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Abstract: Mapping of shorelines and monitoring of their changes is challenging due to the large
variation in shoreline position related to seasonal and tidal patterns. This study focused on
a flood-prone area in the north of Java. We show the possibility of using fuzzy-crisp objects to derive
shoreline positions as the transition zone between the classes water and non-water. Fuzzy c-means
classification (FCM) was used to estimate the membership of pixels to these classes. A transition zone
between the classes represents the shoreline, and its spatial extent was estimated using fuzzy-crisp
objects. In change vector analysis (CVA) applied to water membership of successive shorelines,
a change category was defined if the change magnitude between two years, T1 and T2, differed
from zero, while zero magnitude corresponded to no-change category. Over several years, overall
change magnitude and change directions of the shoreline allowed us to identify the trend of the
fluctuating shoreline and the uncertainty distribution. The fuzzy error matrix (FERM) showed overall
accuracies between 0.84 and 0.91. Multi-year patterns of water membership changes could indicate
coastal processes such as: (a) high change direction and high change magnitude with a consistent
positive direction probably corresponding to land subsidence and coastal inundation, while a consistent
negative direction probably indicates a success in a shoreline protection scheme; (b) low change
direction and high change magnitude indicating an abrupt change which may result from spring
tides, extreme waves and winds; (c) high change direction and low change magnitude which could be
due to cyclical tides and coastal processes; and (d) low change direction and low change magnitude
probably indicating an undisturbed environment, such as changes in water turbidity or changes in
soil moisture. The proposed method provided a way to analyze changes of shorelines as fuzzy objects
and could be well-suited to apply to coastal areas around the globe.

Keywords: shoreline change; change vector; confusion index; coastal inundation; Indonesia

1. Introduction

The study of changing shorelines is essential to assist in the design of effective coastal
protection [1,2], verifying numerical models [3,4], developing hazard maps [5], formulating policies
regarding coastal development [6], and for coastal research and monitoring [7]. A shoreline is defined
as the intersection of coastal land and water surface indicating the water edge movements of which the
position is changing through time due to different water levels during high tide and low tide [8–10].
Oertel [11] referred to a shoreline as the line associated with sea level rather than with high and
low tides. When considering only the tide, many shorelines are due to the shifting of water with
tidal differences. Tidal differences vary and are influenced by the changes in the magnitude of
gravitational attractions on the water body of the Earth, winds and waves. Furthermore, shorelines
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have changed their dynamics at varying rates as a response to coastal processes such as sediment
erosion, transportation and deposition along the shore. Rapid changes occur during an extreme event
such as storms, whereas gradual changes occur during an intervening period [12]. Shoreline changes
can be estimated over various time scales and result into long-term, cyclic and local random variation.
Long-term variation includes variation due to the land subsidence, relative sea level rise and sediment
storage. Cyclic variation is related to the tide cycles or seasons, whereas waves and storms cause
random variation of a local character.

As the shoreline positions vary over time, shoreline indicators are used as proxies to represent
shoreline positions, including: (a) distinguishable coastal features, for example, a previous high-tide
line; (b) the intersection of coastal profile with specific vertical water elevation, e.g., the mean sea
level; and (c) shoreline features observable from remote sensing images. An example of the latter is
the boundary between water and non-water pixels [13–16]. The shoreline boundary between coastal
land and water is fuzzy since there is a gradual transition from coastal land to water. Given the
nature of the fuzzy shoreline and its changing position, detection of shoreline requires dealing with
uncertainty. Fisher [17] mentioned three types of uncertainty: (a) errors: if a shoreline is clearly
identified, the uncertainty may arise from error, for example in data processing, spatial generalization,
and measurement; (b) vagueness: if it is not possible to define the spatial extent of coastal land, water,
and the transition zone (Williamson (1994) after Fisher [17]); and (c) ambiguity: relating to the confusion
of land and water definition considering a different classification system or a different perception.

Previous studies have proposed several ways of generating shoreline positions. Shoreline survey
and photogrammetry have been primary technology for shoreline mapping, yet both methods are
time consuming and expensive [18]. Therefore, image classification is used widely nowadays to
detect shoreline positions. Most studies regarding shoreline detection have used hard classification
such as thresholding, water indices, iterative self-organizing data analysis (ISODATA), binary slicing,
maximum likelihood classification (MLC) and manual digitizing [7,15,19–21], whereas only a few
applied soft classifications [16,22,23].

Due to the fuzziness of shoreline positions, using hard classification for shoreline mapping could
produce errors on the classification results, since hard classification assigns a single label to a pixel,
based on its highest membership. To overcome this limitation, this paper explores fuzzy classification
to detect shoreline positions from a remote sensing image. In our previous work, we proposed
two procedures to derive fuzzy shorelines: (a) we derived shorelines by applying a threshold equal
to 0.5 to the membership and depicted shorelines as a single line; and (b) we derived shorelines as
a margin determined by the choice of thresholds on the membership function [16]. In the current paper,
we proposed a third procedure to distinguish shoreline proxies from digital images. A shoreline is
represented as the transition zone between water and land. In this case, pixels at which the membership
value (µ) exceed 0.99 are the core of a class, whereas pixels with 0.01 < µ < 0.99 belong to transition
zones and pixels with µ < 0.01 do not belong to objects. In this way, we can account for the gradual
transition between water and land (vagueness of the boundary). Moreover, in change detection,
use of transition zones instead of crisp shorelines allows us to account for the influence of ambiguity
resulting from comparing images recorded under different circumstances, such as weather, and have
a more detailed description, of not only the magnitude and direction of the changes, but also of the
related uncertainty.

Various change detection techniques have been developed. They can be divided into two groups,
namely bi-temporal change detection and temporal trajectory analysis [24,25]. The former measures
changes based on two separate time periods, for example image differencing and post classification
comparison. Image differencing does not provide a detailed change matrix while post classification
comparison does not allow the detection of subtle changes within a class. The latter, temporal trajectory
analysis, is based on the temporal development curve or trajectory for successive times. It focuses both
on what has changed between dates, as well as on the trend of the change over the period [24–27].
Change detection in this research utilizes the second method. To measure the change of the fuzzy
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shoreline, change vector analysis (CVA) based upon pixel-wise comparison was used to estimate
the changes of successive shorelines. CVA identifies changes of features which were acquired at
different times. In previous studies, CVA was applied to the brightness and greenness indices [28,29],
normalized difference vegetation index [25,30], near infrared band and vegetation index [31], wetness
and bare soil index [32], and spectral bands and textural images [33,34]. In this study, CVA was applied
to the water membership values of shoreline images. Furthermore, in the earlier studies CVA has
been applied in the multi-spectral space [29,35], and then extended to be applied in multi-temporal
observation vectors of an indicator variable measured at different times [25]. CVA provides an overall
change magnitude and change direction showing the trend of the fluctuating shoreline.

