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Abstract: Salinization of irrigated lands in the semi-arid Jezreel Valley, Northern Israel results in
soil-structure deterioration and crop damage. We formulated a generic rule for estimating salinity of
different vegetation types by studying the relationship between Cl/Na and different spectral slopes
in the visible–near infrared–shortwave infrared (VIS–NIR–SWIR) spectral range using both field
measurements and satellite imagery (Sentinel-2). For the field study, the slope-based model was
integrated with conventional partial least squares (PLS) analyses. Differences in 14 spectral ranges,
indicating changes in salinity levels, were identified across the VIS–NIR–SWIR region (350–2500 nm).
Next, two different models were run using PLS regression: (i) using spectral slope data across these
ranges; and (ii) using preprocessed spectral reflectance. The best model for predicting Cl content
was based on continuum removal reflectance (R2 = 0.84). Satisfactory correlations were obtained
using the slope-based PLS model (R2 = 0.77 for Cl and R2 = 0.63 for Na). Thus, salinity contents
in fresh plants could be estimated, despite masking of some spectral regions by water absorbance.
Finally, we estimated the most sensitive spectral channels for monitoring vegetation salinity from a
satellite perspective. We evaluated the recently available Sentinel-2 imagery’s ability to distinguish
variability in vegetation salinity levels. The best estimate of a Sentinel-2-based vegetation salinity
index was generated based on a ratio between calculated slopes: the 490–665 nm and 705–1610 nm.
This index was denoted as the Sentinel-2-based vegetation salinity index (SVSI) (band 4 − band 2)/
(band 5 + band 11).

Keywords: reflectance spectroscopy; spectral slope; salinity; fresh vegetation; tomato; cotton;
Sentinel-2; Sentinel-2-based vegetation salinity index (SVSI)

1. Introduction

Salinity is one of the major ecological factors limiting plant growth and productivity, especially
in arid and semi-arid regions with high rates of evapotranspiration and irrigated agriculture [1–3].
Increasing soil salinity leads to degradation of vegetation quality, due to a substantial decrease in
water content, chlorophyll, and mineral elements such as K, Ca, Mg, N, and P, for the plants [4–6].
A good example of saline soils can be found in the Jezreel Valley in Northern Israel where over the
years, increasing soil salinity has led to deterioration of the soil structure and damage to crops [7].
Importantly, if the saline-prone plot area is recognized on temporal and spatial scales, proper
agricultural treatment (e.g., construction of a drainage system) can substantially decrease the crop's
degradation [8].
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Conventional methods for monitoring changes in soil salinity are based on field observations
and laboratory analyses of both crops and soils. This is mostly done by measuring the electrical
conductivity, exchangeable sodium percentage, and pH of the soil solution. However, this method is
time-consuming, expensive, and restricted to limited areas.

Reflectance spectroscopy in the visible–near infrared–shortwave infrared (VIS–NIR–SWIR) region
combined with multivariate statistical methods is widely used to extract quantitative information on a
material’s composition (e.g., [9–11]). One potential application of such combinations is the analysis
of fresh plants (e.g., leaves, whole plants of undried wheat (Triticum aestivum L.) [12], as recently
discussed by Cozzolino [13]. For example, not only have dry matter, N, oil, and protein been accurately
estimated in fresh samples, but also detection of plant diseases of mandarin in the field has been
reported. In a controlled experiment, the salinity levels of fresh plants were assessed based on band
ratios in the VIS spectral range [14–18]. In another study, the relationship between Na and Cl contents
of tomato plants was correlated with the underlying soil's spectral reflectance [18]. The authors found
a relatively high accuracy of estimated plant salinity levels. Thus, reflectance spectroscopy techniques
can be used to characterize salinity in growing vegetation.

The spectrum of halite (NaCl) in the VIS–SWIR (400–2500 nm) region is featureless [10].
However, models for assessing salinity based in part on this spectral region have been developed for
vegetation [14,16,17,19], meat [20], Atlantic salmon (Salmo salar) [21], and for mapping salt-affected
soils [8,22–26]. Begley et al. [20] explained that the ability to measure salt in meat by NIRS (near
infrared spectroscopy) is due to the shift in the water spectrum caused by salt-induced changes
in the amount of hydrogen bonding. Ben-Dor and Banin [27] pointed out that featureless spectral
properties (properties without a direct chromophore) may also be predicted via internal correlation
with chromophoric properties. Hence, although NaCl is spectrally featureless, one could determine
which spectral regions might be indicative of the presence of salt features or traces. This knowledge is
of particular interest with the recent launch of the Sentinel-2 multi-spectral instrument (MSI) with its
improved spectral resolution (i.e., narrower bands) that offers significant advantages for capturing
vegetation status [28].

