label “Egypt” than “Switzerland”. Existing strategies
on exploiting label correlation could be roughly divided into three categories based on the order of
correlations [8]. First-order correlation [13] assumes labels are independent and ignores intertwined
effects of other labels. Second-order correlation [14] captures pairwise relationships between labels.
However, there are certain real-world applications that label correlations go beyond the second-order
assumption. High-order correlation [15] imposes all other labels’ influences on each label and has
stronger correlation modeling capabilities than first-order and second-order strategies. However,
it is computationally more demanding and less scalable than them. Various methods have been
proposed to exploit label correlations for multi-label classification, and corroborated label correlations
can improve the accuracy of multi-label classification. A comprehensive coverage of them is beyond
the scope of this paper; readers can refer to [7,8] and the references therein.

Recently, graph-based classification methods have been introduced to remote sensing image
classification for simplicity and effectiveness [3,16,17]. A common basic assumption for these methods
is the good structure of the constructed graph. However, it is difficult to construct a graph that can
faithfully describe the relationship between instances, especially in image annotation, since each image
can be represented by various types of features (i.e., color histograms and color layout) from different
aspects. Moreover, all of these methods assume that each image is annotated with only one label.
In this paper, a novel graph-based multi-label classification approach called Multi-Label Classification
based on Low Rank Representation for image annotation (MLC-LRR) has been proposed. Unlike
traditional graph construction techniques, we take advantage of LRR for graph construction in both
the feature space and label space of images. Specifically, MLC-LRR first computes the coefficient
matrix of images (including both labeled and unlabeled images) in the feature space by LRR and then
makes use of the matrix to define a feature-based graph. In addition to that, MLC-LRR constructs
another semantic graph by using LRR again in the label space of labeled images to explore the global
relationships among labels. Next, MLC-LRR fuses the feature-based graph and semantic graph into a
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graph-based multi-label classifier to annotate unlabeled images. The main contributions of this paper
are listed as follows:

1. We apply graph-based multi-label classification to annotate remote sensing images associated
with multiple concepts (labels).

2. We exploit LRR for graph construction in the feature space and label space of images, respectively.
3. The semantic graph constructed in the label space can effectively capture global label correlation

and improve the accuracy of image annotation.
4. The proposed MLC-LRR can take advantage of limited labeled images and abundant unlabeled

images and shows improved performance compared to other related methods on annotating
images.

The reminder of this paper is organized as follows. Section 2 briefly reviews related work
on graph-based multi-label classification. Section 3 describes the proposed approach, including:
(i) feature-based graph construction via LRR in the image feature space; (ii) semantic graph construction
using LRR in the image label space; (iii) graph-based multi-label classification. In Section 4, we present
the used image datasets, experimental results and discussions. Conclusions and future work are
provided in Section 5.

2. Related Work

Graph-based multi-label classification [18,19] models all instances (or images) in a graph
G = (V , E , W), where V is a vertex set, and each vertex represents an image; E is the set of edges;
and W is a nonnegative adjacency matrix storing the weight of edges (or similarity) between images.
Wang et al. [20] proposed an l1 graph-based sparse coding method for image annotation called MSC.
MSC constructs a label-space graph based on the overlap of label vectors. Particularly, if two images
are annotated with the same labels, then the similarity between them is set to one, otherwise zero.
After that, MSC takes available labels of images as features and constructs an l1 graph based on
sparse representation coefficients regularized by an l1 norm. Next, MSC incorporates the label-space
graph and l1 graph into a linear embedding framework to project these images into low dimensional
space. For a query image, MSC firstly projects the image into a low dimensional space and then
computes the corresponding sparse representation coefficients with respect to labeled images. In the
end, MSC predicts the labels of the query image via linear combination of label vectors of labeled
images weighted by the coefficients. However, MSC, like the solutions in [1,9–11], is a supervised
approach that asks for sufficient labeled images for sparse representation and dimensionality reduction.
Nevertheless, it is very time consuming and expensive to collect sufficient labeled images. We may
often have scarce labeled images and a large amount of unlabeled images. Therefore, many researchers
have applied semi-supervised learning techniques [21–23] to leverage limited labeled images and
abundant unlabeled images for annotating large-scale unlabeled remote sensing images, but these
techniques still assume that each remote sensing image is annotated with a single label.

Recently, graph-based semi-supervised multi-label classification, an important branch of
semi-supervised learning, has been widely applied for annotating images [18,24,25], for its flexibility
and ease of application. Chen et al. [18] proposed an l2 graph-based semi-supervised classifier for
multi-label classification; the l2 graph is constructed by utilizing neighborhood instances of an instance
and neighborhood instances of its reciprocal neighbors. Specifically, this method first constructs an
instance level graph in the feature space and constructs another category level graph by using cosine
similarity in the label space. Then, it combines these two graphs into a regularization framework and
makes a prediction for unlabeled instances by solving a Sylvester equation [26]. Yu et al. [27] proposed
a Transductive Multi-label Classifier (TMC) on a directed bi-relational graph that takes both instances
and labels as nodes. This graph contains three kinds of edges: between instances, between labels
and between instances and labels. TMC predicts the labels of unlabeled instances based on Random
Walk with Restarts (RWR) [28] on the bi-relational graph. Wang et al. [29] proposed a graph-based
multi-label classification method (FCML)for multi-functional protein function prediction. FCML
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uses the Green function [30] to incorporate the function-function correlations based on the theory of
Reproducing Kernel Hilbert Space (RKHS) to infer protein functions. Kong et al. [19] proposed a kNN
graph-based transductive multi-label classifier called Tram. Tram introduces the label composition
concept and assumes similar instances should have a similar label composition. It formulates the
transductive multi-label classification as an optimization problem of estimating label composition and
provides a closed-form solution. Wang et al. [31] proposed a Dynamic Label Propagation (DLP) to
infer labels of unlabeled images by using an l2-graph, which is constructed by exploiting neighborhood
images of an image and neighborhood images of its reciprocal neighbors. However, all of these
aforementioned methods for graph construction do not adequately exploit the global structure of
data. Low Rank Representation (LRR) was recently introduced for graph construction in remote
sensing image classification [32,33]. It is recognized that LRR is an appropriate approach to explore the
global structure and global mixture of the subspace structure of images [34]. Jing et al. [25] proposed a
graph-based low-rank mapping method for multi-label classification. This method constructs a kNN
graph on both labeled and unlabeled instances and defines a mapping matrix as a linear transformation
from feature space to label space. Then, this method incorporates the mapping matrix and kNN graph
into a multi-label classification framework based on manifold regularization [35], but it does not
explicitly utilize label correlations.