The objective of this study was to develop a method that is useful for monitoring the changes of
a fuzzy shoreline. The method is based on fuzzy classification and CVA. A series of Landsat images is
used to detect shoreline positions as a transition zone while taking tides into account. For this study,
the uncertainty of shoreline positions was estimated by means of confusion indices. We focus on
inherent uncertainty caused by continuous variation of a shoreline over time, and on uncertainty as it
propagates from extraction and implementation of the shoreline change detection method. The method
is applied to an area in Java, in the northern coastal area of the Central Java Province, Indonesia,
where extensive shoreline changes associated with coastal inundation have increased in term of
frequency and duration.

2. Methodology

2.1. Study Area

The study area is located at the northern part of the Central Java Province in Indonesia. It is
characterized by a low-land landscape (Figure 1) with an elevation less than 5 m above mean sea level
(AMSL). The extent of the study area is approximately 7.5 km from east to west, and 6.5 km from
north to south. The central point of the area is at UTM coordinates 444,243◦E and 9,234,731◦N zone
49S or geographic coordinates 6◦55′S and 110◦29′E. Alluvial and sand sedimentation dominate its
soil type [36,37]. As a coastal area, this area has a mixed semi-diurnal tide with two high tides and
two low tides each day. These two highs and lows differ in height, whereas the average tidal range is
0.6 m. The highest tidal ranges occur in December and June during the rainy and dry seasons, while
the lowest tidal ranges occur in March and September during the transitional seasons. Two types of
flood regularly occur: (a) floods caused by a tidal flood occurring daily in line with tidal cycles [38,39];
and (b) floods due to poor drainage systems during rainy seasons.
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Figure 1. (a) The study area is located in the north of Java, Indonesia displayed using the RGB 542 of
Landsat image. Some examples of coastal inundation impact: (b) daily flooded-houses; (c) an abandoned
and flooded-paddy field; (d) coastal land embankment; and (e) permanent-inundated houses.
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Extensive fishponds and rice fields are covering the study area. Settlements are found bordering
the sea and along the riverbanks, which are threatened if tidal floods become higher. This area
has suffered from a changing shoreline position leading to severe coastal inundation and erosion.
The coastal inundation has increased recently both in terms of frequency and duration. Some factors
such as extreme winds and waves contribute to this increase. Furthermore, in the long run, other causes
such as land subsidence, sea level rise, mangrove conversion, beach reclamation and a seaport extension
are potential causes for increased coastal inundation [38,40–42].

2.2. Satellite Images, Data Pre-Processing and Reference Data Generation

2.2.1. Satellite Images and Data Pre-Processing

Multi-temporal images from the Landsat 8 OLI/TIRS (Operational Land Imager/Thermal Infrared
Sensor) with 30 m spatial resolution were used to monitor the shoreline change between 2013 and 2015
(Table 1). We obtained terrain corrected Landsat images (L1T product) from USGS EarthExplorer [43].
Those images were acquired at the low tide. Tidal data relating to the time of acquisition of the images
were collected from the Indonesian Geospatial Information Agency.

Table 1. Landsat 8 OLI/TIRS images captured in the low tides supplemented by tide level and reference
images used in the accuracy assessment purpose for each period.

Acquisition Date Astronomical
Tide Level (m) Reference Data Acquisition Date Astronomical

Tide Level (m) Reference Data

23 May 2013 −0.1
Pleiades

(27 February 2013)

29 May 2015 +0.04
Sentinel 2

(26 December 2015)
12 September 2013 −0.1 18 September 2015 −0.1

14 October 2013 −0.3 20 October 2015 −0.3
1 December 2013 −0.3 21 November 2015 −0.3

10 May 2014 −0.01
Spot 6

(5 October 2014)
15 September 2014 −0.2

1 October 2014 −0.2
18 November 2014 −0.3

Pre-processing of Landsat 8 OLI/TIRS comprises two steps: (a) histogram minimum adjustment;
it was applied to remove the influence of atmospheric path radiance [44,45]; and (b) geo-referencing;
it was implemented using >100 ground control points (GCP) collected from road intersections, rivers
and other prominent features. The root mean square error (RMSE) values were less than 0.1 pixels.
Geo-registration of Landsat images was conducted using geometrically corrected reference images:
(1) a Pleiades image at a 2 m spatial resolution; (2) a SPOT 6 (Satellite Pour l’Observation de la Terre)
image at a 6 m spatial resolution; and (3) a Sentinel 2 image at a 10 m spatial resolution. The spectral
band information for each reference image including Landsat 8 OLI/TIRS is available in Table 2.

Table 2. The spectral band information of Landsat 8 OLI/TIRS used in image classifications,
and Pleiades, SPOT 6 and Sentinel 2 used as reference images.

Satellite Bands Wavelength (µm) Satellite Bands Wavelength (µm)

Landsat 8
OLI/TIRS

Coastal and Aerosol 0.43–0.45

SPOT 6

Blue 0.45–0.52
Blue 0.45–0.51 Green 0.53–0.59

Green 0.53–0.59 Red 0.625–0.695
Red 0.64–0.67 NIR 0.76–0.89
NIR 0.85–0.88

SWIR 1 1.57–1.65
SWIR 2 2.11–2.29

Pleiades

Blue 0.43–0.55

Sentinel 2

Blue 0.49
Green 0.50–0.62 Green 0.56
Red 0.59–0.71 Red 0.665
NIR 0.74–0.94 SWIR 0.842
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2.2.2. Reference Data Generation

To evaluate the accuracy of a fuzzy classification, it is necessary to use soft reference data [46,47].
We generated soft reference data from available fine resolution datasets [48,49]. These datasets (Pleiades,
Spot 6 and Sentinel 2) were rectified using a 2015 orthoimage. To reduce the variance of the Pleiades
image, smoothing was performed using the average filter applied to a 3 × 3 window size. Afterwards,
we applied fuzzy c-means (FCM) with the number of classes c = 2 and the fuzzy weight m = 1.7 [16].
Further, membership images generated using FCM classification from these high resolution datasets
were used as reference images.

For accuracy assessment purpose, the pixel size of Spot 6 image was resampled to 10 m using
nearest neighbour resampling, so that the spatial resolution of Pleiades, Spot 6, Sentinel 2 and Landsat
images were in the ratio 15:3:3:1. Hence, 225 pixels (15 × 15) of Pleiades, 9 pixels (3× 3) of Spot
6, and 9 pixels (3 × 3) of Sentinel 2 were combined (pixel values averaged) to achieve the pixel
dimension of Landsat images. Furthermore, an effective comparison could be made between images
of different resolutions.