The main goal of our study was to formulate a generic rule for estimating the salinity of different
types of vegetation in the field. We used two populations, tomato and cotton leaves, to study the
relationship between Cl/Na contents and different spectral slopes in the VIS–NIR–SWIR spectral
range. Furthermore, the slope-based model was integrated with conventional PLS analyses. Next, we
investigated the potentially most sensitive spectral channels for vegetation salinity monitoring from a
satellite perspective. We used the recently available Sentinel-2 imagery and different satellite-based
indices were generated and correlated to Cl and Na contents. Finally, a spatial map of vegetation
salinity was generated on a pixel basis for the studied area.

2. Materials and Methods

2.1. Study Area

Three irrigated fields in the Jezreel Valley (Northern Israel) were chosen: two tomato fields in
Ifat (32◦37′20.89”N, 35◦14′42.02”E) and in Mizra (32◦36′30.81”N, 35◦14′43.25”E), and one cotton field
in Mizra (Figure 1). The crops in the research area were seasonally affected by soil salinity, due to
groundwater levels rising close to the soil surface and a lack of drainage. The processes leading to the
formation of soil salinity in the upper layer are detailed elsewhere [14,29].

2.2. Field Study

2.2.1. Sample Description

In each field, leaf samples were taken at 20-m intervals along three to five of 120–200-m transects
(Figure 1). Each sample included three leaves taken from the sampled shrub. For tomato, 22 leaf
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samples were taken from the Mizra field and 50 from Ifat, and for cotton, 33 samples were taken from
the Mizra field, for a total of 105 plant samples. The leaf samples were collected on 26 June 2008
and 20 May 2009 for tomato samples in Mizra and Ifat, respectively, and on 13 July 2011 for cotton
samples. The leaf samples of tomato were collected at the reproductive stage that includes flowering
and fruit-bearing. In previous studies it was found that yield loss of tomato (L. esculentum) was most
remarkable in reproductive stage under salinity treatments [30]. Therefore, salinity mapping in early
growing stages is important.
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content (wt%) was analyzed by chloridimetry following extraction with 0.1 N HNO3 [33] with a 
measurement error of 10%. 

Figure 1. Location of Jezreel Valley on a map of Israel (left), with study fields bordering the Genigar
Reservoir (right, top) and cotton planted in rows in the irrigated field at Mizra (right, bottom). Plant
sampling locations are marked.

2.2.2. Spectral Reflectance Measurements

The spectral reflectance measurements of the fresh vegetation samples were acquired in the field
using an Analytical Spectral Devices (ASD; Boulder, CO, USA) Fieldspec-Pro JR spectrometer furnished
with a contact probe. The ASD includes three detectors across the 350–2500 nm spectral region (VIS-NIR
between 350 and 1000 nm, SWIR1 between 1001 and 1800 nm and SWIR2 between 1801 and 2500 nm),
and measures spectra in 2151 bands at 1-nm intervals [31] The spectral measurements were acquired
by direct contact of the probe to the leaf surface that were placed on the black background. For all
experiments, the reflectance, measured relative to a white Halon reflectance panel reference [32], was
used to enable conversion of the measurement data into reflectance values. Each spectral measurement
represented an average of 40 spectral readings and the average spectra of three leaves per vegetation
sample were used in our analyses.

2.2.3. Chemical Analyses

The vegetation samples were oven-dried for 72 h at 60 ◦C. Three leaves of each sample were
ground together to pass through a 1-mm sieve, and subjected to chemical analysis for Na and Cl.
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Cl anion and Na cation contents, which are indicators of the presence of salinity in vegetation, were
selected for correlation with spectral reflectance. Na content weight percent (wt%) was analyzed
by flame photometry following digestion with H2SO4 and H2O2 with a measurement error of 5%.
Cl content (wt%) was analyzed by chloridimetry following extraction with 0.1 N HNO3 [33] with a
measurement error of 10%.

2.2.4. Slope Calculation and Data Analyses

First, the results of all spectral measurements were presented in continuum-removal (CR)
spectra [9] to investigate the spectral behavior vs. salinity of the vegetation. To develop a model
to assess Cl and Na content in vegetation based on the slope method [34,35], we used the common
CR spectral technique [9,36–40]. CR normalizes reflectance spectra to a common baseline, enabling
the identification of individual absorption features. The differences in CR spectral behavior as a
function of wavelength, which are indicative of changes in vegetation salinity, were identified. Then,
different slopes between a pair of wavelengths were calculated and the most correlative were used in
our analyses.

