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Abstract: Mt. Baekdu is a volcano near the North Korea-Chinese border that experienced a few
destructive eruptions over the course of its history, including the well-known 1702 A.D eruption.
However, signals of unrest, including seismic activity, gas emission and intense geothermal activity,
have been occurring with increasing frequency over the last few years. Due to its close vicinity to
a densely populated area and the high magnitude of historical volcanic eruptions, its potential for
destructive volcanic activity has drawn wide public attention. However, direct field surveying in the
area is limited due to logistic challenges. In order to compensate for the limited coverage of ground
observations, comprehensive measurements using remote sensing techniques are required. Among
these techniques, Differential Interferometric SAR (DInSAR) analysis is the most effective method
for monitoring surface deformation and is employed in this study. Through advanced atmospheric
error correction and time series analysis, the accuracy of the detected displacements was improved.
As a result, clear uplift up to 20 mm/year was identified around Mt. Baekdu and was further used
to estimate the possible deformation source, which is considered as a consequence of magma and
fault interaction. Since the method for tracing deformation was proved feasible, continuous DInSAR
monitoring employing upcoming SAR missions and advanced error regulation algorithms will be
of great value in monitoring comprehensive surface deformation over Mt. Baekdu and in general
world-wide active volcanoes.

Keywords: Mt. Baekdu; ground deformation; differential interferometric SAR; time series analysis;
water vapor

1. Introduction

Monitoring of the circum-Pacific tectonic activity and volcanism is paramount for understanding
mechanisms and coupling of processes and, more importantly, for assessing and potentially mitigating
risks imposed to human settling. For these reasons, governmental bodies have been putting resources
in establishing in situ ground-based as well as orbital monitoring platforms. When compared to
countries facing a long history of exposure to volcanic risk in Asia, such as Japan (Mt. Fuji in 1707,
Mt. Asama in 2009), the Philipines (Kanlaon and Bulusan activity between 1886 and 2006 or 2011,
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respetively), or Indonesia (Krakatau in 1883, Agung in 1963, Merapi in 2010), the Korean peninsula
can be considered as relatively stable and volcanically quiet. Recent findings from ground-based
observations, however, reveal the possibility of prolonged volcanic activity in Korea and continuous
monitoring of the Mt. Baekdu volcano (Changbaishan) located at the North Korean-Chinese border
has shown an increase in seismic activity, ground unrest and emission of CO2, He and Ar based on
GPS measurements and targeted gas sampling, respectively [1,2]. Seismometers employed on the
Chinese side have been identifying a sudden increase in seismic activity beginning in 2002 and peaking
in 2003. The number of recorded earthquakes increased by a factor of up to 2100, between two faults
lines extending in N50W and N10W to NS direction at a depth of 2–4 km [3]. Seismic measurements,
gas detections as well as GPS and precise levelling observations conducted on the Chinese side of the
summit [4] revealed signs of unrest. These observations included:

1. Record of strong seismic activity between 2002 and 2006 peaking in Nov 2003 followed by a
seismically quite phase between 2006 and 2011.

2. Detection of abnormally high gas emissions between 2002 and 2006 in three hot springs located
near the summit.

3. GPS-based measurements of considerable vertical uplift and horizontal displacement between
2002 and 2005.

4. Observation of abnormally high thermal activity in hot springs.
5. Record of surface deflation indicating new magma activity at the western and northern slopes

beginning in 2009.

Consequently, the ground observations in 2010 identified the incensement of the potential volcanic
activity over Mt. Baekdu. Recently, Choi et al. [5] conducted a gravity anomaly analysis using the Earth
Gravitation Model (EGM) dataset covering Mt. Baekdu, and attempted to model the magma source.
Due to Mt Baekdu’s close vicinity to a densely populated area, the record of potential volcanic activity
has drawn considerable attention. It is, therefore, of importance to develop monitoring techniques
allowing to conduct long-term observations of Mt. Baekdu. After the initial research by Zebker and
Goldstein [6], volcano monitoring with Synthetic Aperture Radar (SAR) data has been conducted
by a number of researchers in subsequent years [7–12]. As DInSAR techniques have commonly
been considered as one of the most favourable and effective remote-sensing solutions for monitoring
of volcanic activities [13,14], we here conducted a DInSAR survey over Mt. Baekdu to assess its
potential activity.

To do so, a number of technical challenges needed to be solved, including:

1. Corrections due to dense vegetation canopy at the summit of Mt. Baekdu which creates low-phase
coherence for the DInSAR analysis.

2. Atmospheric corrections due to significant tropospheric errors over Mt. Baekdu.
3. Sparse data in particular regarding topographic and atmospheric field and validation data.

Considering these challenges, a high-accuracy deformation detection scheme is required in order
to evaluate the risk of volcanic eruptions. To address these limitations and confirm the feasibility of a
DInSAR analysis for Mt. Baekdu, we tested two different approaches in this study.

Firstly, we employed a two-pass DInSAR analysis with L-band ALOS PALSAR, which was
expected to produce robust observations in challenging environments due to its operation at long
wavelengths. Analysis was conducted using atmospheric error correction by applying an external
error-source map derived from a weather forecasting model. Secondly, SAR time series analysis
techniques were applied using stable DInSAR analysis methods. These suppress atmospheric and
topographic errors in surface deformation estimates by additionally employing C-band ENVISAT
ASAR images.

In this study, the main focus was therefore put on establishing a reliable deformation analysis
using a DInSAR methodology by minimizing the noise, and accounting for atmospheric errors.
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The methodologies associated with error suppression for specific area conditions and their respective
outputs are described in Sections 3 and 4, respectively. A discussion about the detected deformation
and the geophysical inversion modelling work validating the DInSAR observations are summarized
in Section 5.

2. Target Area and Relevant SAR Analysis Issues

Baekdu Mountain is located on the border between North Korea and China. A major eruption
in 1013 A.D. was estimated to have Volcanic Explosivity Index (VEI) of 7 [15]. This is comparable
to Mt. Tambora’s 1815 VEI, the largest recorded historical volcanic eruption [16]. After that, it was
believed that Mt. Baekdu remained dormant with the exception of a number of minor recorded
eruptions (i.e., 1702 A.D, 1898 A.D, 1903 A.D, and 1925 A.D) [17]. Considering its potential for large
explosive eruptions, observations should be continuously carried out to monitor the volcanic activity.
Based on these observations, early warning could be provided to all of far Eastern Asia to prepare for
potential disaster.

Detection and monitoring of volcano activity can be performed from various perspectives using
remotely sensed data. The detection of gas emissions from the volcano is one of these methods [18]. This
is based on the unusual observation of some components of the collected gases, for instance, the sudden
increase in sulfur dioxide, normally indicating activation of a magmatic chamber. Remote sensing
products such as thermal/near infrared imagery can also be applied to observe thermal anomalies
over potential volcanoes. For instance, Vaughan and Hoot [19] pioneered volcanic activity detection
using thermal anomalies derived from spaceborne image analysis. In addition, Leprince et al. [20]
employed SAR and optical imagery to detect movement of the terrain. Because SAR can operate under
difficult weather conditions, and covers a wide range. In this study, we select SAR images to monitor
deformation. Moreover, based on the theoretical basis of Interferometric SAR (InSAR) developed
by Zebker and Goldstein [6], the InSAR technique is capable of tracing surface deformation after
correcting the phase angle difference produced by common topography. This is known as the DInSAR
technique and was applied as the basic approach of this study.