For the alternative methods, MLC and hardened classification, we visually interpreted Pleiades
and Spot 6 images as hard reference data for the year 2013 and 2014 respectively, whereas ground data
were used as the 2015 reference data.

2.3. FCM Classification

To discriminate water classes from non-water, we applied a fuzzy c-means (FCM) classification [50].
FCM iteratively separates data clusters with fuzzy means and fuzzy boundaries and the results assign
each pixel to a partial membership of land cover classes. The membership values (µ) range from 0
to 1, and add up to 1 for each pixel. In this work, the membership values of the classification follow
the trapezoidal membership function. In the literature, there are two possible ways of generating the
membership function: Similarity Relation Model (SRM) and Semantic Import Model (SIM) [51–53].
The former derives the membership function using classifiers like for example fuzzy k-means, fuzzy
c-means, and neural networks [53,54]. The first two are data driven, partitioning the observations based
on multivariate attributes. The latter, SIM, generates membership based on expert knowledge [51,55].

The FCM results assign each pixel to membership of the two classes. The value of m determines
the level of fuzziness in FCM classification. If m = 1, FCM is hard classifier. FCM was carried out by
labeling two membership images resulting from each FCM classification as the water and non-water
images. To do so, the combination of near infrared (NIR) and shortwave infrared (SWIR) of Landsat
bands were used. The water label was given to the class which has the minimum value of the sum of the
cluster means in the infrared bands. Detailed descriptions regarding the FCM algorithm are available
in Bezdek et al. [50], whereas detailed explanations regarding membership function, pixel labeling,
and parameter estimation for FCM classification can be found in Dewi et al. [16].

2.4. Validation

To quantify the accuracy of the FCM classifier, a conventional error matrix cannot be used. In this
study, we used a fuzzy error matrix which has non-negative real numbers [48,56,57], since pixels have
a partial membership to two classes.

For accuracy assessment, soft reference images were generated by applying an FCM classification
to Pleiades, Spot 6, and Sentinel 2 images which were all captured during low tides. Let the value
of µik and µjl represent membership values of the kth pixel for class i in the classified image and lth
pixel for class j in the reference images. It was assumed that the rows of the matrix are classes of the
classified image and the columns are classes of the reference image. The fuzzy error matrix (FERM) is
obtained using minimum operator showing the maximum possible overlap between the classified and
reference images and indicating the agreement between classes in both images [48,49,56]:
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Ai=j = MIN
(

µik, µjl

)
(1)

To calculate the agreement in FERM, a group of 225 Pleiades pixels (15× 15), 9 Spot 6 pixels (3 × 3)
and 9 Sentinel 2 pixels (3 × 3) were averaged to achieve pixel dimension of Landsat images. Using this
reference data, membership of 200 pixels randomly selected from both classified and reference images
were computed to obtain the overall accuracies (OA) of the FCM classifications:

OA =
∑c

i=1 Ai=j

ks
(2)

where ks represents the number of pixels used to generate the FERM.
Moreover, we compared the quality of the FCM results with respect to alternative pixel-based

classification methods. Firstly, we classified the multi-spectral bands of Landsat using the MLC
classifier being the most commonly used supervised classification technique for remote sensing
images [58]. Secondly, we classified the multi-spectral bands of Landsat images using FCM and then
labelled each pixel to the class to which it has the highest membership. It was assumed that hard
output is the highest membership value which is actually computed from the soft output [59–62].
We called this the hardened classification. After classification, post classification comparisons were
applied to detect the changes of the shorelines by superimposing the classification results in GIS.

2.5. Deriving Fuzzy Shoreline

FCM classification derives two raster layers, namely: water and non-water membership images.
Each layer consists of fuzzy regions with fuzzy boundaries. Estimation of the spatial extent of objects
i.e., water, non-water and shoreline, and their representations is related to the interpretation of the
fuzziness of objects [52]. To derive shorelines at the locations where water and non-water objects meet,
we modified the fuzzy-crisp object model based upon Cheng [52]. The two classes (water and non-water)
are spatially disjoint, but their boundary is vaguely defined, whereas their interiors are crisp. Given this
concept, we consider the boundary between water and non-water as fuzzy and form a transition zone
that we call shoreline. To determine the spatial extent of water, non-water and shoreline, it is necessary to
combine class objects from different layers into a single layer. The decision function dwk assigns pixel k
with water membership value µwk to a sub-area of water class based upon the following conditions:

If (µwk > 0.99 ) then (dwk = 1) (3)

which means that the pixels belong to sub-areas water. Threshold 0.99 was set to represent the highest
water membership values indicating the core of water.

If (0.01 < µwk < 0.99) then (dwk = µwk) (4)

This equation classifies pixels as shoreline.

If (µwk < 0.01) then (dwk = 0) (5)

Pixels not belonging to water or shoreline constitute non-water. A threshold of 0.01 represents
the lowest water membership values. This indicates pixels with membership below that threshold
not belong to water or shoreline areas. The results after deriving fuzzy shorelines by applying
Equations (3)–(5) were called as shoreline images.

2.6. Uncertainty Estimation

The uncertainty in class assignment was estimated by a measure of the confusion index CI for
each pixel resulting from FCM classification as follows [63–65]:
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CI = 1−
(

µ1
ik − µ2

ik

)
(6)

If CI approaches 1 then the difference in membership values between the first and the second
highest membership values are small meaning that both membership values are almost equal. Thus, it is
more likely that the pixel defines a fuzzy boundary and the uncertainty of the pixel to belong to the class
with the largest membership is high. If CI approaches 0, however, then the difference in membership
values between the first and the second highest membership values are high and the uncertainty of the
pixel to belong to the class with the largest membership is low.

2.7. Shoreline Change Detection

For establishing the changes over time, shoreline images obtained using Equations (3)–(5) of
the same year were stacked and compared with the stack of shoreline images of the next year with
corresponding seasons. If membership values to water (µwk) of shoreline images within year T1 and T2

are given by G = (g1, g2, .. . . . , gz)
T1 and H = (h1, h2, .. . . . , hz)

T2 , respectively, and z is the number of
shoreline images, a change vector is defined as:

∆CV = H − G =


h1 − g1

h2 − g2

. . . ..
hz − gz

 (7)

Here, ∆CV includes all the change information between two years for a given pixel. The final result
of CVA is an image of vector changes. The shoreline change is defined as the vector difference between
successive time periods and is represented by a vector in a multi-dimensional space. The length of
the change vector indicates the magnitude of change and its direction indicates the nature of the
change [25,66].