In addition, PLS models were generated using the entire spectral range. The original spectra
were estimated using CR and first derivative (FD) units. For FD, we used the Savitzky–Golay
algorithm [41,42]. The Savitzky–Golay method computes first- or higher-order derivatives, with a
smoothing filter of three wavelengths that reduces instrumental noise and determines how many
adjacent variables (wavelengths) will be used to estimate the polynomial approximation for the
derivation [41].

2.2.5. Calculating the Water-Absorption Area

Water is one of the most prominent factors present in vegetation, which influences the total
incident solar energy in the NIR–SWIR region that is absorbed by the vegetation [43]. Hence, calculating
the absorbance area of the water bands (e.g., 1200, 1400, 1780, and 1940 nm) [11,43,44] can be a good
indicator of water concentration in the vegetation. The spectral absorption features centered at 1940 nm
have been found to be good indicators of plant water content [34,45,46]. Therefore, the area between
the straight line and the absorption line (Figure 2) was calculated (see [35] for more details).
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Figure 2. Demonstration of total absorption area of two vegetation samples. The larger area (black) is
of sample with low Cl and Na contents, whereas the smaller area (gray) is of sample with high Na and
Cl contents.

2.2.6. PLS Data Analyses

The calibration equations were created using PLS regression with previously defined spectral
slopes in the VIS–NIR–SWIR spectral range of tomato and cotton leaf samples and each chemical
reference (i.e., Cl and Na):
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Y = A + A1X1 + A2X2 + A3X3 + . . . + AnXn (1)

where Y is the chemically-measured Cl or Na content of a leaf sample, A is an empirical coefficient at a
specific wavelength/slope, and X is the slope of the spectra in a specific range, or spectral reflectance
at a specific wavelength.

Statistical parameters for the calibration model were calculated by leave-one-out cross-validation.
The difference between the predicted and measured chemical values was expressed as the root mean
square error of prediction (RMSEP) or the root mean square error of cross validation (RMSECV) [47]:

RMSEP =

√
∑ (Xm − Xp)

2

ny
(2)

where Xm and Xp are the chemically-measured and predicted values, respectively, of a sample based
on the spectral analysis, and nv is the number of samples in the calibration stage. In addition, the
predictive capability of the model was evaluated by the ratio of prediction to deviation (RPD), which
is defined as the ratio of the standard deviation of the reference values (e.g., of Cl) to the RMSECV or
RMSEP [47]. For example, RPD values between 2 and 2.5 indicate quite good, and above 2.5, excellent
predictive capability of the model [48]. All data management, calculations, PLS analyses, and different
spectral pretreatments were performed using Unscrambler version 9.7 (Camo Software, Oslo, Norway).

To validate our model, several datasets were constructed: slopes, reflectance, CR, and FD. Each set
was divided into two subsets: (i) a calibration set, comprised of 70–76 representative tomato and cotton
samples, which was calculated by the cross-validation method; and (ii) an external test set, comprised
of 14–17 tomato and cotton samples, which was used to examine the model’s predictive ability.
As the number of samples was limited, the calculation of statistical parameters for the calibration
model was done by leave-one-out cross-validation [41]. Cl and Na were log-transformed to obtain a
normal distribution of reference values and were subjected to PLS analysis.

2.3. Satellite-Based Estimation of Salinity

As an example of future applications, we estimated a currently available system, Sentinel-2.
First, we compared salinity indices that were previously generated for Landsat. The Landsat-based
indices were matched to the Sentinel-2 configuration. Next, the results of all field measurements were
spectrally resampled to match this configuration. The spectral resampling to match between field
spectral measurements to Sentinel-2 was done by using “spectral resampling” procedure implemented
in ENVI software (Version 5.2) [49]. Briefly, it uses a Gaussian model with FWHM (full width at half
maximum) to match the desired sensor configuration. We calculated the following: salinity index
(SI), normalized differential salinity index (NDSI), vegetation soil salinity index (VSSI) and salinity
ratio [50,51]. The calculated indices were correlated to Cl and Na contents. For example, SI (

√
b1× b3)

with band 1, centered at 485 nm and band 3 centered at 660 nm, of Landsat 8 was equivalent to band 2
centered at 490 nm and band 4 centered at 665 nm of Sentinel-2.

To generate a map of vegetation salinity levels, we similarly correlated the Na/Cl contents
and slopes of all possible pairs of channels using simple linear regression analysis. In addition,
we estimated the different ratio indices based on calculated slopes. The spectral slope or ratio with the
highest regression coefficient was chosen to represent vegetation salinity levels on a pixel base.