In this paper, we introduce a Multi-Label Classifier based on Low Rank Representation (MLC-LRR)
for automatically annotating images. MLC-LRR takes advantage of low rank representation for graph
construction and constructs a feature-based graph and a semantic graph. The feature-based graph is
constructed in the feature space of labeled and unlabeled images, while the semantic graph is defined
in the label space of labeled images. Next, MLC-LRR makes use of both the feature-based graph and
the semantic graph to predict the labels of unlabeled images.

3. Methodology

In this section, we will briefly introduce LRR, the construction of the feature-based graph and the
semantic graph and transductive multi-label classification based on the feature-based graph and the
semantic graph derived from labeled images. Before that, we give some notations that will be used
throughout the paper. Let X = [x1, x2, ..., xN ] ∈ Rd×N be a set of images; xi ∈ Rd is the feature vector
for the i-th image. Y = [y1, y2, · · · , yN ] ∈ RN×C is the label indicative matrix for these N images,
where C is the number of distinct labels of these images. yi ∈ RC is the label vector of the i-th image,
if image i is annotated with label c, yic = 1; otherwise, yic = 0. Without loss of generality, suppose
among N images in X, the first l images are labeled, and the left u images are unlabeled, N = l + u.
Our goal is to use all of the images in X to train a graph-based multi-label classifier and to predict the
labels of these unlabeled images.

3.1. Low Rank Representation for Feature-Based Graph Construction

Graph-based semi-supervised classification depends on a well-structured graph [36]. However,
in real applications, it is difficult to construct a graph that effectively and correctly captures the
relationship between images. In this section, we take advantage of LRR to construct a feature-based
graph and to capture the global relationships among images. Given that X ∈ Rd×N represents the
feature space of both labeled and unlabeled images, where each column corresponds to an image, each
image can be viewed as a linear combination of bases from a dictionary A = [a1, a2, a3, ..., aM] ∈ Rd×M.
Similar to the work in [37], we set A = X in this paper. LRR encodes each image by a linear combination
of the bases in A as follow:

X = AZ1 (1)

where Z1 ∈ RN×N is the coefficient matrix with each Z1(·, i) ∈ RN being the representation coefficient
vector for image xi with respect to N images. Entry Z1(j, i) can be viewed as the contribution of xj to
the reconstruction of xi with A as the dictionary. Different from sparse representation [38] that may not
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capture the global relationship of images in X, LRR enforces Z1 to be low rank and solves the following
optimization problem: min

Z1
rank(Z1)

s.t.X = AZ1, Z1 ≥ 0
(2)

Here, X is reconstructed by the low rank constrained matrix Z1. Equation (2) is called low rank
representation [34]. Since non-negativity can guarantee the physical meanings of graph weights and
often results in better performance for graph construction [39], similar to Zhuang et al. [40], Z1 ≥ 0 is
added. In the iterative solution process of nonnegative LRR, negative values in Z1 are substituted with
zeros in each iteration.

Due to the discrete nature of the rank function, Equation (2) in general is NP-hard [41]. One
popular approach is to replace the rank function by the trace norm (or nuclear norm) [42], and Equation
(2) can be relaxed to Equation (3) as follows:min

Z1
‖ZF‖∗

s.t.X = AZ1, Z1 ≥ 0
(3)

where ‖Z1‖∗ denotes the nuclear norm of Z1, and it is the sum of singular values of Z1 [43]. Recently,
Zhang et al. [44] proved that Equations (2) and (3) have a closed-form solution, and Equation (3) can
be further relaxed to take into account noisy features as follows:min

Z1
‖Z1‖∗ + λ‖E‖2,1

s.t.X = AZ1 + E, Z1 ≥ 0
(4)

where ‖E‖2,1 = ∑N
j=1

√
∑d

i=1(Eij)2 is called the l2,1-norm and the parameter λ is used to trade off the
effect of low-rank part and the noise tolerance part. To solve Equation (4), Liu et al. [34] exploited the
well-known alternating direction method [45]. However, this method suffers from O(n3) computation
complexity due to the matrix multiplication and matrix inversion. Moreover, the alternating direction
method introduces auxiliary variables and constraints and, thus, downgrades the convergence rate.
Such a heavy computational load of the alternating direction method prevents LRR for large-scale
datasets. Fortunately, Lin et al. [46] introduced a Linearized Alternating Direction Method with
Adaptive Penalty (LADMAP) to accelerate the solution of LRR. LADMAP belongs to the alternating
direction method of multipliers family [45]; it solves LRR by linearizing the quadratic penalty term
and adding a proximal term when solving the sub-problems. In addition, LADMAP represents Z1

as its skinny single-value decomposition and utilizes an advanced functionality of the PROPACK
[47] package to accelerate the solving process. The time complexity of LADMAP for LRR is O(rn2);
r is the rank of the optimal Z1, since there is no full rank matrix multiplication. Next, each column
of Z1 is normalized via Z1(·, i) = Z1(·, i)/‖Z1(·, i)‖2, and then, each negative entry of Z1 is set to
zero. Since LRR jointly finds the low-ranked coefficient matrix Z1 for all images in X, here, similar
to [48], we adapt Z1 to define a feature-based graph whose weighted adjacent matrix is W, where
W = (Z1 + ZT

1 )/2 .