2.7.1. Change Magnitude

The change magnitude ‖ ∆CV ‖ was derived by determining the Euclidean distance between
shoreline images as:

‖ ∆CV ‖=
√
(h1 − g1)

2 + (h2 − g2)
2 + ... . . . + (hz − gz)

2 (8)

‖ ∆CV ‖ represents the total membership differences between two years and measures the
intensity of the shoreline change. Two categories of change were identified, namely change and no-change.
A change category was defined when the water membership difference between T1 and T2 is larger
than zero, whereas a no-change category is related to a magnitude equal to zero. A higher change
magnitude corresponds with a large water membership difference between shoreline images in T1 and
T2. When the change magnitude is low, the water membership difference between shoreline images in
T1 and T2 is small.

2.7.2. Change Direction

For all pixels classified as change, we estimated the change directions. Change direction was
determined by evaluating the water membership difference between shoreline images in two successive
years. It quantifies the variation of water membership in each pixel and shows how frequent the
changes have occurred. Change direction estimation started by calculating the number of change
combinations (CC) as:

CC = dp (9)

where d refers to the types of change direction which can be distinguished when comparing the
stack of shoreline images from both years for corresponding seasons and p refers to the number of
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shoreline image pairs. We identified three types of change direction to water: positive change direction
(or in short positive direction), negative change direction (negative direction) and unclear change direction
(unclear direction).

The change vector (CV) showing water membership difference between a pair of shoreline images
in T1 and T2 from corresponding seasons needs to be estimated: (a) if the water membership difference
between pair of shoreline images within years T1 and T2 is less than zero then CV = −1 showing
a decrease of water membership in T2; (b) if the water membership difference is larger than zero then
CV = +1 showing an increase of water membership in T2; (c) if the water membership difference is
equal to zero then CV = 0 showing that the water membership in T1 and T2 were the same. The total
change vector (TCV) values are defined as:

TCV = CV1 + CV2 + . . . . . . + CVz (10)

CV1 refers to (h1 − g1), CV2 refers to (h2 − g2), and CVz refers to (hz − gz). Finally, the change
direction (Chg.dir) categories showing the degree of change direction to water membership were
obtained by grouping the direction values: (a) TCV values from +1 up to +z were grouped as positive
direction; (b) TCV values from −1 up to −z were grouped as negative direction; (c) TCV values equal to
0 showing unclear change directions were classified as unclear direction; and (d) TCV values equal to 0
having water membership differences equal to 0 at all time periods were classified as no-change. Table 3
shows the procedure to determine the change direction categories by using four pairs of image used in
this study.

Based upon these results, the change area of a specific change direction category (positive direction,
negative direction, and unclear direction) and the no-change area were defined as:

Ar(Chg) = Pixk(Chg)× Ar(k) (11)

where Pixk(Chg) is the number of pixels belonging to the area of change and no-change, and Ar(k) is
area of pixel k (30 × 30 m2).

2.7.3. Change Uncertainty

Based upon the change detection results, the change uncertainty of related areas was estimated
by the confusion index CI. If CI of two images for T1 and T2 are given by Q = (q1, q2, . . . .., qz)

T1 and
R = (r1, r2, . . . ., rz)

T2 , respectively, then the change confusion is derived as:

‖ ∆CU ‖=
√
(q1 − r1)

2 + (q2 − r2)
2 + .. . . . + (qz − rz)

2 (12)

A high ‖ ∆CU ‖ value is related to a large difference of confusion indices between images for
T1 and T2, whereas a low change confusion corresponds to a small difference of confusion indices
between images for T1 and T2.
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Table 3. The procedure to estimate change directions of shoreline. It quantifies the variation of water membership in each pixel and shows how frequent the changes
have occurred.

CC
CV

TCV Chg.Dir CC
CV

TCV Chg.Dir
CV1 CV2 CV3 CV4 CV1 CV2 CV3 CV4

1 0 0 0 0 0 No-change 41 0 +1 0 −1 0 Unclear direction
2 +1 +1 +1 +1 +4 Positive direction 42 +1 0 0 −1 0 Unclear direction
3 +1 0 +1 +1 +3 Positive direction 43 0 0 −1 +1 0 Unclear direction
4 0 +1 +1 +1 +3 Positive direction 44 0 −1 0 +1 0 Unclear direction
5 +1 +1 0 +1 +3 Positive direction 45 −1 +1 +1 −1 0 Unclear direction
6 +1 +1 +1 0 +3 Positive direction 46 +1 −1 +1 −1 0 Unclear direction
7 +1 −1 +1 +1 +2 Positive direction 47 +1 −1 −1 +1 0 Unclear direction
8 −1 +1 +1 +1 +2 Positive direction 48 −1 +1 −1 +1 0 Unclear direction
9 +1 +1 −1 +1 +2 Positive direction 49 +1 +1 −1 −1 0 Unclear direction

10 +1 +1 +1 −1 +2 Positive direction 50 −1 −1 +1 +1 0 Unclear direction
11 0 +1 +1 0 +2 Positive direction 51 0 −1 0 0 −1 Negative direction
12 +1 0 +1 0 +2 Positive direction 52 −1 0 0 0 −1 Negative direction
13 +1 0 0 +1 +2 Positive direction 53 0 0 −1 0 −1 Negative direction
14 0 +1 0 +1 +2 Positive direction 54 0 0 0 −1 −1 Negative direction
15 +1 +1 0 0 +2 Positive direction 55 0 +1 −1 −1 −1 Negative direction
16 0 0 +1 +1 +2 Positive direction 56 0 −1 +1 −1 −1 Negative direction
17 +1 0 0 0 +1 Positive direction 57 −1 +1 0 −1 −1 Negative direction
18 0 +1 0 0 +1 Positive direction 58 −1 0 +1 −1 −1 Negative direction
19 0 0 0 +1 +1 Positive direction 59 +1 0 −1 −1 −1 Negative direction
20 0 0 +1 0 +1 Positive direction 60 +1 −1 0 −1 −1 Negative direction
21 0 +1 −1 +1 +1 Positive direction 61 0 −1 −1 +1 −1 Negative direction
22 0 −1 +1 +1 +1 Positive direction 62 −1 −1 +1 0 −1 Negative direction
23 −1 +1 0 +1 +1 Positive direction 63 +1 −1 −1 0 −1 Negative direction
24 −1 0 +1 +1 +1 Positive direction 64 −1 +1 −1 0 −1 Negative direction
25 +1 0 −1 +1 +1 Positive direction 65 −1 −1 0 +1 −1 Negative direction
26 +1 −1 0 +1 +1 Positive direction 66 −1 0 −1 +1 −1 Negative direction
27 +1 0 +1 −1 +1 Positive direction 67 0 0 −1 −1 −2 Negative direction
28 +1 −1 +1 0 +1 Positive direction 68 −1 0 −1 0 −2 Negative direction
29 +1 +1 0 −1 +1 Positive direction 69 0 −1 −1 0 −2 Negative direction
30 +1 +1 −1 0 +1 Positive direction 70 −1 −1 0 0 −2 Negative direction
31 0 +1 +1 −1 +1 Positive direction 71 0 −1 0 −1 −2 Negative direction
32 −1 +1 +1 0 +1 Positive direction 72 −1 0 0 −1 −2 Negative direction
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Table 3. Cont.