To obtain a spatial representation of vegetation salinity levels using Sentinel-2, a cloud-free
image (3 July 2016) of the study area was downloaded from the archives of the USGS Earth Explorer
website [52]. We used a level-1C product which is a geo-coded top of the atmosphere reflectance with
a subpixel multispectral registration (European Space Agency (ESA, [53]). Sentinel-2 carries a MSI that
records in 13 spectral channels, covering a range of wavelengths from 440 to 2200 nm with spatial
resolutions of 10, 20, and 60 m. The Sen2Cor atmospheric correction processor was used to retrieve
surface reflectance (ESA, [53]. To generate a salinity map, we first masked all non-vegetative pixels
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using the Sentinel-2 image: NDVI (normalized difference vegetation index) values were calculated
and all values lower than 0.5 were removed from our analyses. Finally, a vegetation salinity map was
generated using the slope or ratio with the highest regression coefficient.

3. Results

3.1. Chemical Reference: Cl and Na

Table 1 shows the statistical parameters of Cl and Na in fresh vegetation samples. The range
of Cl values in the tomato samples was wider than in the cotton samples, whereas the range
of Na values in cotton was wider than in tomato. The range of Cl and Na values in tomato
samples was 0.75%–3.86% (70 samples, with an average of 1.45% and STD = 0.64) and 0.13%–0.53%
(average 0.22% and STD = 0.07), respectively. The range of Cl and Na values in cotton samples was
1.24%–2.86% (33 samples, average 1.94% and STD = 0.43) and 0.21%–1.21% (average 0.44% and
STD = 0.23), respectively.

Table 1. Average, standard deviation, median, minimum and maximum values of Cl and Na
concentrations (wt%) in tomato and cotton.

Tomato + Cotton (103 Samples) Tomato (70 Samples) Cotton (33 Samples)

Cl Na Cl Na Cl Na

Average 1.60 0.29 1.45 0.22 1.94 0.44
Standard Deviation 0.62 0.17 0.64 0.07 0.43 0.23

Median 1.46 0.23 1.25 0.20 1.88 0.36
Minimum 0.75 0.13 0.75 0.13 1.24 0.21
Maximum 3.86 1.12 3.86 0.53 2.86 1.12

3.2. Spectral Slope Analysis: Spectral Regions Sensitive to NaCl

Differences in 14 spectral ranges indicating changes in salinity levels were identified across the
VIS–NIR–SWIR region (350–2500 nm) (Table 2). Figure 3a,b shows changes in the slope values
as a function of different Cl and Na contents across nine of these spectral ranges. The slopes
increased/decreased with increasing/decreasing Cl and Na contents. Figure 3c demonstrates these
relationships by zooming in on the 2400–2440 nm spectral range, where the slope is seen to increase
with increasing Cl and Na contents. Figure 4 shows the box plot of the slopes for the 14 spectral ranges.
In general, the slopes can be divided into two groups, with large and small variability in their values
between tomato and cotton.

Table 2. Coefficient of determination between slopes in selected spectral regions and Cl and Na
contents of vegetation. The bold numbers are the selected range for Cl and/or for Na.

Cl Na

Slope Spectral Range (nm) R2 (N = 103)

410–430 0.4596 0.3863
430–452 0.4364 0.0918
500–536 0.3095 0.0811
550–585 0.3145 0.1151
585675 0.1558 0.045

675–750 0.2045 0.0085
1124–1161 0.4184 0.4376
1162–1200 0.0384 0.2317
1200–1275 0.3456 0.3254
1294–1364 0.3575 0.4099
1915–2235 0.5371 0.2719
2340–2400 0.5964 0.2989
2400–2440 0.5872 0.376
2450–2480 0.047 0.1914
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Figure 3. (a) Continuum removal (CR) reflectance spectra of vegetation samples with different
percentages of Cl/Na. Note the variability in the slopes across the different spectral ranges:
410–430 nm, 430–452 nm, 550–585 nm, 1124–1161 nm, 1200–1275 nm, 1294–1364 nm, 2340–2400 nm,
and 2400–2440 nm. Note that both cotton and tomato leaves exhibit spectral variability across similar
spectral ranges as a function of changes in salinity levels. Therefore, both populations can be combined
in the analyses; (b) visualization of the slopes’ tendency to increase or decrease as a function of different
Cl/Na contents (the right Y axis is the scale for the slope between 1915 and 2235 nm). Up-pointing
arrow indicates a slope increase with Cl/Na content increase; down-pointing arrow indicates a slope
decrease with Cl/Na content increase; and (c) zooming in on the 2400–2440 nm spectral range to
demonstrate the changes in slope with changes in Cl/Na concentration.