3.2. Low Rank Representation for Semantic Graph Construction

Graph construction is important for graph-based semi-supervised learning approaches, and many
graph construction methods have been proposed [16,17,38]. All of these methods mainly construct
a graph in the feature space and focus on single-label classification, where each image is restricted
to be annotated with only one label. However, remote sensing images can often be associated with
multiple labels. For example, one can think of two images with the same blue background; the first one
is annotated with “blue color” and “ship”, while the latter is tagged with “blue color” and “airplane”.
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It is easy to find that these two images are similar to each other in the feature space, since they have the
same background, which may account for the majority feature similarity. However, these two images
are different from each other in the semantic perspective; the first image describes a ship on the sea,
while the second image describes flying in the sky.

Therefore, directly calculating the similarity between two images based on their feature vectors
could not distinguish polysemous labels with different concepts in different images. To improve
the performance of graph-based multi-label classification, it is necessary to develop techniques that
can additionally utilize semantic information for graph construction. Most multi-label learning
methods [7,8] additionally make use of pairwise (or high-order) label correlations to improve the
performance; for example, pairwise label correlation computed by cosine similarity [29] and empirical
conditional probability [14], high-order label correlation by classifier chain [49] and a random label
set [50]. Different from these popular techniques, some multi-label classifiers take each label as a node
and construct a hybrid graph with label nodes and images to represent the intra-relationship between
images, between labels and inter-relationships between images [27]. The semantic information of an
image can be additionally encoded by the labels annotated to that image. These label correlation-based
methods do not take into account all of the labels annotated to an image, and thus, they do not
make proper use of the semantic relationship between images. The semantic similarity between two
multi-label images can be derived from the labels associated with these two images. Wang et al. [20]
proposed a reconstruction-based semantic graph by utilizing sparse representation in the label space
of labeled images. Nevertheless, the graph is constructed by separately treating each labeled image
with respect to other labeled images; thus, it may be ineffective in capturing the global semantic
relationship between images. Here, we construct a semantic graph to capture the global semantic
similarity between images by reusing LRR on labeled images in Y. Label vectors of labeled images are
reconstructed with respect to Y by LRR (similar to Equation (4)) as a whole, and then, the low rank
coefficients are used to define a semantic graph S ∈ RN×N , where S = (Z2 + ZT

2 )/2 and Z2 is the low
rank representation coefficient matrix with respect to labeled images in Y. In practice, we just utilize
labeled images to construct the semantic graph between l labeled images. To be consistent with the
feature-based graph W, we extend S to be an N × N matrix, with the upper left sub-matrix with size
l × l initialized by low rank coefficients in Z2, and the other entries of S are set to zeros.

3.3. Graph-Based Multi-Label Classification

To this end, we introduce a graph-based multi-label classifier to use the feature-based graph and
the semantic graph for multi-label classification. At first, we define a matrix F = [fi, f2, · · · , fN ]

T ∈
RN×C, where fi = [fi1, fi2, · · · , fiC]

T ∈ RC is the predicted likelihood of the i-th image with respect to
C labels. Here, we consider a graph-based multi-label classifier as follows:

Ψ(F) = arg min
F

l

∑
i=1

Ω(fi, yi) + α||f||2F + β‖f‖2
L (5)

where the first term is the empirical loss function measuring the approximation error between the
annotated multi-label images and the predicted likelihoods, the second term is the regularization on
the global structure of labeled and unlabeled images and the last term is to take advantage of the
semantic relationship between labeled images. α and β are two parameters to balance these three
terms. The first term is defined as follows:

Ω(f, y) =
l

∑
i=1
||fi − yi||2 =

N

∑
i=1

((fi − yi)
THii(fi − yi)) = tr((F− Y)TH(F− Y)) (6)



Remote Sens. 2017, 9, 109 7 of 19

where tr() is the matrix trace operator and H ∈ RN×N is a diagonal matrix with Hii = 1 if xi is labeled,
Hii = 0, otherwise. The second term of Equation (5) can be computed as:

||f||2F =
1
2

N

∑
i,j=1
||fi − fj||2Wij = tr(

N

∑
i=1

(fiWiifT
i )−

N

∑
i,j=1

(fiWijfT
j )) = tr(FT(D−W)F) = tr(FTLF) (7)

where Wij is the weight of the edge between images xi and xj. D is a diagonal matrix with Dii =

∑N
j=1 Wij; L = D−W is the graph Laplacian matrix [51].

Similar to the assumption in [52], in this paper, we assume that the label of an image can be
reconstructed by other related images, while the reconstructed coefficients are derived from low rank
representation in the label space. Based on this assumption, the last term of Equation (5) is defined as:

||f||2L =
1
2

N

∑
i,j=1
||fi −∑

j 6=i
Sijfj||2 = tr(FT(I− S)(I− S)TF) = tr(FTMLF) (8)

where S ∈ RN×N is the adjacent matrix of the semantic-based graph defined in Section 3.2.
Sij represents the similarity of label vector yi and yj. I ∈ RN×N is an identity matrix,
and ML = (I− S)(I− S)T . The motivation to use the last term is to replenish possible missing
labels of labeled images by taking advantage of the semantic graph. If a labeled image has some
missing labels and its semantic neighbors are annotated with these labels, this term can replenish
missing labels of that image to some extent. In addition, by joint work with the second term on
the right of Equation (5), the available labels and replenished labels of labeled images can further
propagate to other unlabeled images, and thus, MLC-LRR can more completely predict the labels of
unlabeled images.

Based on Equations (6)–(8), we can rewrite Equation (5) as:

Ψ(F) = tr((F− Y)TH(F− Y)) + αtr(FTLF) + βtr(FTMLF) (9)

The reason to minimize the first term in Equation (9) is to force the predicted outputs fi to be
similar to the original labels. The motivation to minimize the second term is to ensure images with
similar feature vectors having similar outputs. The last term is motivated by the label reconstruction
assumption [52], where the labels of an image can be reconstructed by those of other images. In other
words, if the label vectors of two images yi and yj are similar to each other, then Sij has a large value.
In this way, the third term can capture and employ semantic information between images.