There are few previous DInSAR studies pointing at possible reactivation of Baekdu volcano.
Kim et al. [21] implemented a DInSAR analysis using JERS and ERS imagery with tropospheric delay
correction and detected a maximum of 9 cm/year deformation. As the observed value was abnormally
high for the normal estimated magma intrusion, it revealed, to some extent, the necessity of reliable
atmospheric correction and hence became one of the objectives to be attained in this study. Recently
Kim et al. [22] employed Small Baseline Subset (SBAS) analysis and detected a minor deformation
over the eastern flank. However, it is unsure whether the deformation signals is related to volcanic
activity considering the absence of detailed investigation of atmospheric effects with the DInSAR
technique and tracing of temporal surface migration. Given the issues limiting the performance of
DInSAR remote sensing observations of volcanic activity over Baekdu Mountain, potential solutions
were introduced to improve the accuracy of the DInSAR observations in this paper.

As shown in Figure 1, the natural environment of the target area is the first challenge for DInSAR
analysis. The target area is surrounded by very dense forests but only a small amount around the
Choenji caldera. Vegetation canopy is actually covering all edifices of the Mt. Baekdu area, although
the density of vegetation differs according to the altitude range. Thus, the phase coherence values of
SAR pairs over the volcano are usually low and therefore the ability to produce coherent interferograms
is limited. The snow cover around the summit exists even in May, and also significantly decreases the
phase coherence. Less vegetated areas consisting of bare soil and brush fields exist, but those partly
coincide with the snow covered area. Secondly, the slope around Choenji Lake on the flank of the
mountain is greater than 25 degrees on average. As reported in Lee and Liu [23], such steep slope
topography also causes loss of phase coherence. Thirdly, the height of Mt. Baekdu is 2740 m, which
means the tropospheric turbulence and the electromagnetic wave delay by the vertical stratification
can create significant error in DInSAR results [24,25]. Zebker et al. [26] identified that a 20% change
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of tropospheric humidity could produce 10 to 14 cm ground deformation error. Considering the
estimated deformation in the current stage is relatively small, the error elements occurring in such
high relief topography over Mt. Baekdu should be removed, including the localized water vapor
component introduced by tropospheric turbulences and the vertical stratification. At last, as stated
by Samsonov [27], the degradation of base Digital Terrain Model (DTM) quality may also contribute
significant errors in DInSAR products. Hanssen [28] estimated a 1 cm deformation error by 1 m height
difference in base DTM when performing DInSAR analysis. Hence the topographic error should be
considered as well.
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Figure 1. The location of Mt. Baekdu is indicated by a box in (a) and the corresponding zoomed-in view
of 30 m resolution Shuttle Radar Topography Mission (SRTM) DEM is shown in (b). The faults lines
and the estimated magma chambers from the gravity model in [5] and epicenters of earthquakes [2] are
also represented. The Sentinel-2 space-borne image taken in October, 2010 is shown in (c). The snow
cover, dense vegetation canopy and steep slope around the Cheonji Candela Lake can be observed.

Based on the challenges introduced above, we estimate the contribution of atmospheric and
topographic errors. Initial investigation using Moderate Resolution Imaging Spectroradiometer
(MODIS) data was first performed to understand the characteristics of the atmospheric error
component. In Figure 2, the water vapor distribution on the 14th of April and 5th of May in 2009 is
shown in the MODIS Total Perceptible Water (TPW) MOD 5 [29] products. The depletion of water
vapor around the summit of Mt. Baekdu are obvious in Figure 2a and identified less clearly in Figure 2b.
The orographic effect caused by precipitation on the flanks of high-altitude mountains or plateaus and
the local dryness along the other side of the mountain are clearly identified at Mt. Baekdu. The strength
of this effect partly depends on some climate factors such as wind direction, so that the amount of
atmospheric error of DInSAR by orthographic effect varies temporally and is not easily predictable
without external water vapor observation. Meanwhile, the refractivity in wave propagation by the
stratified pressure in high altitude topography produces another atmospheric error in DInSAR analysis.
Thus, these atmospheric related error factors over Mt. Baekdu should be taken into account. As for
the topographic error, however, the ground and aerial surveying campaigns for geodetic control of
topographic products are unavailable over the area of Mt. Baekdu. As a result, the investigation
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and interpretation of the deformation signal including the analysis of atmospheric error are the main
technical topic of this study.Remote Sens. 2017, 9, 138  5 of 25 
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3. Processing Strategy and Data Sets

To address atmospheric error issues, the water vapor correction method developed by
Li et al. [30–32] was employed in this study. Since Medium Resolution Imaging Spectrometer (MERIS)
sensor which was the source of water vapor information shares the same satellite platform with the
ENVISAT ASAR system, there is no temporal gap exists between each SAR image acquisition and the
water vapor data, allowing for reliable error estimates could be achieved [31,32].

In addition, methods based on InSAR time series calculation based on stacked interferograms
allow to estimate and reduce the errors, such as Permanent Scatterers (PS) by Ferretti et al. [33,34] and
SBAS by Berardino et al. [35]. However, although these methods are feasible for solving atmospheric
error, the processing efficiency and required number of SAR image sequences become limitations
in employing these approaches. Considering both the estimated small deformation and the low
phase coherence in the target area, two-pass DInSAR processing using error correction based on a
high-resolution weather forecasting model and improved interferogram time series analysis, were
applied and cross-validated.

3.1. Two Pass DInSAR with Atmospheric Error Compensation

With the characteristic of long wavelength, the L-band SAR has significant merits for producing
coherence when observing high altitude volcanoes which are covered with snow and vegetation.
Therefore, in Mt. Baekdu target area, it is preferable to employ ALOS PALSAR which is currently the
only available L-band spacebone SAR at the time of this paper preparation. However there are only16
SAR images covering three years time interval over Mt. Baekdu which is not suggested to establish
time series in order to conduct stable PS and/or SBAS processing [36]. Thus, instead of time series
analysis, we track the surface deformation using two pass ALOS PALSAR DInSAR analyses were
conducted. Moreover, the terms involving electromagnetic wave propagation delay in troposphere
over Mt. Baekdu were estimated and removed. The amount of tropospheric phase change was
computed based on the formula using pressure estimation and corresponding height value and total
water vapor. It is simply summarised as:

Φtropospheric =
4π

λcosΘ
(ZDDD + ZWDD), (1)

where ZDDD is zenith dry delay difference and ZWDD is zenith wet delay difference, both in unit of
λ, and Θ is the incidence angle of SAR images.
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Basically the ZDDD can be estimated as the pressure and temperature which are correlated with
the altitude. Thus, with a number of weather observations, the estimation and the correction of dry
component can be achieved using the relationship listed below.

ZDDD = ZDDm − ZDDs, (2)

ZDD = (2.2779 + 0.024)
Ps

f (lat, H)

from which f (lat, H) = 1− 0.000266 cos(2lat)− 0.00028H, (3)

where ZDDm is zenith dry delay for the master image (see [37] for detailed model), ZDDs is zenith dry
delay for the slave image, Ps (in Hpa) is the surface pressure, lat is the latitude (in degrees) of target
area and H (in km) is the height.