To test differences between the slopes of the tomato and cotton populations we used a paired
t-test. The p-value between the two is presented in Figure 4. It can be seen that in four spectral ranges
(430–452 nm, 500–536 nm, 585–675 nm, and 675–750 nm), slopes were similar between tomato and
cotton with p > 0.05 and in 10 spectral ranges (410–430 nm, 550–585 nm, 1124–1161 nm, 1162–1200 nm,
1200–1275 nm, 1294–1364 nm, 1915–2235 nm, 2340–2400 nm, 2400–2440 nm, and 2450–2480 nm),
the slope populations differed (p < 0.05). It is interesting to note that two of the four, and eight of
the 10 spectral ranges (excluding 500–536 nm, 585–675 nm, 1162–1200 nm, and 2450–2480 nm) were
found significant for predicting Cl and Na, respectively, and appear in the prediction model (Table 3).
Namely, similarities or dissimilarities between spectral slopes of tomato and cotton enabled prediction
of Cl and Na contents. This also indicates the potential for developing a generic model for predicting
salinity in other types of vegetation.
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Table 3. Prediction models for Cl and Na using the slope-based method.

Model Description

Cl
2.539 + 1.417 × Slope (410 – 430) + 1.255 × Slope (675 – 750) − 0.542 × Slope (1124 – 1161) + 0.27 × Slope
(1200 – 1275) − 1.036 × Slope (1294 – 1364) − 2.896 × Slope (1915 – 2235) + 0.854 × Slope (2340 – 2400) +
0.963 × Slope (2400 – 2440)

Na −1.248 + 3.209 × Slope (410 – 430) − 2.506 × Slope (430 – 452) − 1.781 × Slope (550 – 585) − 1.025 × Slope
(1124 – 1161) − 1.619 × Slope (1294 – 1364) + 1.457 × Slope (2340 – 2400) + 1.003 × Slope (2400 – 2440)

3.3. PLS Analysis

Table 2 displays the coefficient of determination between slopes in specific spectral ranges and
the Cl and Na contents of the plant samples. The values ranged from 0.1558 to 0.5964 for Cl and from
0.0918 to 0.4099 for Na. Fourteen spectral ranges were found to be correlated with Cl and/or Na,
whereas 12 spectral ranges were selected to be correlated with Cl and 10 with Na. Note, that eight
spectral ranges were found to be correlated with both Cl and Na (Table 2).

Table 4 presents the PLS regression analyses for the slope method and the various data
preprocessing models. In general, the Cl-prediction models were better than the Na-prediction
models. Specifically, the R2 and RPD of the Cl-prediction models were: 0.84/2.56, 0.78/2.22, 0.77/1.99,
and 0.62/1.68 for CR, reflectance, slope and FD, respectively. On the other hand, the R2 and RPD of the
Na-prediction models were: 0.52/1.49, 0.50/1.47, 0.63/1.69, and 0.62/1.67 for CR, reflectance, slope
and FD, respectively.
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Table 4. Partial least squares (PLS) regression model results of slope method and of various data pre-processing techniques to assess Cl and Na in fresh
vegetation samples.

Cl Model Statistics Characteristical Log(Cl) Model Statistics Characteristical Na Model Statistics Characteristical Log(Na) Model Statistics Characteristical

Calibration Validation Prediction Calibration Validation Prediction Calibration Validation Prediction Calibration Validation Prediction

Slope Method

Total number of
samples

(Tomato\Cotton)
74 (50/24) 17 (12/5) 74 (50/24) 17 (12/5) 70 (50/20) 17 (12/5) 70 (48/22) 17 (12/5)

Slope 0.78 0.76 0.82 0.77 0.76 0.82 0.66 0.59 0.61 0.69 0.64 0.67
Offset 0.34 0.37 0.20 0.04 0.04 0.01 0.09 0.11 0.61 −0.19 −0.22 −0.24
RMSE 0.25 0.27 0.22 0.07 0.07 0.06 0.10 0.11 0.09 0.10 0.12 0.13
RPD 2.13 2.00 1.99 2.10 2.00 2.20 1.73 1.48 2.53 1.82 1.64 1.69
R2 0.78 0.76 0.77 0.77 0.78 0.75 0.66 0.55 0.62 0.69 0.63 0.63

Continuum Removal

Total number of
samples

(Tomato\Cotton)
75 (52/23) 15 (11/4) 75 (52/23) 15 (11/4) 74 (52/22) 14 (11/3) 74 (52/22) 17 (12/5)