Equation (9) can be solved by taking the partial derivative of Ψ(F) with respect to F as follows:

∂Ψ(F)
∂F

= 2H(F− Y) + 2αLF + 2βMLF (10)

Let Ψ(∂F)
∂F = 0; we can obtain the analytic solution of F as:

F = (H + αS + βML)
−1HY (11)

Given X and Y are already known, S = D−W, and ML = (I−S)(I−S)T , F is mainly determined
by W and S. Here, W and S are the weighted adjacent matrices of graphs constructed by LRR in
the feature space and label space of images, respectively. Figure 2 briefly lists the procedure of the
MLC-LRR algorithm.
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

Figure 2. Flowchart of Multi-Label Classification based on Low Rank Representation (MLC-LRR).

4. Results and Discussion

We conduct experiments on Land Cover and five other publicly-available multi-label image
datasets, Flags [53], Scene [13], Corel5k [54], MIRFlickr [55] and ESPGame[56], to validate the
performance of our proposed MLC-LRR and compare it with five representative and related
graph-based multi-label classifiers: MSC [20], TMC [27], FCML [29], Tram [19] and DLP [31]. MSC is
a supervised multi-label classifier, and the other four are semi-supervised multi-label classifiers.
These classifiers have been introduced in Section 2.

Land Cover is a multi-label remote sensing image dataset collected by Karalas et al. [11].
This dataset combines real satellite data from the Moderate Resolution Imaging Spectroradiometer
instrument and high spatial resolution ground data from the CORINE Land Cover (CLC) project
supported by European Environment Agency. We use the same features and labels as suggested in [11]
for image annotation; each image is represented with 57 features with respect to 20 distinct labels, as
depicted in Table 1.

Flags is a multi-label toy image dataset with 194 images in seven object classes. Each image
is represented by a vector with 19 features. Scene includes 2407 images in six object classes; each
image has 294 features. Corel5k, MIR FLICKRand ESPGame are three representative and popular
image datasets. Similar to MLR-GL [57], we remove the images that are annotated with fewer than
three labels from Corel5k and images that are tagged with fewer than five labels from MIR Flickr
and ESPGame. Each image in the last three datasets is represented by dense SIFT descriptors [58].
The statistical information of these datasets used for experiments is revealed in Table 2.

In the experiments, Unless otherwise specified, we set the parameters of the comparing methods
according to what the author supposed in the original papers or codes. As for MLC-LRR, we perform
a cross-validation on the Flags and Scene datasets in the preliminary experiments by varying α and β

from 0.01 to one with a stepsize of 0.01. Results show that MLC-LRR yields stable performance around
α = 0.5 and β = 0.01; these two values are used for MLC-LRR in the following experiments.
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Table 1. Twenty ground-truth CORINE Land Cover (CLC) labels for remote sensing images in the
Land Cover dataset.

No. CLC Code Description

1 111 Continuous urban fabric
2 121 Industrial or commercial units
3 122 Road and rail networks and assoc.land
4 124 Airports
5 131 Mineral extraction sites
6 132 Dump sites
7 133 Construction sites
8 141 Green urban areas
9 142 Sport and leisure facilities

10 212 Permanently irrigated land
11 213 Rice fields
12 223 Olive groves
13 241 Annual crops assoc. with perm.crops
14 322 Moors and heathland
15 331 Beaches, dunes, sands
16 332 Bare rocks
17 411 Inland marshes
18 412 Peat bogs
19 421 Salt marshes
20 521 Coastal lagoons

Table 2. Datasets used in the experiments. N is the number of images; D is the dimensionality of
images; C is the number of distinct labels of images; Avg is the average number of labels per image.

Datasets N D C Avg

Land Cover 12,291 57 20 2.037
Flags 194 19 7 3.392
Scene 2407 294 6 2.158

Core15k 4395 1000 260 3.61
MIRFlickr 4951 1000 457 7.31
ESPGame 10,457 1000 268 6.41

4.1. Evaluation Metrics

Performance evaluation for multi-label image annotation is somewhat complicated, as each image
is annotated with a set of labels, instead of a single one. Various metrics have been used to evaluate
the performance of multi-label classification. Given C different labels, all of these comparing methods
result in a predicted likelihood vector with respect to C labels. In this paper, we use five widely-used
evaluation metrics (RankLoss, AvgPrec, Coverage, MicroAvgand AUC) [7,8] to quantitatively compare
the performance of these multi-label classification methods in annotating images.

RankLoss evaluates the average fraction of misordered label pairs, i.e., an irrelevant label of an
image is ranked ahead of a relevant label. The smaller the value of RankLoss, the better the performance.
Its formal definition is:

RankLoss =
1
u

N

∑
i=l+1

|{(Yik,Yij)| f (xi, k) ≤ f (xi, j), (k, j) ∈ Yi × Ȳi}|
|Yi||Ȳi|

(12)

i ≤ k, j ≤ C, Ȳi is the complementary set of Yi and Yi is the known label set of the i-th image.
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AvgPrec evaluates the average fraction of relevant labels ranked ahead of a particular label
Yik ∈ Yi. The larger the value of AvgPrec, the better the performance. Its formal definition is:

AvgPrec =
1
u

N

∑
i=l+1

1
|Yi| ∑

Yik∈Yi

|Φ(xi,Yik)|
rank(xi,Yik)

, where

Φ(xi,Yik) = {Yij | rank(xi,Yij) ≤ rank(xi,Yik), Yij ∈ Yi}
(13)

rank(xi,Yik) returns the rank (from largest to lowest) of Yik in f (xi).
MicroAvg evaluates both the micro average of precision and the micro average of recall with equal

importance. The bigger the value, the better the performance. Its formal definition is:

MicroAvg =
2×∑N

i=l+1 | f (xi)
⋂Yi|

∑N
i=l+1 | f (xi)|+ ∑N

i=l+1 |Yi|
(14)

MicroAvg requires the vector to be a binary indicator vector. Here, we consider the labels
corresponding to the r largest entries of f (xi) as the predicted labels of image xi, where r is determined
as the average number of labels (rounded to the next integer) of annotated images. From Table 1, r for
Land Cover, Flags, Scene, Core15k, MIR Flickr and ESPGame is 3, 4, 3, 4, 8 and 7, respectively.