Compared with the dry delay correction, the effect of wet delay induced by water vapor is
relatively significant and difficult to estimate. As a result, many different approaches have been
proposed by which to estimate and rectify the magnitude of the wet delay. The model shown in [32]
was used in this study:

ZWDD = ZWDm − ZWDs, (4)

ZWD = c TPWV = c
IWV
Pw

, (5)

where ZWDm is zenith wet delay in master, ZWDs is zenith wet delay in slave, Pw is the density of
water, IWV is the total amount of water vapor over an observation point and c is a conversion factor for
the total perceptible water vapor (TPWV) to ZWD. According to [38], c is very close to 6.67 although
there is some dependency on temperature.

Since it is not feasible to achieve global water vapor distribution with dense enough GPS delay
observations or radiometer measurements, Li et al. [31,32] used water vapor data derived from MODIS
and MERIS as another solution. However, the cloud coverage issue and the temporal gap between each
SAR image acquisition and the water vapor estimation limits the feasibility of the method. Although
high accuracy water vapor data from MERIS with sufficient spatial resolution is available occasionally,
the temporal gap between MERIS and ALOS PALSAR image acquisitions cannot be avoided. Especially,
considering the high mountainous areas are seldom free from cloud coverage over the time acquisition
of MERIS and MODIS, it is required to use another source of water vapor data.

In this study, we use high resolution water vapor maps derived from weather forecasting models
to correct for two pass DInSAR in the error correction procedure, based on previous research conducted
by Wedge et al. [39], Foster et al. [40] and Nico et al. [41].

3.2. Time Series Analysis with StaMPS/MTI Approach

PS-InSAR [33] and SBAS [35] are two methods widely used for performing time series analysis.
Nevertheless, a number of limitations were encountered when applying the two methods over the
target area. For PS-InSAR processing, the temporal and spatial baseline conditions between SAR
images in this study were inadequate for extracting persistent scatterers. This is because a minimum
of 25 pairs is necessary to build reliable PS results [36]. In addition, because vegetation cover exists in
the high-altitude area around the summit, it was not expected that a sufficient number of persistent
scatterers could be extracted. The SBAS processing employs all the appropriate DInSAR pair with small
baselines [35]. Once the stacked differential interferogram is constructed, a linear system consisting of
a small baseline combination matrix, phase values, and mean phase velocities are calculated. Singular
Value Decomposition (SVD) together with LP (low pass) and HP (high pass) filters are used to extract
the spatial and temporal components of the noise. The atmospheric, orbital and base DEM artifacts are
estimated and corrected, and then the deformation velocities can be derived. Although in common
cases the SBAS approach is capable of achieving high density deformation rate, some interferograms



Remote Sens. 2017, 9, 138 7 of 26

with low phase coherence may produce unreliable results as a consequence of permanent snow and
cover vegetation on Mt. Baekdu.

To resolve all these issues, a complementary approach developed by Hooper [42] for combining
PS-InSAR and SBAS was employed in this study. Although conventional PS-InSAR results showed
satisfactory performance for monitoring the target area where artificial scatterers were widely
populated, as shown by Colesanti et al. [36], it is difficult to define the sufficient number of PS
over the vegetated mountain area where the stable scatterer such as artificial structures are absent.
Hooper et al. [43] tackled this problem by introducing a new method for PS definition by investigating
spatial and temporal correlation of phase, and extracted reliable results over natural landscape terrain.
The algorithm was later updated using spatial and temporal correlation of interferogram phase to find
pixels with low-phase variance in all terrains [44] and produced reliable deformation over Volcano
Alcedo (Galapagos) where the vegetation extended even up to the highest altitude. Subsequently,
the algorithm was improved by incorporating the PS and SBAS results by applying the spatial and
temporal correlation tracking method of phase for SBAS interferograms [42]. Consequently, this
approach increased the spatial sampling resolution of deformation measurement, as well as the
reliability of the phase cycle.

The measurement of PS pixel was conducted by measuring the variation of residual phase in the
time series [43]:

γx =
1
N
[∑ N

i=1 exp {
√
−1(Φx,i −Φx,i − Φ̂ex,i)}], (6)

where N is the number of interferogram, Φx,i is the phase change in pixel x, Φx,i is the phase change in
sample mean within window patch and Φ̂ex,i is the estimated phase change residual with window
patch. If the value is smaller than a predefined threshold, it was considered as a stable scatterer.

The StaMPS/MTI (Stanford Method for Persistent Scatterers/Multi-Temporal InSAR) software
implementing InSAR persistent scatterer (PS) method and SBAS [42] was employed to determine the PS
pixels over the target area with high challengeable conditions for PS tracking. Based on the identified
time series PS pixels, the displacement occurring over the target areas could be identified. Successful
monitoring in similar condition and approach were reported in Hooper et al. [44], Pinel et al. [45],
Chang et al. [46] and Decriem et al. [47].

The StaMPS/MTI processing began with two pre-processing steps. The first was to focus the raw
data, and the second was to form interferograms from single-look complex (SLC) images in which
JPL’s Repeat Orbit Interferometry PACkage (ROI-PAC) was applied for interferogram calculation [48].
Based on the coherence and amplitude data produced by ROI-PAC, PS candidates were selected
and permanent PS pixels were further identified in the StaMPS routine. Then the Statistical-cost,
Network-flow Algorithm for Phase Unwrapping (SNAPHU) package [49] was used to unwrap the PS
phase. At the last stage, the StaMPS/MTI was implemented again to perform DEM error correction
and atmospheric filtering. The ground displacement was also solved at this stage.

3.3. Data Sets

A number of 4 ALOS PALSAR images listed in Table 1 are used for two pass DInSAR processing.
Additionally, in order to examine the reliability of the water vapor map produced by spaceborne
data, the water vapor products from MODIS Total Perceptible Water (TPW) MOD 5 [29] was also
acquired. Due to the consistent cloud coverage over the summit in Mt. Baekdu, it was judged
visually that it was not feasible to find complete MODIS water vapor product covering target area.
To overcome the limitation, Kriging interpolation capable of reconstructing natural 3D surface from
largely voided spatial measurements was employed to spatially interpolate water vapor from MODIS
TPW products. Then two water vapor maps before and after each SAR acquisition time are linearly
temporally interpolated into the water vapor map for each SAR acquisition time. The resulting spatially
and temporally interpolated water vapor maps for the first ALOS PALSAR DInSAR pair are shown
in Figure 3. The water vapor map for the slave SAR images (Figure 3b) show proper water vapor
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depletion but the one for the master SAR image (Figure 3a) shows a very different pattern from the
expected orthographic water vapor distribution probably caused by an over-populated cloud cover.
As the MODIS/MERIS water vapor products for another ALOS PALSAR pair possess even more
cloud coverage and long temporal gaps, it was not possible to utilize the MODIS/MERIS water vapor
product for the two pass DInSAR correction over Mt. Baekdu. Instead, the water vapor map produced
through weather forecast modelling was applied.

Table 1. ALOS PALSAR images used for two pass DInSAR processing over the target area.