CC
CV

TCV Chg.Dir CC
CV

TCV Chg.Dir
CV1 CV2 CV3 CV4 CV1 CV2 CV3 CV4

33 0 +1 −1 0 0 Unclear direction 73 +1 −1 −1 −1 −2 Negative direction
34 0 −1 +1 0 0 Unclear direction 74 −1 +1 −1 −1 −2 Negative direction
35 −1 +1 0 0 0 Unclear direction 75 −1 −1 −1 +1 −2 Negative direction
36 −1 0 +1 0 0 Unclear direction 76 −1 −1 +1 −1 −2 Negative direction
37 +1 0 −1 0 0 Unclear direction 77 0 −1 −1 −1 −3 Negative direction
38 +1 −1 0 0 0 Unclear direction 78 −1 0 −1 −1 −3 Negative direction
39 0 0 +1 −1 0 Unclear direction 79 −1 −1 −1 0 −3 Negative direction
40 −1 0 0 +1 0 Unclear direction 80 −1 −1 0 −1 −3 Negative direction

81 −1 −1 −1 −1 −4 Negative direction

Notes: CV: Change vector (based on Equation (7); CC: Change combinations number (based on Equation (9)); TCV: Total change vector (based on Equation (10)); and Chg.Dir:
Change direction.
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3. Results

3.1. FCM Classification and Accuracy Assessment

Table 4 presents the accuracy assessment of classification results using FCM and alternative
classification methods. The FCM classifier outperformed MLC and the accuracy values of FCM are
generally higher than the hardened classification.

Table 4. Summary of the overall classification accuracy using FCM, MLC and hardened classification.

Classified Images
Overall Accuracy

FCM MLC Hardened Classification

23 May 2013 0.87 0.72 0.86
12 September 2013 0.85 0.76 0.85

14 October 2013 0.86 0.73 0.86
1 December 2013 0.86 0.73 0.84

10 May 2014 0.89 0.78 0.87
15 September 2014 0.90 0.76 0.88

1 October 2014 0.90 0.78 0.88
18 November 2014 0.91 0.79 0.90

29 May 2015 0.84 0.75 0.84
18 September 2015 0.88 0.79 0.87

20 October 2015 0.89 0.79 0.86
21 November 2015 0.89 0.80 0.88

Figure 2 presents an example of FCM outputs, together with MLC and hardened classification.
In the image, MLC overestimated the non-water area shown by the larger area of non-water
(see Figure 2d–f, e.g., grid cells B1 and B2), whereas the hardened classification underestimated
the non-water area (see Figure 2g–i, e.g., grid cells B1 and B2). Both methods failed to distinguish the
gradual transition between water and non-water.

Remote Sens. 2017, 9, x FOR PEER REVIEW  12 of 27 

 

3. Results 

3.1. FCM Classification and Accuracy Assessment 

Table 4 presents the accuracy assessment of classification results using FCM and alternative 
classification methods. The FCM classifier outperformed MLC and the accuracy values of FCM are 
generally higher than the hardened classification. 

Table 4. Summary of the overall classification accuracy using FCM, MLC and hardened classification. 

Classified Images 
Overall Accuracy

FCM MLC Hardened Classification 
23 May 2013 0.87 0.72 0.86 

12 September 2013 0.85 0.76 0.85 
14 October 2013 0.86 0.73 0.86 
1 December 2013 0.86 0.73 0.84 

10 May 2014 0.89 0.78 0.87 
15 September 2014 0.90 0.76 0.88 

1 October 2014 0.90 0.78 0.88 
18 November 2014 0.91 0.79 0.90 

29 May 2015 0.84 0.75 0.84 
18 September 2015 0.88 0.79 0.87 

20 October 2015 0.89 0.79 0.86 
21 November 2015 0.89 0.80 0.88 

Figure 2 presents an example of FCM outputs, together with MLC and hardened classification. 
In the image, MLC overestimated the non-water area shown by the larger area of non-water (see  
Figure 2d–f, e.g., grid cells B1 and B2), whereas the hardened classification underestimated the  
non-water area (see Figure 2g–i, e.g., grid cells B1 and B2). Both methods failed to distinguish the 
gradual transition between water and non-water. 

 
Figure 2. Example of classification results using: FCM (a–c); MLC classifier (d–f); and hardened 
classification (g–i). (a–i) are the detail presentations of yellow rectangle site in the insert map. Hard 
classification resulted from alternative methods are of limited use in identifying the transition zone 
between water and non-water, for example, see grid cells, e.g., B1 and B2. 

Figure 2. Example of classification results using: FCM (a–c); MLC classifier (d–f); and hardened
classification (g–i). (a–i) are the detail presentations of yellow rectangle site in the insert map.
Hard classification resulted from alternative methods are of limited use in identifying the transition
zone between water and non-water, for example, see grid cells, e.g., B1 and B2.
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The results of FCM classification are presented in Figure 3 with the values ranging from 0 to 1
for both membership images of water (Figure 3a–c) and non-water (Figure 3d–f). Areas with higher
water membership values were located for example in marine areas, fishponds, and water-covered
agricultural areas (Figure 3a, e.g., grid cell A2). In Figure 3d, higher non-water membership pixels are
located near settlements adjacent to the shorelines, and mangrove forests (Figure 3d, e.g., grid cells
B2 and C3).
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Figure 3. FCM results show the membership of: water (a–c); and non-water (d–f). To derive shoreline
position, we combined both membership images using fuzzy-crisp object model (g–i). Blue pixels
indicate core of water, orange pixels represent the core of non-water and shoreline is represented by light
green pixels.

3.2. Fuzzy Shoreline and Uncertainty Estimation

Figures 3g–i and 4a,d show the results of the fuzzy-crisp objects model to derive shorelines.
Figure 4b,e presents the CI. Dark pixels with CI close to 0 indicate the areas classified as lower
uncertainty (Figure 4e, e.g., grid cell A1), whereas brighter pixels with confusion index close to 1
indicate areas classified as the fuzzy boundary with higher uncertainty (Figure 4e, e.g., grid cell B2).
Figure 4c,f shows shorelines images with fuzziness represented by CI values. These ambiguous areas
indicate shoreline positions represented by pixels in grey shades (Figure 4f, grid cells e.g., A2 and B2).
The width of these shorelines is determined by natural conditions of the coastal areas, for example,
a wider shoreline is more likely to be found in a muddy coastal area or at a gently sloping beach, whereas
a narrow shoreline is usually found along a steeper slope beach and coastal area with embankment and
other man-made structures.
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Figure 4. The representation of fuzzy-crisp object model: (a) the core of water and non-water objects,
and shorelines; (b) confusion index values considered for the quantification of classification uncertainty;
and (c) shoreline image with fuzziness represented by confusion index. Detailed presentation of
shorelines in red rectangle sites are displayed in (d–f).