The adapted Area Under the Curve (AUC) was proposed and utilized in [57]. AUC firstly sorts
the predicted likelihood scores vector for each image in descending order; it then varies the number of
predicted labels from one to C and computes the receiver operating characteristic curve by calculating
the true positive rate and the false positive rate for each number of predicted labels. It finally computes
the area under the curve to evaluate the performance of multi-label classification.

Coverage evaluates how many steps are needed, on average, to move down the ranked label list of
an image to cover all of its relevant labels. Its formal definition is:

Coverage =
1
u

N

∑
i=l+1

max
Yik∈Yi

rank(xi,Yik)− 1 (15)

Obviously, different from the above four metrics, Coverage can be greater than one, and the smaller
the value of Coverage, the better the performance is.

To maintain consistency with AUC, MicroAvg and AvgPrec, we use 1−RankLoss instead of RankLoss.
Thus, the larger the value of these metrics (except Coverage), the better the performance is. We want to
remark that these metrics evaluate the performance of multi-label image annotation from different
aspects; it is difficult for an approach to consistently perform better than other methods across all of
these metrics.

4.2. Experimental Results on Annotating Remote Sensing Images

In this section, we conduct experiments on the Land Cover dataset to investigate the performance
of MLC-LRR on annotating remote sensing images by using both labeled and unlabeled images
and compare the performance of MLC-LRR with other comparing methods. We randomly partition
the images of the Land Cover dataset into two sets; one is used as labeled images, and the other is
used as unlabeled images for validation. Here, we consider two different label ratios: 10% and 15%.
10% (or 15%) means we randomly select 10% (or 15%) of images in a dataset as the labeled training set
and take the remaining images as unlabeled images to be annotated by these comparing methods. Table
3 reports the results of these comparing methods on the Land Cover dataset. To reduce any random
effect, for each fixed label ratio, we repeat independent experiments for each method 10 times and
report the average results. In the table, •/◦ indicates whether MLC-LRR is statistically (pairwise t-test
at 95% significance level) superior/inferior to the comparing methods under a particular evaluation
metric. ↓ along with Coverage means the lower the value, the better the performance.
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Table 3. Experimental results (mean ± std) on the Land Cover dataset with 10% and 15% labeled
images. DLP, Dynamic Label Propagation (DLP); TMC, Transductive Multi-label Classifier. •/◦
indicates whether MLC-LRR is statistically (pairwise t-test at 95% significance level) superior/inferior
to the comparing methods under a particular evaluation metric.

MicroAvg 1-RankLoss AvgPrec AUC Coverage ↓

10%

MSC 0.269± 0.004 • 0.699± 0.001 • 0.396± 0.002 • 0.721± 0.001 • 8.882± 0.030 •
DLP 0.226± 0.021 • 0.613± 0.057 • 0.327± 0.030 • 0.635± 0.059 • 8.389± 0.770 •
Tram 0.263± 0.033 • 0.109± 0.082 • 0.259± 0.048 • 0.607± 0.031 • 11.530± 0.784 •
TMC 0.253± 0.003 • 0.652± 0.001 • 0.379± 0.001 • 0.672± 0.001 • 9.700± 0.032 •

FCML 0.020± 0.000 • 0.286± 0.001 • 0.123± 0.000 • 0.304± 0.001 • 16.354± 0.023 •
MLC-LRR 0.341± 0.017 0.740± 0.009 0.467± 0.016 0.761± 0.009 7.867± 0.236

15%

MSC 0.276± 0.003 • 0.702± 0.001 • 0.397± 0.001 • 0.724± 0.001 • 8.810± 0.032 •
DLP 0.231± 0.009 • 0.666± 0.006 • 0.341± 0.017 • 0.692± 0.005 • 9.486± 0.143 •
Tram 0.406± 0.057 ◦ 0.438± 0.132 • 0.462± 0.081 • 0.737± 0.052 • 8.229± 1.314 •
TMC 0.253± 0.003 • 0.653± 0.001 • 0.381± 0.001 • 0.673± 0.001 • 9.657± 0.028 •

FCML 0.020± 0.000 • 0.286± 0.001 • 0.123± 0.000 • 0.304± 0.001 • 16.367± 0.024 •
MLC-LRR 0.369± 0.010 0.759± 0.009 0.488± 0.012 0.780± 0.009 7.382± 0.213

We additionally investigate the performance of MLC-LRR with a normalized graph Laplacian
and introduce MLC-LRRL̃, which is adopted from MLC-LRR by replacing L in Equation (7) with a
normalized graph Laplacian matrix L̃ = D−1/2WD−1/2. Similar to previous experimental protocols,
we randomly select some images of the Land Cover dataset as labeled images and take the remaining
images as unlabeled images for annotation. Figure 3 reports the results of MLC-LRR and MLC-LRRL̃
with respect to MicroAvg, 1-RankLoss, AvgPrec and Coverage, respectively. These reported results
are the average of ten independent experiments for each fixed label ratio (from 10% to 35% with the
stepsize as 5%).
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Figure 3. MLC-LRR vs. MLC-LRRL̃ on the Land Cover dataset under different label ratios across five
evaluation metrics (a–e).