Slope 0.76 0.74 0.87 0.72 0.70 0.84 0.86 0.72 0.82 0.75 0.69 0.72
Offset 0.36 0.39 0.24 0.04 0.05 0.03 0.04 0.08 0.06 −0.15 −0.19 −0.16
RMSE 0.24 0.26 0.22 0.07 0.08 0.06 0.07 0.11 0.11 0.10 0.12 0.07
RPD 2.06 1.92 2.56 1.91 1.82 2.38 2.66 1.66 1.49 2.01 1.60 1.34
R2 0.76 0.74 0.84 0.72 0.70 0.81 0.86 0.64 0.52 0.75 0.61 0.39

Reflectance

Total number of
samples

(Tomato\Cotton)
76 (54/22) 15 (10/5) 76 (54/22) 15 (10/5) 76 (54/22) 15 (10/5) 76 (54/22) 15 (10/5)

Slope 0.74 0.71 0.77 0.71 0.69 0.79 0.73 0.65 0.42 0.55 0.50 0.50
Offset 0.40 0.44 0.38 0.05 0.05 0.05 0.07 0.09 0.12 −0.27 −0.31 −0.33
RMSE 0.26 0.28 0.27 0.08 0.08 0.07 0.07 0.89 0.17 0.11 0.12 0.17
RPD 1.97 1.81 2.18 1.88 1.74 2.22 1.92 0.15 1.47 1.51 1.39 1.39
R2 0.74 0.70 0.78 0.71 0.67 0.78 0.73 0.53 0.50 0.55 0.49 0.44

First derivative

Total number of
samples

(Tomato\Cotton)
76 (53/23) 15 (11/4) 76 (53/23) 15 (11/4) 75 (53/22) 15 (11/4) 75 (53/22) 15 (11/4)

Slope 0.77 0.71 0.71 0.75 0.71 0.68 0.75 0.67 0.57 0.82 0.75 0.63
Offset 0.36 0.44 0.47 0.04 0.05 0.06 0.07 0.09 0.11 −0.11 −0.15 −0.21
RMSE 0.25 0.29 0.31 0.07 0.08 0.08 0.07 0.09 0.13 0.07 0.10 0.14
RPD 2.09 1.83 1.62 2.03 1.82 1.68 2.00 1.60 1.44 2.37 1.79 1.67
R2 0.77 0.71 0.61 0.75 0.70 0.62 0.75 0.61 0.49 0.82 0.69 0.62
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As can be seen, the best model for the prediction of Cl content was based on CR reflectance.
However, the CR model for Na estimation was the least precise (Table 4). Compared to CR, FD,
and reflectance models, the slope-based model was quite good at predicting Cl content and best at
predicting Na content (Table 4). The slope-based prediction models for Cl and Na are presented in
Table 3, where in the Cl model, eight of the 12 selected spectral ranges were found significant, seven of
10 for the Na model. Moreover, when we compared the percentage of X and Y variability explained
by the first two LV (latent variables) components in the PLS model, we found it to be higher for the
slope method. Specifically, the first two LVs of the slope-based model explained 92% and 86% of the X
variance (spectra) and 78% and 66% of the Y variance (Cl and Na, respectively), whereas in the CR
model, they explained 82% and 82% of the X variance (spectra) and 74% and 52% of the Y variance (Cl
and Na, respectively). A higher percentage of variance explained by a lower number of components
indicates model stability [47].

3.4. Estimating the Potential of Vegetation Salinity Mapping Using Sentinel-2 Image

Table 5 shows the coefficient of determination between known salinity indices based on the
Landsat configuration [50,51] and the Cl/Na contents of the plant samples. As can be seen, when these
indices are modified to the Sentinel-2 bands, the correlation ranges from 0.128 to 0.235 for Cl and less
than 0.03 for Na.

Table 5. Coefficient of determination between different salinity indices (resampled to Sentinel-2
configuration) and the Cl and Na contents of the plant samples.