3.3. Shoreline Change Detection

3.3.1. Change Magnitude and Change Uncertainty

The change magnitude and the change and no-change categories of shoreline are displayed in
Figure 5. Low change magnitude values correspond to a small water membership difference between
shoreline images at T1 and T2. They cover marine areas (Figure 5a, e.g., grid cells A2 and B3) and
a relatively undisturbed coastal land (Figure 5c e.g., grid cells D1 and D2). In addition, high change
magnitude values correspond to a large water membership difference. Those pixels cover muddy areas
(Figure 5a,c, e.g., grid cells C1 and D1) and coastal land which was highly-influenced by tidal floods
(Figure 5b,d, e.g., grid cells B2 and B3).
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Figure 5. The magnitude of shoreline change during: 2013–2014 (a,b); and 2014–2015 (c,d).
The magnitude values vary from high magnitude represented by dark blue pixels up to low magnitude
represented by light blue pixels, whereas light yellow pixels show the no-change areas.
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The fuzziness of shoreline changes is presented in Figure 6. Low change confusion correspond to
small CI differences between images in T1 and T2. This indicates a low uncertainty that the changes
have occurred as can be seen in Figure 6a,c, e.g., grid cells A1, A2 and B1. High values are associated
with large CI differences and indicate a high uncertainty that the changes have occurred (Figure 6b,d,
e.g., grid cells B1, B2 and B3).
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Figure 6. The fuzziness of the shoreline is represented by change confusion values in the periods:
2013–2014 (a,b); and 2014–2015 (c,d). The change confusion values vary from high values represented
by dark orange pixels up to low values represented by light orange pixels, whereas light yellow pixels
show the no-change areas.

3.3.2. Change Direction

The representation of change direction of shoreline showing the variation of water membership in
each pixel can be seen in Figure 7. Positive directions to water membership correspond to the increase
of water membership at time T2 (Figure 7a, e.g., grid cells A2, B1, and C1). On the contrary, negative
directions to water membership were associated with the decrease of water membership values at time T2

(see Figure 7d, e.g., grid cells A2 and B1). The no-change category indicates an undisturbed environment
(see Figure 7a, e.g., grid cell B1), whereas the unclear direction category indicates an ambiguous condition
since the changes occurred without an obvious trend (see Figure 7b, e.g., grid cells A2 and C1).

The change areas for each category are presented in Table 5. A positive direction to water covers
an area of approximately 1828 ha in the period 2013–2014 and 1120 ha in the period 2014–2015.
A negative direction has occurred for 920 ha and 1635 ha in the period 2013–2014 and in the period
2014–2015, respectively. Unclear direction category presented as pink pixels can be seen in Figure 7c,
e.g., grid cells A2 and C1 covering an area of 616 and 528 ha in 2013–2014 and in 2014–2015, respectively.
No-change direction shows a stable area which is mostly located at the sea or inundated fishponds
represented by light yellow color (see Figure 7a,d, e.g., grid cells A1 and B1) covering an area of 1319
and 1403 ha in the period 2013–2014 and in the period 2014–2015, respectively.

Table 5. Change area (in ha) for each change category in the period of 2013–2014 and 2014–2015.

Change Category 2013–2014 2014–2015

Positive direction 1828 1120
Negative direction 920 1635
Unclear direction 616 528

No-change 1319 1403
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represented by shades of green, whereas no-change category is depicted by light yellow color.  

Figure 7. The representation of shoreline change direction: in the period 2013–2014 (a,b); and in the
period 2014–2015 (c,d). Darker color pixels show a higher frequency of change to a certain direction.
Shades of violet pixels depict a positive direction to water membership while shades of green pixels
illustrate a negative direction to water membership. Figures in the second row show the magnitude
of each change direction category in the period 2013–2014 (e,f); and in the period 2014–2015 (g,h).
Darker color pixels represent a higher change magnitude while lighter color pixels show a lower
change magnitude.

3.3.3. Change Confusion

The intensity of the change confusion was identified for each change direction category in the
period 2013–2014 and in the period 2014–2015, respectively (Figure 8a,c). Three change confusion
values were identified including positive direction, negative direction and unclear direction.
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Figure 8. Total intensity of confusion indices for each change direction category: in the period
2013–2014 (a,b); and in the period 2014–2015 (c,d). Shades of orange pixels represent change confusion
values for the area with positive direction, and shades of grey pixels show change confusion values
for the area with negative direction. The change confusion values for the unclear direction category are
represented by shades of green, whereas no-change category is depicted by light yellow color.
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3.3.4. Comparison with Alternative Change Detection Methods

Figures 9 and 10 show the change detection of shoreline using post classification comparison of
MLC and hardened classification, respectively. Both MLC and hardened classification present shoreline
as a single line. The changes of this single shoreline have occurred due to the changes of water and
non-water area. Binary images from two dates T1 and T2 were superimposed in GIS and four types
of change were identified, namely: non-water to water, water to non-water, water to water and non-water
to non-water. Figures 9a–c and 10a–c show the changes of shoreline in three consecutive dates in 2013,
whereas Figure 9d,e and Figure 10d,e present two examples of shoreline changes from 2013 to 2014
(Figures 9d and 10d) and from 2014 to 2015 (Figures 9e and 10e).
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Figure 9. Change detection of shorelines using post classification comparison of MLC results; (a–c) the
change of shorelines in three consecutive dates in 2013; (d) shoreline changes from 2013 to 2014;
and (e) shoreline changes from 2014 to 2015. Blue polygons show the changes of non-water to water and
red polygons display the changes from water to non-water. No-change areas of water and non-water are
represented by white and black polygons, respectively.
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changes of shoreline in three consecutive dates in 2013; (d) shoreline changes from 2013 to 2014;
and (e) from 2014 to 2015.
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Figure 11 shows the comparison between the proposed method and the alternative method at
the selected study area. In this example, both methods agree on the results of change detection as can
be seen in Figure 11, e.g., grid cells B3 and C2. From CVA results (Figure 11c,d), the area in yellow
polygons shows a negative change to water membership with high change magnitudes as shown in
Figure 11e,f. The negative change to water membership means a change towards non-water. Similarly,
post classification results also denote that these yellow polygon sites experienced a change from water
to non-water without further information on the intensity of the change (Figure 11a,b).
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Figure 11. An example of comparison results between post classification comparison and CVA method.
Both methods agree on change results of the area in yellow polygons that show a change from water to
non-water (a,b) which equal to negative direction (c,d) with high change magnitude (e,f).