Perpendicular
Baseline (m) Image ID Operation

Mode Acquisition Time Track Frame Polarization

Pair 1 562.6
ALPSRP185620830 FBD 2009/07/19 13:53 401 770 HH + HV
ALPSRP192330830 FBD 2009/09/03 13:53 401 770 HH + HV

Pair 2 912.1
ALPSRP212460830 FBS 2010/01/19 13:53 401 770 HH
ALPSRP225880830 FBS 2010/04/21 13:53 401 770 HH

Remote Sens. 2017, 9, 138  8 of 25 

 

Table 1. ALOS PALSAR images used for two pass DInSAR processing over the target area. 

 
Perpendicular 
Baseline (m) 

Image ID 
Operation 

Mode 
Acquisition Time Track Frame Polarization 

Pair 1 562.6 
ALPSRP185620830 FBD 2009/07/19 13:53 401 770 HH + HV 
ALPSRP192330830 FBD 2009/09/03 13:53 401 770 HH + HV 

Pair 2 912.1 
ALPSRP212460830 FBS 2010/01/19 13:53 401 770 HH 
ALPSRP225880830 FBS 2010/04/21 13:53 401 770 HH 

 
Figure 3. Interpolated MODIS TPW (Total Perceptible Water) maps over Mt. Baekdu: (a) TPW map 
for master SAR image acquisition time (19 July 2009); (b) TPW map for water vapor map in slave 
SAR image acquisition time (3 September 2009). 

ENVISAT ASAR imagery was chosen for the time series analysis owing to constant image 
acquisitions during the 2007–2010 period. A total of 19 ENVISAT ASAR C-band images in 
descending mode are available (see Table 2). It is sufficient to apply the proposed interferogram 
time series analysis in target area. 

Table 2. ENVISAT ASAR images over Mt. Baekdu during the 2007–2010 period. 

No Acquisition Time Orbit Track Frame Pass 
0 2007/02/02 01:44:47.53 25751 146 2759 Descend 
1 2007/03/09 01:44:48.84 26252 146 2760 Descend 
2 2007/04/13 01:44:47.23 26753 146 2760 Descend 
3 2007/05/18 01:44:50.34 27254 146 2760 Descend 
4 2007/07/27 01:44:52.77 28256 146 2760 Descend 
5 2007/08/31 01:44:51.35 28757 146 2760 Descend 
6 2007/12/14 01:44:44.71 30260 146 2759 Descend 
7 2008/01/18 01:44:45.79 30761 146 2759 Descend 
8 2008/03/28 01:44:46.06 31763 146 2759 Descend 
9 2008/05/02 01:44:44.21 32264 146 2759 Descend 

10 2008/08/15 01:44:46.07 33767 146 2759 Descend 
11 2008/10/24 01:44:44.65 34769 146 2759 Descend 
12 2009/06/26 01:44:45.26 38276 146 2760 Descend 
13 2009/07/31 01:44:44.86 38777 146 2760 Descend 
14 2009/09/04 01:44:43.53 39278 146 2760 Descend 
15 2010/01/22 01:44:38.78 41282 146 2759 Descend 
16 2010/02/26 01:44:36.34 41783 146 2759 Descend 
17 2010/04/02 01:44:36.99 42284 146 2761 Descend 
18 2010/06/11 01:44:35.17 43286 146 2761 Descend 

3.4. WRF Model Processing 

For the reasons stated above, the weather forecasting model was employed to create the water 
vapor and surface pressure products for atmospheric correction of DInSAR processing. The 
Fifth-Generation Penn State/NCAR Mesoscale Mode (MM5) (see [40,50]) used in precedent 

Figure 3. Interpolated MODIS TPW (Total Perceptible Water) maps over Mt. Baekdu: (a) TPW map for
master SAR image acquisition time (19 July 2009); (b) TPW map for water vapor map in slave SAR
image acquisition time (3 September 2009).

ENVISAT ASAR imagery was chosen for the time series analysis owing to constant image
acquisitions during the 2007–2010 period. A total of 19 ENVISAT ASAR C-band images in descending
mode are available (see Table 2). It is sufficient to apply the proposed interferogram time series analysis
in target area.

Table 2. ENVISAT ASAR images over Mt. Baekdu during the 2007–2010 period.

No Acquisition Time Orbit Track Frame Pass

0 2007/02/02 01:44:47.53 25751 146 2759 Descend
1 2007/03/09 01:44:48.84 26252 146 2760 Descend
2 2007/04/13 01:44:47.23 26753 146 2760 Descend
3 2007/05/18 01:44:50.34 27254 146 2760 Descend
4 2007/07/27 01:44:52.77 28256 146 2760 Descend
5 2007/08/31 01:44:51.35 28757 146 2760 Descend
6 2007/12/14 01:44:44.71 30260 146 2759 Descend
7 2008/01/18 01:44:45.79 30761 146 2759 Descend
8 2008/03/28 01:44:46.06 31763 146 2759 Descend
9 2008/05/02 01:44:44.21 32264 146 2759 Descend

10 2008/08/15 01:44:46.07 33767 146 2759 Descend
11 2008/10/24 01:44:44.65 34769 146 2759 Descend
12 2009/06/26 01:44:45.26 38276 146 2760 Descend
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Table 2. Cont.

No Acquisition Time Orbit Track Frame Pass

13 2009/07/31 01:44:44.86 38777 146 2760 Descend
14 2009/09/04 01:44:43.53 39278 146 2760 Descend
15 2010/01/22 01:44:38.78 41282 146 2759 Descend
16 2010/02/26 01:44:36.34 41783 146 2759 Descend
17 2010/04/02 01:44:36.99 42284 146 2761 Descend
18 2010/06/11 01:44:35.17 43286 146 2761 Descend

3.4. WRF Model Processing

For the reasons stated above, the weather forecasting model was employed to create the
water vapor and surface pressure products for atmospheric correction of DInSAR processing.
The Fifth-Generation Penn State/NCAR Mesoscale Mode (MM5) (see [40,50]) used in precedent
researches [41] successfully demonstrated the capability of the Weather Research and Forecasting
(WRF) model for the error migration of InSAR. Hence the version 3.2.1 Advanced Research WRF
(WRF-ARW) [51] was applied for the construction of weather model. The predicted domain consists
of 60 × 60 grids with 2 km spatial resolution and 40 vertical levels covering ±3 h of corresponding
SAR image acquisition time. For the initial and boundary condition of the WRF model, the National
Center for Environmental Prediction Final (NCEP_FNL) Global Analysis data was used as a reference.
The NCEP_FNL data have 1◦×1◦ grids with 26 vertical levels, and are produced every 6 h [52].
The microphysics was dealt with using the WRF Single-Moment 6-class (WSM 6) scheme [53].
The radiation was calculated using the Rapid Radiative Transfer Model (RRTM) scheme [54] for
longwave radiation, and the MM5 scheme [55] for shortwave radiation. The surface layer was
simulated using the MM5 similarity scheme [56–58]. The land surface was processed using the Noah
and Surface Model [59]. The planetary boundary layer and urban surface were performed using Yonsei
University (YSU) scheme [60] and Kain-Fritsch scheme [61], respectively.

4. Processing Results

4.1. Validation of the Atmospheric Error Model and Two Pass DInSAR Analyses Using ALOS PALSAR

Following the method and data described in Section 3.4, the WRF simulation was performed and
the atmospheric models on the 4 ALOS PALSAR image acquisition dates were extracted. All quantities
derived from WRF were subsequently converted to total water vapor following Equation (7):

TPW =
1

2G ∑ [(qi + qi+1)(pi − pi+1)], (7)

where G is the universal gravitation constant, qi is the water vapor mixture ratio in ith layer and pi is
the pressure in ith layer. The computed result was used for the DInSAR wet delay correction.