4.3. The Benefit of the Semantic Graph

In this subsection, to further study the effectiveness of MLC-LRR in employing semantic
graph S, we conduct another set of experiments on a variant of MLC-LRR: MLC-LRRF is adopted
from MLC-LRR by only using feature-based graph W. Similar to previous experimental protocols,
we randomly draw 10% to 35% of the images of the Land Cover dataset as labeled images and use
the remaining images as unlabeled ones for annotation. Ten independent experiments are conducted
under each label ratio (10% to 35% with a stepsize of 5%), and meanwhile, the mean value of each
evaluation metric is recorded under each label ratio. Figure 4 shows the performance of MLC-LRR and
MLC-LRRF with respect to MicroAvg, 1-RankLoss, AUC, AvgPrec and Coverage, respectively.
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Figure 4. MLC-LRR vs. MLC-LRRF on the Land Cover dataset under different label ratios across five
evaluation metrics (a–e).

4.4. Experimental Results on Other Multi-Label Image Datasets

In this section, we conduct experiments on five public image datasets (Flags, Scene, Core15k,
MIR Flickr and ESPGame) to validate the performance of MLC-LRR in annotating multi-label images
and compare it with other related methods. Here, we randomly partition 30% images of each dataset
as the labeled training set and take the remaining images as the unlabeled images. Table 4 reports the
results of these comparing methods across various evaluation metrics and: MicroAve, 1-RankLoss,
AvgPrec, AUC and Coverage. In the table, •/◦ indicates whether MLC-LRR is statistically (pairwise
t-test at 95% significance level) superior/inferior to the comparing methods under a particular
evaluation metric. ↓ along with Coverage means the lower the value, the better the performance.

Table 4. Experimental results (mean ± std) on Flags, Scene, Core15k, MIR Flickr and ESPGame with
30% labeled images. •/◦ indicates whether MLC-LRR is statistically (pairwise t-test at 95% significance
level) superior/inferior to the comparing methods under a particular evaluation metric.

MicroAvg 1-RankLoss AvgPrec AUC Coverage ↓

Flags

MSC 0.689± 0.004 0.712± 0.006 • 0.799± 0.004 0.734± 0.005 • 3.567± 0.035
DLP 0.685± 0.004 0.715± 0.004 • 0.801± 0.002 0.735± 0.002 • 3.590± 0.033
Tram 0.693± 0.005 0.704± 0.009 • 0.789± 0.007 0.725± 0.006 • 3.603± 0.037
TMC 0.680± 0.002 0.710± 0.003 • 0.800± 0.003 0.735± 0.002 • 3.604± 0.040

FCML 0.473± 0.003 • 0.285± 0.004 • 0.541± 0.003 • 0.414± 0.003 • 4.704± 0.009 •
MLC-LRR 0.689± 0.004 0.726± 0.005 0.804± 0.003 0.747± 0.004 3.510± 0.035

Scene

MSC 0.268± 0.012 • 0.519± 0.018 • 0.447± 0.008 • 0.603± 0.021 • 2.511± 0.093 •
DLP 0.229± 0.006 • 0.497± 0.004 • 0.409± 0.002 • 0.583± 0.005 • 2.586± 0.017 •
Tram 0.615± 0.001 ◦ 0.919± 0.001 ◦ 0.856± 0.002 ◦ 0.942± 0.001 ◦ 0.489± 0.005 ◦
TMC 0.114± 0.013 • 0.300± 0.009 • 0.288± 0.010 • 0.371± 0.011 • 3.589± 0.047 •

FCML 0.128± 0.010 • 0.383± 0.010 • 0.337± 0.008 • 0.452± 0.012 • 3.128± 0.046 •
MLC-LRR 0.547± 0.016 0.837± 0.017 0.720± 0.027 0.896± 0.011 0.909± 0.089

Core15k

MSC 0.204± 0.014 • 0.697± 0.032 • 0.223± 0.010 • 0.724± 0.010 • 59.579± 1.906 •
DLP 0.215± 0.004 • 0.748± 0.001 • 0.238± 0.001 • 0.751± 0.001 • 54.750± 0.170 •
Tram 0.326± 0.001 ◦ 0.853± 0.001 ◦ 0.391± 0.001 ◦ 0.856± 0.001 ◦ 34.309± 0.146 ◦
TMC 0.224± 0.001 • 0.733± 0.001 • 0.235± 0.002 • 0.734± 0.001 • 57.141± 0.078 •

FCML 0.009± 0.000 • 0.242± 0.001 • 0.033± 0.001 • 0.247± 0.001 • 103.46± 0.078 •
MLC-LRR 0.279± 0.000 0.833± 0.001 0.333± 0.002 0.837± 0.001 38.655± 0.324

MIR Flickr

MSC 0.088± 0.002 • 0.649± 0.006 • 0.093± 0.002 • 0.667± 0.003 • 273.514± 1.830 •
DLP 0.091± 0.003 • 0.695± 0.001 0.101± 0.001 0.699± 0.001 257.810± 0.409 ◦
Tram 0.060± 0.001 • 0.656± 0.001 • 0.074± 0.000 • 0.658± 0.001 • 267.765± 0.338 •
TMC 0.104± 0.000• 0.698± 0.021 0.109± 0.000 0.702± 0.000 257.980± 0.352◦

FCML 0.008± 0.000 • 0.301± 0.001 • 0.021± 0.000 • 0.299± 0.012 • 349.629± 0.092 •
MLC-LRR 0.104± 0.000 0.698± 0.001 0.109± 0.000 0.703± 0.001 258.955± 0.606
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Table 4. Cont.