3.3.5. Multi-Year Pattern of Water Membership Changes

Each pixel from the resulting change vectors provides information regarding its change direction
and magnitude. Each combination represents specific types of change processes that may occur in
the field and shows a multi-year pattern of water membership changes over the observation periods.
Four combinations of change and their related processes are interpreted as follows:

(a) High change direction and high change magnitude

The areas with high change direction and high change magnitude values are observed for both
positive and negative directions. Both conditions indicate a continuous change of an area to a certain
direction with a relatively large intensity. A consistency to positive direction indicates a persistence of
enhanced water influence as those pixels show an increase of water membership in multi-temporal
images (see Figure 12a–d). This probably corresponds to the land subsidence and coastal inundation.
As the land subsides and the water level increases, some mangrove trees located closely to the sea are
falling down. The RGB 542 of Landsat images in Figure 12e,f depict these changes indicated by the
decrease of vegetation cover between 2013 and 2015.

Figure 13 presents areas characterized by continuously decreasing water membership in
multi-temporal images categorized as negative direction (Figure 13a,b) with high change magnitude
(Figure 13c,d). This may indicate a success in shoreline protection scheme that caused sediment
accretion to occur allowing mangroves to grow as can be seen from the RGB 542 of Landsat images in
white-dashed ellipses in Figure 13e–h.
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Figure 13. Water membership changes showing a continuous change to negative direction (see dark green
pixels in black-dashed circles in (a,b)) with high change magnitude (see dark red pixels in black-dashed
circle in (c,d)). RGB 542 of Landsat images show an increase of sediment and mangrove coverage from
2013 to 2015 (see white-dashed circle in (e–h)).
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(b) Low change direction and high change magnitude

This category indicates an abrupt change which may be influenced by random events. Figure 14b
shows a low positive direction with high change magnitude (Figure 14d) which may result from coastal
flooding triggered by spring tides, extreme waves and winds. Since the magnitude of the changes is
high and the change is sudden, this type of change may indicate a higher risk. Images made available
by Google Earth from 2013 to 2015 in Figure 14e–h show the decrease of mangrove coverage. In fact,
mangroves can act as sediment trap and can reduce the energy of the high waves, therefore, when the
mangroves disappear, the threat from tidal floods increases. Figure 15a,b shows the embankment which
protects settlements from high tide; however, during an extreme event for example when a higher tide
combines with an extreme wind, the water level may increase and overflow this embankment.
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made available by Google Earth (e–h) show the decrease of mangrove coverage.
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(c) High change direction and low change magnitude

A gradual, continuous increase of wet conditions was observed by an increase in water
membership with low magnitude values. This type of change was categorized as positive direction
which could be due to cyclical tides and coastal processes, for example flooded land (Figure 16a,c),
and water turbidity (Figure 16b,d). Even though the magnitude of the change is low, the changes occur
frequently. Hence, this type of change may give a higher risk. In a longer observation, if the areas
persistently become wetter, this location may have a risk of coastal inundation as well.
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Figure 16. Water membership changes showing a higher change to positive direction (see dark violet
pixels in black rectangle sites in (a,b)) with low change magnitude values (see dark blue pixels in black
rectangle sites in (c,d)).

(d) Low change direction and low change magnitude

This type of change probably indicates an undisturbed environment with a low change magnitude
(see black-dashed circle sites in Figure 17c,d). This category mainly occurs in water areas, probably due
to the changes in water turbidity (see black-dashed circle sites in Figure 17a,b). In addition, this type
of change was observed in small patches of the coastal land probably resulting from changes in soil
moisture (see black rectangle sites in Figure 17b,d).
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2013-2014 (a); and to negative direction in the period 2014-2015 (b). The change magnitude values were
low in both periods (c,d). This type of change was also observed as small patches of the coastal land
(see black rectangle sites in (b,d)).

4. Discussion

In this study, the dynamics of fuzzy shorelines have been assessed using fuzzy classification and
a raster-based change detection technique. FCM classification was used to discriminate the land and
water classes and to estimate their memberships. FCM is a well-known clustering method which is
less dependent on the initial state of clustering [62] and capable of describing phenomena such as
water and non-water which is changing gradually. Instead of FCM, there are various ways to derive
a fuzzy classification for example from fuzzy maximum likelihood classification [59], and artificial
neural network fuzzy classification [67]. Membership values obtained by applying FCM are used to
deal with the uncertain information on the position of fuzzy shorelines. In FCM classification, we set
c = 2 since we were interested in identifying the boundary between water and non-water and because
both classes give the largest spectral differences in image [16,68]. Finding the suitable number of
clusters in the beginning of the classification could be difficult. A priori knowledge regarding the
study area, for example by observing an aerial photo, can be used to define the suitable number of
clusters [69,70]. For other situations, by assessing the homogeneity measure using a posteriori indicators,
the number of clusters could be determined using entropy and non-fuzziness index [70], exponential
cluster validity [71], and spatial fuzzy clustering [72].

Shorelines and their changes were presented as fuzzy areas. The fuzzy-crisp object model in this
study was successful in identifying the extent of shoreline positions as the transition zone between
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water and non-water. Setting the threshold to the highest (0.99) and the lowest (0.01) memberships are
intended to find the core of water and non-water, respectively. The uncertainty addressed in this research
corresponds to the existential and extensional uncertainty of shoreline objects as has been mentioned
by Molenaar and Cheng [73] and Cheng [52]. Existential uncertainty expresses the uncertainty of the
existence of shoreline in reality. It refers to the possibility of existence of a shoreline to be detected
on an image. Extensional uncertainty implies that the area indicated as shoreline can be determined
with limited certainty, for example with boundaries that reflect the transition zone between water and
non-water. Moreover, when the values of an adjacent grid are very similar, the zones of confusion
divide regions indicating the presence of gradual transitions. The extensional uncertainty in shoreline
identification includes differences in applied threshold values when defining the core of water and
non-water, the applied shoreline definition, tides condition during image acquisition, time series of
observation, and the nature of the beaches (such as flat or steep slope beaches, and muddy or rocky
beaches). In addition, the changed areas of the fuzzy shoreline are thus associated with the distribution
of changed confusion indices. The change uncertainty represented by changed confusion indices
shows the degree of uncertainty of the changes that have occurred. It can be seen from the results
that a location having a higher change magnitude, has a higher change confusion value as well.
It corresponds to the higher differences of both water memberships and confusion indices between
corresponding images in T1 and T2. Explicit handling of uncertainty by addressing the shoreline as
a transition zone allows decision makers and planners to include this uncertainty in spatial planning.
Moreover, it visualizes not only the changes in shoreline, but also the uncertainty of these changes for
every location, thereby providing a better base for a debate on the combined effects of land subsidence
and sea level rise in this area.