Cl Na

Salinity Indices Landsat baNds Sentinel-2 Bands R2 (n–103) Reference

SI Sqrt (b1 × b3) Sqrt (b2 × b4) 0.205 0.0163 [51]
NDSI (b3 − b4)/(b3 + b4) (b4 − b8)/(b4 + b8) 0.189 0.0121 [51]
VSSI 2 × b2-5(b3 + b4) 2 × b3-5(b4 + b8) 0.235 0.0245 [50]

SI Sqrt (b3 × b4) Sqrt (b4 × b8) 0.189 0.012 [50]
Salinity Ratio (b3 − b4)/(b2 + b4) (b4 − b8)/(b3 + b8) 0.128 0.025 [50]

Table 6 shows the coefficient of determination between the slopes calculated in the current study,
again, based on the Sentinel-2 configuration. As can be seen, the higher spectral resolution provides
better estimates of salinity. For Cl content, the correlation ranges from 0.138 to 0.434 and for Na
from 0.140 to 0.368. Note that informative spectral ranges are between 490–1610 nm, 665–1610 nm,
490–2190 nm, and 665–2190 nm (values of R2 above 0.4 were highlighted). Furthermore, in Table 6,
two additional indices based on the slope logic are also presented, with R2 between 0.464 and 0.488.
The index with the highest R2 is denoted as the Sentinel-2-based vegetation salinity index (SVSI)
((b4 − b2)/(b5 + b11), Table 6).

Table 6. Coefficient of determination between calculated slope/ratio based on Sentinel-2 configuration
and the Cl and Na contents of the plant samples. * p value < 0.05.

Slope Spectral Range (nm) Sentinel-2 Bands
Cl* Na*

R2 (N = 103)

490–560 b2–b3 0.299 0.086
490–665 b2–b4 0.232 0.062
560–665 b3–b4 0.138 0.040
490–705 b2–b5 0.392 0.113
560–705 b3–b5 0.337 0.097
665–705 b4–b5 0.331 0.095
490–740 b2–b6 0.273 0.045
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Table 6. Cont.

Slope Spectral Range (nm) Sentinel-2 Bands
Cl* Na*

R2 (N = 103)

490–1610 b2–b11 0.404 0.168
560–1610 b3–b11 0.327 0.157
665–1610 b4–b11 0.408 0.179
705–1610 b5–b11 0.222 0.140
783–1610 b7–b11 0.343 0.321
490–2190 b2–b12 0.434 0.230
560–2190 b3–b12 0.325 0.226
665–2190 b4–b12 0.425 0.245
705–2190 b5–b12 0.238 0.225
783–2190 b7–b12 0.291 0.368

(490 − 665)/(560 + 2190) (b4 − b2)/(b3 + b12) 0.464 0.364
(490 − 665)/(705 + 1610) (b4 − b2)/(b5 + b11) 0.488 0.284

In Figure 5, we map the spatial variability in salinity levels between different vegetative areas
using the SVSI. The salinity level increases with decreasing values of SVSI (Figure 5d). In the study
area (white rectangle in Figure 5a,d), the vegetation salinity levels typically range between low and
medium. A few plots show high salinity values. Importantly, a few plots (e.g., numbered 1) exhibit
high variability in salinity, which was captured by the SVSI index. For example, at 120 m distance
(numbered 1.1 in Figure 5d), the SVSI ranges from −0.07 to −0.25 (~0.85%–2.5% Cl). Note that the
northwestern part of the generated map shows high vegetation salinity levels (white circle in Figure 5d,
~2.5%–4%).
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salinity map based on slope ratio index.
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4. Discussion

Previous studies highlighted that increasing salinity levels significantly decrease stomatal
conductance, produce more negative water potentials, and decrease root hydraulic conductance,
resulting in decreased water content in the plant [4,5,18,54]. Begley et al. [20] detected differences in
the absorption bands of water at 1806 nm that were well correlated with different concentrations of
NaCl in meat. A similar relationship between the total area of water absorption and crude protein
content was found by Lugassi et al. [35].

Our results also indicate that water absorption bands can be used as tracers for salinity monitoring.
Note that the slopes in the spectral range of 1915–2235 nm and also the total area of water absorption
between 1840 and 2235 nm (Figure 3a) decreased with increasing Cl and Na contents. In addition, the
highest coefficient in the prediction equation of the slope-based Cl model (Table 3) was for the slope
between 1915 and 2235 nm. Furthermore, when analyzing score plots of our PLS model, there is an
increase in Cl values (Figure 6) and a decrease in water content of the vegetation samples (Figure 7)
when moving from left to right. We can speculate that an increase in salinity decreases the total
amount of water in the plant. To further investigate this point, we calculated the total area between the
shoulders at 1840 and 2235 nm (of the absorption peak of water at 1940 nm) (Figure 2). The results
were uploaded into the score plot of the slope method (Figure 6) and are presented in Figure 7.
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Figure 6. Score plot for partial least squares (PLS) of the Cl model using the slope method. PC,
principal component.
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Figure 7. Uploading the total absorption area into the score plot of partial least squares (PLS) of the Cl
model using the slope method. Numbers next to gray circles represent the total area of water absorption.
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In this regard, we can speculate that although the wide water absorption masks the spectral
features of the plant, this absorption is still diagnostic for salinity, probably due to the internal
connection between water and salinity.