Once the two WRF maps for the master and slave images were constructed (Figure 4a,b),
the ZWDD of DInSAR was extracted using Equation (4). It was clearly showed that the constructed
water vapor from WRF successfully caught the water vapor void around the mountain summits due
to orographic effects. Although the direct inter-comparison was not possible due to the temporal
gap between MODIS water vapor and WRF simulation, the interpolated MODIS water vapor from
the cloud free raw products and water vapor from WRF show similarities to some extents as shown
in Figures 3b and 4b. Together with ZDD, based on the surface pressure in WRF and Equation (6),
the total delay map was constructed and is shown in Figure 4c. The constructed total delays then were
applied into DInSAR analyses. Figure 5 shows the deformation field derived from DInSAR analyses
conducted with the error correction method described above.
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observed that the mean velocity and its dispersion of scatterers over the area outside of timberline 

Figure 5. The two-pass D-InSAR processing using ALOS PALSAR pair (left: before atmospheric error
correction, right after error correction) (a) the pair 1DInSAR results obtained on 2009/07/19 and
2009/09/03, (b) the pair 2 results obtained on 2010/01/19 and 2010/04/21.

4.2. Time Series Analysis with ENVISAT ASAR

StaMPS/MTI processor conducted the PS analysis with the master SAR image of 24 July 2009 and
then SBAS analysis over three years period with the 18 images illustrated in Figure 6. The resulting
velocity map and the mean precision dispersion maps derived from StaMPS/MTI processing are
presented in Figures 7 and 8.
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displacement rate was up to 15–20 cm/year, which is a very high value compared with the 
StaMPS/MTI output and close to the deformation observed at other activate volcanoes [63,64]. It 
was suspected that most of this deformation might be caused by the base DTM error remaining 
from the two pass DInSAR processing. To examine this error source, the data collected by 
Geoscience Laser Altimeter System (GLAS) on board the Ice, Cloud and land Elevation Satellite 
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Figure 7. Mean velocity in Line of Sight (LOS) direction over Mt. Baekdu during
2007/02/02–2010/06/11. Left figure (a) shows the velocity map covering the whole ASAR processing
area. The black polygon outlined in (a) is zoomed-in and shown in figure (b), in which the area
outlined by the red line in the timberline area. The significant deflation occurring in the eastern slope
is observed.

For further interpretation, the area of timberline was extracted using the SAR classification scheme
proposed by [62]. The boundaries are drawn using a red line in Figures 7b and 8b. It is observed that
the mean velocity and its dispersion of scatterers over the area outside of timberline are much higher
than the stable scatterers within the timberlines. Therefore the following discussion was conducted
based on the surface deformation detected inside the timberline area.
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5. Discussion

Based on the DInSAR analysis with atmospheric correction and time-series processing, the errors
and relevant issues are discussed below to achieve a reliable interpretation of volcanic activity.

5.1. DInSAR Performance

As shown in Figure 5, after the atmospheric correction, two pass DInSAR using ALOS PALSAR
images demonstrated high deformation values. Particularly in mountain flank areas, the displacement
rate was up to 15–20 cm/year, which is a very high value compared with the StaMPS/MTI output
and close to the deformation observed at other activate volcanoes [63,64]. It was suspected that most
of this deformation might be caused by the base DTM error remaining from the two pass DInSAR
processing. To examine this error source, the data collected by Geoscience Laser Altimeter System
(GLAS) on board the Ice, Cloud and land Elevation Satellite (ICESAT) was employed as the reference
for inter-comparison. Due to the high vertical and planimetric accuracy (2 cm radially and 5 cm
vertically [65], it is a highly reliable topographic product to assess the accuracy of the 3 arc-second
resolution SRTM DEM used in the DInSAR processing over Mt. Baekdu. The comparison between
SRTM DEM and ICESAT scanned profiles is shown in Figure 9. Along the two ICESAT track profiles,
it was clearly observed that the horizontal and vertical geodetic offsets of STRM DTM existed with
about 20 m height difference over the DInSAR processing area. Then the deformation error resulting
from the residual height of the base DTM could be computed based on the equation:

Φt =
4π

λ

Bp

rsin(θ)
zerror, (8)

where Φt is the phase difference via inaccurate base topography, λ is the wavelength of SAR sensor, Bp

is the perpendicular baseline, θ is the look angle, r is the range between sensor and target and zerror

is the base DTM error. As a result, the calculated deformation errors were up to 1.9 cm and 2.3 cm
respectively in pairs 1 to 2 (about 10 cm/year, refer to Section 4.1 and Figure 5). Hence large portion
of the deformation derived from the DInSAR processing originated from the geodetic offset of the
base DTM.
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Figure 9. ICESAT Track profiles over Mt. Baekdu. The mean and standard deviation values of height
difference (ICESAT-SRTM DTM) along ICESAT track 2008/03/05 (red line) are 18.892 m and 5.741 m
respectively. Along the ICESAT track 2008/03/17 (blue line), the mean and standard deviation of
height difference are 19.432 m and 7.932 m.

Together with the offset caused by the base DTM error, atmospheric error might be another
unresolved error component. First, the discontinuities in error maps and Figure 5 should be noted.
The discontinuities shown in the error maps (Figure 5) in pair 1 and especially pair 2 clearly revealed
the discontinuities around the summit of Mt. Baekdu, which might be due to the estimated frontal
surfaces of WRF outputs. DInSAR deformation showed the unpredicted discontinuities by WRF in both
pairs 1 and 2. These were artifacts derived from inaccurate WRF outputs as WRF has limited capability
to forecast local weather instabilities. In addition, considering the locations over the boundaries
of estimated discontinuities revealed in the WRF error map, deformation over some local area,
for instance in the north eastern flank of pair 1 and the western flank in pair 2 (shown in Figure 5),
were inferred as the result of a mismatch between WRF estimation and real atmosphere instability.

With all of the above unresolved phase delay errors, the two pass DInSAR results were unable
to show precise genuine deformation patterns. There is only weak evidence of deformation on the
eastern flank. Next, we use the StaMPS/MTI method to precisely track the deformation.

5.2. Interpretation of StaMPS/MTI Processing Results

In the StaMPS/MTI processing results, the obvious inflation on eastern flank was distinguished.
Specifically over the site “a” indicated in Figure 7b, inflation up to 30 mm/year is shown.
This deformation rate is significant and represent genuine surface change based on: (1) the coincidence
with the deformation in the other SBAS campaign shown in Kim et al. [22]; (2) its location in the
non-vegetated area (hence this deformation was not the result of time varying scatterers); and (3) a
relatively small velocity dispersion as shown in Figure 8. The sources of the other deformation in
the small areas around the summit are not clearly identified as those are very localized pattern. In
addition, the minor inflation on the site “b” is relatively obvious and reliable according to the low
mean velocity dispersion shown in Figure 8.