The change of shoreline was explained in terms of change magnitude and change direction using
CVA. Information provided by CVA allows us to see the trend of the fluctuating shoreline over time,
whereas the change detection results of the alternative method could provide only “from-to” change
information and the detail of subtle within-class changes was lost because it only compared images
from two dates [24,25]. In our previous study, we used post classification comparison because we were
interested in observing the changes of shoreline over a longer period from 1994 up to 2015 [16]. Given
different methods have been implemented in monitoring the change position of shoreline, both studies
confirmed that shoreline changes associated with coastal inundation have occurred in this study area.

The analysis of information provided by the change magnitude and direction reveals that each
change combination represents one specific change process type. The processes could vary depending
on the characteristic of the coastal areas. For example, shorelines could change due to floods triggered
by land subsidence, and floods caused by seasonal variation, abrupt shoreline changes due to extreme
tides and waves, and the changes of water turbidity and soil moisture triggered by daily weather
events. These specific type processes were explained on the basis of the analysis of four images for
each observation period. In fact, the number of images could easily be extended to more than four
images. The seasonal variation of shorelines and other information regarding whether the changes
would lead to a permanent coastal inundation could not fully be assessed in this study because only
four observations each year were compared. This shows that the change vector analysis is sensitive
to the length of the stacked period and the number of images stacked over that period, as is also
confirmed by Lambin and Strahler [25].

To have images captured during similar tides and with corresponding seasons for each pair is
important, hence shorelines can be compared equally. Images captured during wet seasons gave more
uncertainty to the classification results since the rain affected the wetness of soil surfaces, thus the
classified images produced false impression of higher flooding. Therefore, to reduce the uncertainty
due to seasonal influence, images captured during dry season should be preferred. Furthermore,
the uncertainty of the results was also influenced by tide differences. Images captured during high
tides and low tides produced different positions of the boundary between water and non-water. Hence,
this increased the uncertainty of shoreline position as well, because shoreline by its definition is
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an intersection of coastal land and water surface. To have images acquired at exactly the same tide
level is hardly possible. Therefore, all images were acquired at the low tides with negligible differences.
We only considered astronomical tide level assuming it was more influential than meteorological
factors, as confirmed by Pugh [74]. Astronomical and meteorological factors have different influences
on different slope conditions and the magnitude of the influences may become larger if the slope is
gentler. However, if there would be any remaining small influence of meteorological factors, it would
be accounted for by the use of fuzzy classification in deriving fuzzy shoreline.

In the accuracy assessment, soft reference data were generated from various higher resolution
images. To obtain the required image resolution, resampling and aggregating have been implemented.
Resampling of image and aggregation of pixel values were potential sources of error but were ignored
in this work since the error was likely to be very small [49,75]. Furthermore, using a soft classifier
to generate soft reference data is more likely to reduce the uncertainty due to the vagueness in class
definition and mixed pixel problems. Hence, the finer resolution dataset was not assumed to be pure
and no information was lost due to the hardening of the soft classification [60,61,76]. This could be
an explanation for the higher accuracies obtained by using the proposed classification in comparison
with alternative methods, as confirmed by Zhang and Foody [61] and Chawla [75]. Furthermore,
although the differences of the accuracy results were only small, the advantage of a fuzzy approach is
not only in the improved accuracy of the shoreline, but also in the fact that it makes clear what the
margins of uncertainty around the shoreline are, which provides a better basis for decision.

Analysis of the shoreline changes in the northern coastal area of Central Java shows the changes
of shoreline positions from 2013 to 2015. This could be related to the processes that shape shorelines
determined by the interaction of several factors, including: (a) the change of sea-level; (b) the amount
of sediment supplied to the beach by rivers; (c) the movement of the sediment by marine processes; and
(d) the role of waves, currents, tides and winds in moving the sediment [77]. Furthermore, sediment
transport is not constant, and it is constantly subject to change. The alteration of sediment transport
can come from changes in water flow, water level, weather events and human influence. In addition,
previous studies have mentioned that this location has suffered from the changing of shorelines for
more than 20 years due to coastal inundation accelerated by, for example, land subsidence, sea level
rise, seaport development, and ground water extraction [16,20,38]. Many attempts have been made to
combat coastal inundation and erosion along the 1.3 km coast in Demak. Elevated roads, raised floor
of the houses, breakwater, and mangrove planting have been applied. In 2013, a Dutch–Indonesian
consortium agreed to start a pilot project “Building with Nature” building a permeable dam of natural
material called “hybrid engineering” [78,79]. This development could be one reason for the increase
of negative changes to water membership in the period of 2014–2015. Hybrid engineering is one type
of coastal protection combining technical and ecosystem-based solutions referred to as sediment
traps [79]. Netherlands-Water-Partnership [78] reported that after a year, new sediment layers were
deposited at the surrounding areas.

5. Conclusions

In this article, we present a method to identify shoreline positions and their changes as a fuzzy
area including a measure of change confusion. Shoreline changes could be detected, and the method
provided information regarding the change magnitude and the trend of water membership in each
pixel. Our results reveal that this information represents specific type of change processes showing
multi-year patterns of water membership changes over time. These include: (a) high change direction
and high change magnitude with a consistent positive change direction, which probably corresponds to
land subsidence and coastal inundation, while a consistent negative direction may indicate a success in
shoreline protection scheme; (b) low change direction and high change magnitude indicates an abrupt
change which may be influenced by random events, such as flooding triggered by spring tides,
extreme waves and winds; (c) high change direction and low change magnitude, which, if in positive
direction, could be due to cyclical tides and coastal processes, for example flooded land; and (d) low
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change direction and low change magnitude probably indicates an undisturbed environment, such as
water areas with changes in water turbidity and coastal land with changes in soil moisture. Finally,
we conclude that the proposed method can assess changes in a shoreline by taking into account that it
is a fuzzy boundary.

The change area estimation, change magnitude and direction of the shorelines may support local
government and stakeholders in monitoring the change of fuzzy shorelines. Combining information
given by this research with other information such as distribution of population could help to determine
priority locations prioritized in disaster preparedness and response. To include digital elevation model
in the processing phase is important for further research, because it allows the change analysis to focus
more on the area affected by tidal floods. We further realized that astronomical and meteorological
factors have different influences on different slope conditions. Observation data regarding the wave
run-up and other incident wave conditions in the study area were not available for each observation
period. This information may be collected and used in a near-shore wave model. This might be
included in future studies as well.
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