MicroAvg 1-RankLoss AvgPrec AUC Coverage ↓

ESPGame

MSC 0.125± 0.046 • 0.766± 0.001 • 0.211± 0.001 • 0.770± 0.001 • 158.048± 0.461 •
DLP 0.214± 0.002 • 0.778± 0.001 • 0.213± 0.001 • 0.781± 0.001 • 151.113± 0.425 •
Tram 0.255± 0.001 • 0.818± 0.012 • 0.266± 0.001 • 0.821± 0.021 • 128.114± 0.303
TMC 0.210± 0.005 • 0.773± 0.001 • 0.210± 0.001 • 0.776± 0.001 • 154.484± 0.538 •

FCML 0.005± 0.000 • 0.218± 0.001 • 0.021± 0.000 • 0.217± 0.001 • 250.081± 0.061 •
MLC-LRR 0.261± 0.007 0.823± 0.007 0.266± 0.012 0.826± 0.007 126.290± 0.421

4.5. Discussion

4.5.1. Results Analysis on Land Cover Images

As we can see from Table 3, the performance of all methods increases with the the increase of
the number of labeled images. By comparing with the five related methods, MLC-LRR performs
better than or comparable to them in most cases. In summary, out of 10 configurations (1 dataset ×
5 evaluation metrics × 2 settings of label ratios), MLC-LRR always outperforms MSC, DLP, TMC
and FCML, outperforms TRAM in nine configurations and ties with it only in one configuration.
These results demonstrate the advantage of MLC-LRR in annotating multi-label remote sensing
images. MSC is an inductive multi-label classifier. Both MSC and MLC-LRR explicitly utilize label
correlation and semantic information for graph construction, where MSC constructs an l1 graph in
the label space and MLC-LRR constructs a semantic graph by low rank representation in the label
space. However, MLC-LRR always outperforms MSC. This is principally because MSC assumes a
large amount of labeled images is available, and it only exploits labeled images, discarding abundant
unlabeled images in the training process. Moreover, constructing a graph by low rank representation
can better capture the global relationship among images than sparse representation. These results hint
that unlabeled images can be used to boost the performance of multi-label classification. DLP is a
dynamic label propagation method. In fact, MLC-LRR also makes a prediction of unlabeled images by
label propagation. However, DLP is outperformed by MLC-LRR in many cases. One possible reason
is that DLP just makes use of the relationship between images in feature space without using label
correlations. In contrast, MLC-LRR additionally utilizes semantic information among images by low
rank representation. Both Tram and MLC-LRR employ unlabeled images, but Tram is outperformed
by MLC-LRR. There are two passable reasons: (i) Tram does not explicitly utilize label correlation;
(ii) Tram constructs a kNN graph in the feature space to capture the relationship between images
while MLC-LRR constructs a feature-based graph by low-rank representation. It may not be reliable to
construct a predefined kNN graph in the feature space for automatically annotating remote sensing
images. This observations suggest that the feature-based graph adopted by MLC-LRR can effectively
capture the global relationship of remote sensing images.

TMC constructs a directed bi-relational graph to capture three types of relationships: relationship
between labels, relationship between images and association between images and labels. Both TMC and
MLC-LRR utilize unlabeled images and explicitly employ label correlation, but TMC is outperformed
by MLC-LRR in many cases. The passable reason is that TMC just considers pairwise label correlation,
whereas MLC-LRR exploits LRR to explore and employ high order label correlation. FCML is another
transductive multi-label classifier that takes advantage of pairwise label correlation. Both FCML
and MLC-LRR explicitly employ label correlations; however, MLC-LRR significantly outperforms
FCML. The cause is that FCML utilizes cosine similarity to capture the relationship between different
labels; MLC-LRR constructs a semantic graph to capture the global relationship among labels by LRR,
which can effectively capture the global semantic relationship among images. These results not only
corroborate the effectiveness of LRR in capturing the global structure of remote sensing images, but
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also indicate the significance of the semantic graph in capturing the correlation among labels and the
semantic relationship between images.

Experimental results in Figure 3 also support the effectiveness of the semantic graph in utilizing
the semantic relationship between images. From this figure, we can see that the performance of
MLC-LRR and MLC-LRRF increases with the increase of label ratio (from 10% to 35%). Both MLC-LRR
and MLC-LRRF utilize unlabeled remote sensing images for training; however, MLC-LRR outperforms
MLC-LRRF in all evaluation metrics due to additionally employing the semantic graph. In other words,
the semantic graph can further improve the performance of MLC-LRRF. From these results, we can
observe that MLC-LRR performs significantly better than MLC-LRRF in all evaluation metrics. Taking
1-RankLoss in Figure 3b for example, with labeled images increasing from 10% to 35%, MLC-LRRF
increases by 1.00%, while MLC-LRR increases by 5.19%. The additional improvement of MLC-LRR with
respect to MLC-LRRF is attributed to the semantic graph. These results suggest that the semantic graph
derived from labels of annotated remote sensing images can be used to boost the performance of image
annotation. In addition, these results also justify our motivation to combine both the feature-based
graph and the semantic graph for image annotation.

As shown in Figure 4, we can observe that the performance of MLC-LRR and MLC-LRRL̃ increases
with the increase of label ratio. However, MLC-LRR always performs better than MLC-LRRL̃ across
five evaluation metrics. This is possible because that un-normalized graph Laplacian is more suitable
for the Land Cover dataset. Another interesting observation is that MLC-LRRL̃ generally has smaller
variance than MLC-LRR. This observation shows that the normalized graph Laplacian provides
additional stability.

4.5.2. Results Analysis on Other Multi-Label Images

From Table 4, we can also observe that MLC-LRR performs better (or is comparable to) than
the five other related graph-based multi-label classifiers in annotating multi-label images in most
cases. The overall observation is similar as that in Table 3. Particularly, out of 25 configurations (5
datasets × 5 evaluation metrics). MLC-LRR outperforms MSC, DLP, Tram and TMC in 88.00%, 72.00%,
44.00% and 72.00% of cases, ties with them in 12.00%, 24.00%, 20.00% and 24.00% of cases and loses
to DLP, Tram and TMC in 4.00%, 40.00% and 4.00% of cases, respectively. MLC-LRR outperforms
FCML in all configurations as on the Land Cover dataset. We also observe that MLC-LRR performs
significantly better than MSC, DLP, Tram and TMC in 100.00%, 73.33%, 60.00% and 73.33% of cases on
three high-dimensional image datasets: Core15k, MIR Flickr and ESPGame. MLC-LRR on average
improves them by 32.00%, 16.00%, 28.00% and 16.00% on the last three high-dimensional image
datasets, respectively. Taking experimental results with respect to MIR Flickr in Table 4 for example,
we can observe that MLC-LRR achieves the best (or comparable) performance among all comparing
methods across various evaluation metrics. These results demonstrate the advantage of MLC-LRR in
annotating high-dimensional multi-label images.