The deformation over sites “c” on the southern flank and “d” o the western flank is not negligible;
however it is not very clear in both the mean velocity and the velocity dispersion. The deformation
of site “c” is more likely the noise of DInSAR processing or the deformation caused by other sources
considering its localized distribution. Regarding the site “d”, as the topographic slope in this area
is higher than in any other place, the influence of decorrelation in steep topography may cause
the erroneous measurement in phase difference as stated in [23]. The relatively low reliability in
velocity dispersion was noticed over the western flank. However, since it was difficult to address the
de-correlation problem originating from the vegetation canopy, such as shrub at high altitude, snow
coverage or steep slopes which are dominant on the western flank, the high dispersion in this area was
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inferred as the effects of such natural environmental factors. Thus, together with the spatially small
extents, the observed deformation in the western flank was not readily considered as real deformation
signal. The site “a” is clearly distinguished in the well-defined uplift pattern as observed consistently
in Figure 10. Although there are some fluctuations, the deformation over the site “a” is very clear for
the entire observation period, which is also shown in Figure 11a. Moreover, the deformation on the
site “b” on the northern flank area during the 2007–2008 period showed the small velocity dispersion
in Figure 11b and is identified visually in Figure 10.

In contrast, it is found that the deformation detected over sites “c” on the southern flank and “d”
on the western flank areas is ambiguous. As described by Cao et al. [66], the deformation extracted for
site “c” might be local creep and it agrees with Figure 11c which shows slow subsidence with high
velocity dispersion. As for site “d”, the less obvious deformation with large deformation velocity
dispersion shown in Figures 10 and 11d imply that the observed deformation over site “d” may not be
actual surface uplift and subsidence but error in the DInSAR analysis.

Unfortunately, the reliable StaMPS/MTI observation areas in this study are not overlapped
with [4] survey areas spatially and temporally especial ly “a” to “c” are located within North Korean
territory; hence, the direct inter-comparison is not feasible. However, we can compare [4] survey
work and the InSAR analyses conducted in this paper. Firstly, it was identified that there were still
remained surface deformation in the 2007–2011 period after the long inflation during the 2002–2005
period observed in [4] ground survey, which was covered by the time series analysis using ENVISAT
ASAR data and in the DInSAR analysis using ALOS PALSAR images. Specifically, the ENVISAT ASAR
StaMPS/MTI analyses showed a clear evidence of surface deformation on the eastern flank of Mt.
Baekdu, which was not covered by the on-site GPS and levelling survey conducted by [4] as the area
is located within N. Korean territory. The phenomenon could also be observed in the SBAS analysis
reported in [22]. All StaMPS/MTI observations identified quite obvious deformation (up to 15–30 mm)
on the eastern flank. Thus, it ruled out the possibility of outliers in the DInSAR analyses originating
from erroneous factors, especially considering the timberline extent and the small velocity dispersion.
It should be noted that the circumscribed patterns of deformation connecting sites “a”, “b” and “d”
around the eastern summit, fit with the epicenters of swarms around the caldera lake [67]. These were
described in Liu et al. (2001) [2]. Such circumscribed deformation patterns are also revealed in the
atmospheric corrected two pass DInSAR results of pairs 1–3 shown in Figure 5. This implies that the
deformation observed around the caldera lake is the consequences of ongoing geological unrest, not
error components. It should be noted the levelling and GPS results conducted in [4] is not directly
comparable to our StaMPS/MTI observations as the spatial extent, the temporal coverage and the
measured direction were not within our test scope.

In order to infer the deformation source model of Mt. Baekdu and to validate the effectiveness
of our DInSAR observations, we conducted model inversion incorporating the DInSAR observations
for a specific time period. According to [5], the Earth Gravitational Model (EGM) 2008 [68] was
applied which approximates a magma chamber along with several faults. Hence in this study we
combined the Mogi [69] and Okada [70] models to simulate a comprehensive underground source
causing surface deformation. The spherical Mogi model [69] handles circular surface displacement
well, specifically when the source depth is much larger than the radius of the deformation cavity.
Because of its simplicity it has been widely used for volcanic region inversion [71,72]. The rectangular
Okada model [70] mimics fault behavior and is widely modeled in subduction and fault areas [73,74].
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Figure 11. Cumulative deformation in obvious anomalous sites around the summit: (a) in site “a”,
(b) in site “b”, (c) in site “c” and (d) in site “d” (see Figure 7 to identiy each location). Note that the error
bar represents the standard deviation of deformation for each site. The error bar mean the standard
deviation of surface deformation in each area 5.3. Geophysical Modelling and Interpretations

Both models were optimized using the Levenberg-Marquardt algorithm (LMA) which was
implemented using Gauss-Newton iteration and loops in order to obtain a convergence of the gradient
descent [75]. Initial model values for geometrical parameters are set to ranges published in previous
studies [5]. For the Mogi model they include depth, projected planar location, and volume; for the
Okada model they include, length, width, depth, degree of dip and rake, distance of strike and slip.
Through the iterative calculation during the inversion, these parameters were optimized to minimize
the differences between the model estimates and our DInSAR observations [76]. Once the processing
was completed, parameters of the pressure source can be determined and described. Successful studies
using inversion modelling have been published by, e.g., Yassen et al. [77] and Cheloni et al. [78].

We tested the inversions of all DInSAR observations. Since only a few StaMPS/MTI results
showed clear surface deformation and produced the source parameters in reasonable ranges,
we calculated inversions based on observed that occurred between 2007/08/31–2007/12/14,
2008/03/28–2008/05/02 and 2010/02/26–2010/04/02, referred to as the 2007-, 2008- and 2010
observations, respectively. Two possible scenarios were hypothesized to initialize model inversions
and to investigate agreements between the model and the observations of surface displacement.

In the first scenario, a Mogi-type magma chamber of spherical shape in an elastic half-space [70]
and four faults lines inferred from [5] were introduced. In this scenario the central magma chamber
contributes to surface unrest by volume or pressure changes interacting with the faults lines as shown
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by, e.g., Feuillet et al. [79]. Figure 12 and Table 3 present the observed and modelled deformation
and error residuals for this hypothesis. Although the modelled deformation values show significant
differences when compared to the DInSAR observations, the spatial patterns between modelled and
observed surface deformation are well comparable. To estimate the goodness of fit of the model more
objectively, we introduced the statistical metric from Tizzani et al. [80] together with the conventional
RMS error estimate between the observation and modelled displacement. Their statistical test is based
on the experimental variogram model of deformation distribution. First, the normalized root mean
square error (NRMSE) was calculated which provides a measure for the discrepancy between the
observed and model variogram. It is defined as

NRMSE =
1
N

√
∑N

k=1(obsk −modelk)

obsmax − obsmin
(9)

where obs and model are observational and model data and N is the number of data points. We also
conducted a Chi-squared test between the observed and the model variogram and calculated χ2

(see Tables 3 and 4). All cases show a comparable fitness although in the case of the 2007 observation it is
slightly higher due to the possibility that the observed deformation possessed strong deviation. Volume
change in the model magma chamber using Mogi source model parameters is also extracted using

∆V = πa3 ∆P
µ

[
1 +

(
a
z0

)4
]

(10)

where ∆V is the volume change in the Mogi source, a is the source radius, ∆P is the pressure change in
the source, z0 is the depth of source and µ is the shear modulus [81] (see Table 3).