Generally, spectral ranges that were found informative using field measurements were also found
informative when using satellite-based Sentinel-2 data, but using much coarser spectral resolution.
Currently, there is only one available hyperspectral satellite (HYPERION) with few more planned
missions (EnMap, expected launch in 2018, and HyspIRI in 2022), which will be able to generate
calculations of narrow bands at high spectral resolution. However, in contrast to hyperspectral
imagery, multispectral data is easier to pre-process [55].These include, for example, less complicated
atmospheric correction algorithms, as well as obtaining high temporal coverage data (by means of
orbital sensors), therefore, using relatively coarse spectral ranges and only four spectral bands of
Sentinel-2 to estimate salinity is already encouraging result. Furthermore, although samples were
collected in 2008–2011, whereas the Sentinel-2 image was available from 2015, we expect that similar
trends will be derived in future studies that combine in situ and satellite-based analyses.

Previous studies have also shown that by using spectral indices, it is possible to determine
salinity levels on a pixel base using coarse spectral resolution imagery (Landsat and IKONOS) [56,57].
These studies reported coefficients of determination between salinity and spectral indices ranging
from R2 = 0.23 to R2 = 0.78. In this regard, our results showed that Sentinel-2, with its improved
spectral and spatial resolution, has a potential for more accurate mapping of vegetation salinity
status (R2 = 0.488). Although the coefficient of determination might be interpreted as somewhat
low, the relationship between both parameters (e.g., salinity vs. slopes) was found to be significant
(p value < 0.05). Furthermore, we also calculated the confidence interval for a given confidence level
(95%) to achieve the needed accuracy. For example, to obtain 50% accuracy, we need a sample size of
103 spectral measurements, whereas to obtain 90% accuracy, 286 measurements are needed. Taking
into account all of the above, we can argue that in order to achieve a higher accuracy of salinity
estimation, future studies should be expanded and include the following steps: (1) using the dataset
with the much wider range of chemical reference values and vegetation types; (2) larger calibration
and validation dataset samples; and (3) incorporating multiple slopes into the analyses (similarly to
Lugassi et al. [35]).

Our results indicate that by using either field spectral measurements or satellite imagery, many
spectral indices indicative of chemical composition can be generated and matched to Sentinel-2 or
any other satellite system. Indeed, both field and satellite measurements indicated similar estimations
of salinity when using SVSI index (field R2 = 0.486, satellite-based R2 = 0.488). In this regard we can
conclude that vegetation indices can be customized for generating salinity values, as well as for any
other particulate application.

5. Conclusions

We hypothesized that a generic rule can be formulated for estimating salinity in different types of
vegetation. The spectral regions that are most sensitive to changes in salinity were identified using
both field and satellite (Sentinel-2) observations. Importantly, both cotton and tomato leaves exhibited
similar spectral variability across similar spectral ranges as a function of changes in salinity levels.
Therefore, both populations were combined in the analyses. Although salts lack spectral fingerprints
across the VIS–NIR–SWIR region, by using spectral slope calculations and PLS regression analyses,
we were able to quantitatively assess, with relatively good estimation (R2 = 0.77 for Cl and R2 = 0.63
for Na), the salinity of tomato and cotton plants using field measurements.

Next, the results of our field measurements were expanded to satellite-based observations.
We used similar analyses of spectral slopes run on different bands, and different spectral indices
were generated. The best estimate of vegetation salinity when using Sentinel-2-imagery (R2 = 0.488)
takes into account the following spectral ranges: 490–665 nm and 705–1610 nm. This index was
denoted as the Sentinel-2-based vegetation salinity index (SVSI) (band 4 – band 2)/(band 5 + band 11).
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In practice, more samples are needed to produce a more robust model. Nevertheless, our results
suggest that vegetation reflectance spectroscopy is potentially useful for predicting plant salinity. Since
the method is non-destructive and can measure several constituents quickly, inexpensively, accurately,
and simultaneously, it could become a valuable tool for the quality control of processed salinity in
plants on site and, hence, enable monitoring of the salinity status of plants throughout their growth.
The potential of using Sentinel-2 data is encouraging due to its high spatial resolution of 20 m, which
enables high-resolution salinity mapping.

Future study is no doubt required to estimate the salinity of different types of vegetation over
areas with a salinity problem in Israel using Sentinel-2 data.
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