We also observe that the performance of MLC-LRR increases as the average number of labels per
image (Avg) increases, compared with the five other related graph-based methods. This is principally
because label correlation is more prominent with the increase of the average number of labels of an
image; thus, the semantic graph of MLC-LRR can more effectively capture the semantic relationship
between images. This fact implies that the semantic graph is useful for capturing label correlation and
for image annotation, which coincides with the results on Land Cover images revealed in Figure 3.

Another interesting observation is that MLC-LRR performs similarly to Tram on the Flags and
Scene datasets, but it outperforms Tram on the Core15k, MIR Flickr and ESPGame datasets. In practice,
both MLC-LRR and Tram take advantage of the label composition concept for graph-based multi-label
classification. Tram constructs a kNN graph by the Euclidean distance between images in the feature
space, while MLC-LRR constructs a feature-based graph by low-rank representation. These contrast
results can be attributed to the dimensionality of images in the first two datasets being much lower
than that of the last three datasets; there may be no significant difference between the kNN graph and
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the feature-based graph in these two datasets. This fact indicates that MLC-LRR is more suitable for
annotating high-dimensional multi-label images.

4.6. Toy Examples

In this section, we conduct another experiment to visually compare MLC-LRR and the five other
related methods in annotating images in the IAPRTC-12 [59] image dataset. The number of distinct
labels is 291 in IAPRTC-12, and each image is described by dense SIFT features and is represented by a
1000-dimensional vector. We filter rare labels by keeping the top 30% frequent labels and remove the
images that are assigned to fewer than six labels. In the end, we get 3207 images with 88 labels, then we
partition these images into two parts. The first part accounts for 30% images used as labeled instances;
the second part accounts for 70% images used as unlabeled ones, whose labels are annotated by these
comparing methods. In order to transform the predicted likelihood vector into a binary indicator
vector, here, we consider the labels corresponding to the r largest entries of f (x) as the predicted labels
of image x, where r is determined as the maximum number of labels of these annotated images. Here,
r is fixed as 10.

From Table 5, we can observe that MLC-LRR has better (or comparable) performance than other
comparing methods in annotating images. In summary, out of 23 (9 + 7 + 7) labels in these three
images, MLC-LRR, MSC, Tram, TMC, FCML and DLP correctly predict 21, 15, 14, 16, 2 and 19 of
them, respectively.

Table 5. Predicted labels for exemplar images in IAPRTC-12 [59]. The ground-truth labels are
highlighted in bold font, and the potentially correct labels are in italic font.

True Labels bike, front, house, mountain building, car, group front, house, lamp
people, sky, street, tree, wall people, sky, street, tree roof, sky, street, tree

MSC
building, front, house building, cloud, front building, front, house
lamp, man, mountain house, mountain, people lamp, man, mountain

people, sky, square, tree sky, square, tower, tree people, sky, tree, wall

Tram
building, front, house desert, front, house bush, flower, front

man, mountain, people mountain, people, rock house, lamp, lawn
roof, sky, street, woman sky, square, street, tree people, square, tree, street

TMC
building, front, house building, front, house building, front, house
lamp, man, mountain lamp, man, mountain lamp, man, mountain

people, sky, tree, wall people, sky, tree, wall people, sky, tree, wall

FCML
boy, bridge, cliff boy, bridge, cliff boy, bridge, cliff

cycling, cyclist, hair cycling, cyclist, hair cycling, cyclist, hair
jersey, people, short, sweater jersey, people, short, sweater jersey, people, short, sweater

DLP
building, front, house building, front, house building, front, house

lamp, mountain, people lamp, mountain, people lamp, mountain, people
sky, street, tree, wall sky, street, tree, wall sky, street, tree, wall

MLC-LRR
building, front, house building, group, house building, front, house

lamp, mountain, people lamp, mountain, people lamp, mountain, people
sky, street, tree, wall sky, street, tree, wall roof, sky, street, tree

Another interesting observation is that these comparing methods also annotate additionally
correct labels to these images. For example, “lamp”, “building”, “man” and “sweater” are not in the
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ground-truth label set of the first image; “lamp”, “man” and “hair” are not in the ground-truth label
set of the second image; “building” is not in the ground-truth label set of the last image; but we can see
that “lamp”, “building”, “man” and “sweater” are annotated to the first image, “lamp”, “man” and
“hair” to the second image, and “building” to the last image by these comparing methods. By taking
into account these additional labels, MLC-LRR also produces more correct labels than these comparing
methods.

These examples show that the proposed method has the potential to provide more complete
annotations of images than other comparing methods. These toy examples also indicate the potential
application of MLC-LRR in collaborative tagging systems (also known as folksonomy) [60]; for example,
folksonomy-based personalized searches [61], folksonomy-based recommender systems [62] and
folksonomy-based social media services [63,64].

5. Conclusions

In this paper, we take advantage of low-rank representation for graph construction and introduce
a graph-based Multi-Label Classifier based on Low Rank Representation (MLC-LRR) for annotating
remote sensing images associated with multiple labels. Unlike existing methods that focus on the
single-label problem and just construct graphs in the feature space, we construct a semantic graph based
on LRR in the label space. Our empirical study with five related methods on the Land Cover remote
sensing images shows that MLC-LRR performs significantly better than these methods. In addition,
we find that the synergy of the two graphs constructed by LRR in the feature and in the label space
achieves better performance than using the graph in the feature space alone. Extra experimental results
on five multi-label image datasets and a case study again show that MLC-LRR performs better than
these comparing methods in annotating multi-label images. In the future, we want to investigate
the effectiveness of LRR with other graph-based multi-label classifiers and design more effective
algorithms for remote sensing image annotation.
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