Overall it appears that the deformation in the cases of the 2007 and 2008 observations is due to
the inflation of the magma chamber and its corresponding interaction with fault lines. In contrast,
the 2010 observations seem to show the depressurization of the magma chamber. Consequently the
focal mechanism of faults lines (Figure 12) display different patterns according to the magnitude
and direction of volume changes of the Mogi source, in particular between the major inflation of
the 2007 observation period and the deflation of the 2010 observation period. It is obvious that
significant pressure change or any physical state migration of the magma chamber caused by, e.g.,
magma intrusion which can induce measureable and frequent major seismic activity, have ceased
after 2005 [2]. Thus, the magma chamber did not significantly contribute to the observed surface
deformation during the period of this study. Assuming the absence of major activity in the magma
chamber, it was proposed that minor coulomb stress changes of the deep magma chamber induced the
clamping and unclamping of fault planes as shown in the case studies by [79,82]. It is characterized by
predominantly normal faulting in the focal mechanisms of the 2007 observation towards a tendency
of strike-slip faulting in the 2008 observation. Deformation during the 2010 observation period is
characterized by dominant strike-slip faulting which then might be directly connected to the deflation
of the magma chamber (Figure 12C).

It should be noted that the residuals between observed and modelled deformation shown in
Figure 12 are significant although some deformation patterns such as discontinuities probably induced
by faults can be roughly traceable in the observations. A possible explanation is the effect of phase
errors induced by local atmospheric components such as local precipitation. However, in order
to explain the distribution and migration of the residuals between observations and models and
their temporal migrations, it is useful to infer the existence of additional small scale deformation
sources. Such additional local faults might be trapdoor faults resulting from intense magmatic activity
during the 2003–2005 period [2] as shown in Sierra Negra Volcano [83]. However, we found that an
improvement of the model inversion including a magma chamber, major fault lines based on [5] and a
number of unknown local deformation sources were not possible to obtain due to many unconstrained
parameters uncertainties.
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Table 3. Source parameters determined by inversion. See Figure 12 for location of deformation sources
(OK1 to OK4).

Time 2007/08/31–2007/12/14 2008/03/28–2008/05/02 2010/02/26–2010/04/02

Sources Point Source Point Source Point Source

Volume
Variation

(m3)
3,755,982.141 1,579,134.672 −1,556,898.017

Depth (m) 11,465.467 11,094.183 10,013.452
East (m) 40,872.121 423,213.874 415,155.909

North (m) 4,648,746.096 4,635,012.344 4,635,640.076

Sources Fault line1
(OK1)

Fault line2
(OK2)

Fault line1
(OK1)

Fault line2
(OK2)

Fault line1
(OK1)

Fault line2
(OK2)

Length (m) 49,637.686 20,224.747 10,229.789 37,199.065 25,677.193 59,879.098
Width (m) 10,068.544 20,793.347 14,943.400 3401.966 29,832.498 7353.123
Depth (m) 488.956 497.956 0 489.432 487.343 0
Dip (deg) 13.657 5.087 22.558 48.276 90 75.416

Strike (deg) 280.456 51.397 299.113 37.600 106.851 302.676
East (m) 422,950.597 409,249.061 433,181.514 413,386.896 428,145.174 421,806.633

North (m) 4,644,922.413 4,649,463.430 4,642,377.592 4,648,702.527 4,641,577.194 4,647,159.085
Rake (deg) 50.521 100.384 32.014 168.951 139.269 178.033

Slip(m) 0.013 0.013 0.003 0.012 0.015 0.005

Sources Fault line3
(OK3)

Fault line4
(OK4)

Fault line3
(OK3)

Fault line4
(OK4)

Fault line3
(OK3)

Fault line4
(OK4)

Length (m) 36,275.330 44,430.801 59,398.234 59,989.433 14,173.725 21,509.433
Width (m) 13,861.336 22,048.059 19,446.234 9758.042 10,852.916 27,445.590
Depth (m) 459.564 0.122 459.212 496.309 487.209 458.321
Dip (deg) 8.353 0 28.343 27.852 72.539 59.372

Strike (deg) 308.203 181.137 26.061 329.567 268.354 96.573
East (m) 418,759.992 412,945.360 431,978.382 419,622.734 434,841.328 414,725.131

North (m) 4,647,442.745 4,659,005.640 4,641,027.366 4,661,893.434 4,643,033.184 4,655,743.219
Rake (deg) −180 134.407 −42.816 −159.692 19.094 34.943

Slip (m) 0.010 0.006 0.003 0.008 0.024 0.004

Goodness of
fit

NRMSE: 0.029 NRMSE: 0.119 NRMSE: 0.015
χ2: 0.588 χ2: 0.372 χ2: 0.034

RMSE: 2.069 RMSE: 0.815 RMSE: 0.971

Table 4. Source parameters determined by inversion. See Figure 12 for location of deformation sources
(OK1 to OK2).

Time 2007/08/31–2007/12/14 2008/03/28–2008/05/02 2010/02/26–2010/04/02

Sources Fault line1
(OK1)

Fault line2
(OK2)

Fault line1
(OK1)

Fault line2
(OK2)

Fault line1
(OK1)

Fault line2
(OK2)

Length(m) 26,854.218 12,738.540 21,471.381 20,381.859 27,459.677 23,449.507
Width(m) 14,210.866 17,033.613 5124.012 3589.145 4,253.371 10,298.3151
Depth(m) 3916.382 1647.755 4987.521 1202.627 2582.480 4933.270
Dip(deg) 84.0553 25.8303 89.2013 34.6678 45.8336 22.7832

Strike(deg) 269.253 160.596 111.947 43.991 298.860 42.389
East(m) 421,214.302 434,197.853 419,186.531 428,028.4981 426,536.008 429,767.141

North(m) 4,641,029.602 4,634,698.001 4,631,301.914 4,643,152.040 4,646,755.059 4,649,816.136
Rake(deg) 10.428 −179.512 −179.522 −82.732 161.645 38.525

Slip(m) 0.090 0.0268 0.0390 0.0120 0.0505 0.0159

Goodness of
fit

NRMSE: 0.024 NRMSE: 0.021 NRMSE: 0.027
χ2: 1.937 χ2: 1.266 χ2: 1.067

RMSE: 2.700 RMSE: 0.501 RMSE: 1.094
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represented the fault lines inferred from [5] and the crosses are the epicenters of earthquakes during 
2002–2005 [2]. The dotted lines in (b) are projected outlines of Okada deformation sources (OK1 to 
OK4) and the star signs are for the location of Mogi type sources. Note rough discontinuities of 
deformation patterns in the location of the fault line by StaMPS/MTI observations.  
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distributed Okada type deformation sources assuming negligible contribution from a magma 
chamber and major fault lines as inferred from [5]. The assumption can be justified considering the 
decrease in seismic activity after 2005 [2] which implies a stabilization of the magma chamber. 
Therefore, the model inversion was conducted with only two rectangular dislocations in an elastic 
half space [70] and the initial parameter values inferred from the location of main area of 
deformation. The models incorporating the NW-SE and NE-SW trending fault lines provided the 
best results. Parameters derived from these models are shown in Table 4, together with observed 
and modelled deformation and error residual distributions as shown in Figure 13. Location of 
deformation sources in these models showed a better agreement with the depth of earthquake 
hypocenters (2–5 km) described in [4]. One hypothesis involving these local deformation models is 
that hydrothermal activity might have followed main inflation events and intensive seismic activity 
during the 2003–2005 period [2]. In such a scenario, close proximity between an aquifer and the 
magma chamber could have caused significant gas emission, including water vapor and induced 
relatively localized surface deformation along existing faults as observed in [84,85] or with the 
changes of pore pressure and rock temperature[86]. The focal mechanisms and the spatial patterns 
of deformation sources have been changing significantly across the three inversions and may also 
support a scenario of temporal migration of hydrothermally activated regions. The focal 
mechanisms clearly demonstrate strike-slip faulting and can be well discriminated from the cases of 
Figure 12A with predominant normal faulting and Figure 12B with a tendency towards strike-slip 
faulting. It seems that the error residual patterns in Figure 13 and higher error metrics in Table 4 (cf. 
to values in Table 3) require the introduction of more sophisticated deformation source models and 
mechanisms. However, the thermal anomaly around the summit observed in MODIS land 
temperature products [87] shown on Figure 14 strongly support the possibility of hydrothermally 

Figure 12. Deformation extracted by StaMPS/MTI observations (left column) and modelling with a
Mogi, three Okada models (middle column) and error residuals (right column) for the time periods
(a) 2007/08/31–2007/12/14, (b) 2008/03/28–2008/05/02, (c) 2010/02/26–2010/04/02. The lines in
(a) represented the fault lines inferred from [5] and the crosses are the epicenters of earthquakes during
2002–2005 [2]. The dotted lines in (b) are projected outlines of Okada deformation sources (OK1 to OK4)
and the star signs are for the location of Mogi type sources. Note rough discontinuities of deformation
patterns in the location of the fault line by StaMPS/MTI observations.

Instead, as the second scenario, we examined the model inversion including only locally
distributed Okada type deformation sources assuming negligible contribution from a magma chamber
and major fault lines as inferred from [5]. The assumption can be justified considering the decrease
in seismic activity after 2005 [2] which implies a stabilization of the magma chamber. Therefore, the
model inversion was conducted with only two rectangular dislocations in an elastic half space [70]
and the initial parameter values inferred from the location of main area of deformation. The models
incorporating the NW-SE and NE-SW trending fault lines provided the best results. Parameters
derived from these models are shown in Table 4, together with observed and modelled deformation
and error residual distributions as shown in Figure 13. Location of deformation sources in these
models showed a better agreement with the depth of earthquake hypocenters (2–5 km) described in [4].
One hypothesis involving these local deformation models is that hydrothermal activity might have
followed main inflation events and intensive seismic activity during the 2003–2005 period [2]. In such
a scenario, close proximity between an aquifer and the magma chamber could have caused significant
gas emission, including water vapor and induced relatively localized surface deformation along
existing faults as observed in [84,85] or with the changes of pore pressure and rock temperature [86].
The focal mechanisms and the spatial patterns of deformation sources have been changing significantly
across the three inversions and may also support a scenario of temporal migration of hydrothermally
activated regions. The focal mechanisms clearly demonstrate strike-slip faulting and can be well
discriminated from the cases of Figure 12A with predominant normal faulting and Figure 12B with
a tendency towards strike-slip faulting. It seems that the error residual patterns in Figure 13 and
higher error metrics in Table 4 (cf. to values in Table 3) require the introduction of more sophisticated
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deformation source models and mechanisms. However, the thermal anomaly around the summit
observed in MODIS land temperature products [87] shown on Figure 14 strongly support the possibility
of hydrothermally induced deformation. These data demonstrate a consistent thermal anomaly with
up to 10 Celsius degree, in particular near the location of the south-eastern part of the caldera lake.
We interpret these anomalies as possible outlets of hydrothermal activity based on the proximity to the
modelled deformation sources.
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6. Conclusions and Future Work

Based on recent ground observations and seismic data, a number of indicators of potential volcanic
activity around Mt. Baekdu could be identified, making a thorough re-evaluation of its potential
volcanic risk critical. However, since a major part of Mt. Baekdu is not accessible for ground surveying
and in situ studies, we focused on the implementation and validation of InSAR techniques that allowed
us to monitor the target area both temporally and spatially.
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To overcome the environmental conditions limiting the InSAR performance (such as potentially
inaccurate base DTM, instability of atmospheric condition resulting in partial phase delay, dense
vegetation canopy and steep slope), error elimination techniques, including two pass DInSAR with
atmospheric correction and StaMPS/MTI methods were employed successively. As a result, it was
verified that the local deformation identified in both approaches is not negligible. In particular, the
hybrid interferogram stacking algorithms developed by [34] revealed significant surface inflation up to
20 mm/year supposedly around faults over the caldera lakes. To explain this deformation, we propose
two hypotheses: (1) faults interacting with the magma chamber and (2) hydrothermal activity and
effects around local faults in the flank over Mt. Baekdu. Although both hypotheses do not fully explain
the complicated deformation pattern identified by DInSAR observations, the temporal migration
of the modelled deformation source, calculated focal mechanism and thermal anomaly detected by
MODIS land products support a scenario of recently ongoing volcanic activity. A unified scenario
combining both mechanisms, i.e., vestigated but the final model inversion is not yet determined
due to the difficulties in building more complex models, in particular with remaining atmospheric
errors and insufficient DInSAR observations. Once reliable long-term observations are derived from
ground observation and also remote sensing analyses, an identification and a detailed model of the
deformation source underneath Mt. Baekdu could be derived. To achieve this purpose, the approaches
combining InSAR analyses from different observation conditions and techniques [88,89] and/or data
fusion with GPS monitoring [90], are suggested to be an appropriate bases for complex model inversion
to infer various deformation sources.

In this work the effectiveness of DInSAR time series analysis over Mt. Baekdu has been
demonstrated and exploitation of all possible space-borne SAR missions to determine the model
that best fit the data over Mt. Baekdu is necessary. However, advanced error correction methods need
be developed and introduced to improve the results. Although time series using StaMPS/MTI with
C-band ENVISAT ASAR data produced relatively reliable deformation measurements, it is suggested
to introduce long wavelength L-band DInSAR time series for highly intensive measurements over
vegetated and/or snow covered topography at Mt. Baekdu. In addition, the base topography error
issue should also be considered when time series analysis with L-band ALOS PALSAR is employed
due to its temporal dependency on the perpendicular baseline [91]. In order to address these issues,
approaches proposed by [91] and [92] can be introduced to make base DTM corrections for constant
monitoring over Mt. Baekdu. Although it was shown that two-pass DInSAR compensated with
external error estimation by weather forecasting models is not very effective in such severe atmospheric
turbulence cases, it is still worthwhile to employ this method to investigate relatively short term
deformation. The higher resolution and the improved accuracy of the WRF model to forecast the local
climate instability over mountain areas such as the approach described in [93] is essential in that case.

The replacement of space-borne SAR sensors from ERS, ENVISAT ASAR and ALOS PALSAR
to C-band Sentinel-1 of ESA, X-band high resolution SAR, and L-band ALOS PALSAR-2 provide
enhanced opportunities to monitor Mt. Baekdu with improved spatial and temporal resolutions
at various wavelengths. Together with the new SAR missions and improved DInSAR techniques
described in this work, further monitoring over Mt. Baekdu could be continued and results described in
this study, in particular with respect to various atmospheric error components, will be of great benefit.
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