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Abstract: Forest measurement for purposes like harvesting planning, biomass estimation and
mitigating climate change through carbon capture by forests call for increasingly frequent forest
measurement campaigns that need to balance cost with accuracy and precision. Often this implies
the use of remote sensing based measurement methods. For any remote-sensing based methods
to be accurate, they must be validated against field data. We present a method that combines
field measurements with two layers of remote sensing data: sampling of forests by airborne laser
scanning (LiDAR) and Landsat imagery. The Bayesian model-based framework presented here is
called Lidar-Assisted Multi-source Programme—or LAMP—for Above Ground Biomass estimation.
The method has two variants: LAMP2 which splits the biomass estimation task into two separate
stages: forest type stratification from Landsat imagery and mean biomass density estimation of each
forest type by LiDAR models calibrated on field plots. LAMP3, on the other hand, estimates first the
biomass on a LiDAR sample using models calibrated with field plots and then uses these LiDAR-based
models to generate biomass density estimates on thousands of surrogate plots, with which a satellite
image based model is calibrated and subsequently used to estimate biomass density on the entire
forest area. Both LAMP methods have been applied to a 2 million hectare area in Southern Nepal,
the Terai Arc Landscape or TAL to calculate the emission Reference Levels (RLs) that are required for
the UN REDD+ program that was accepted as part of the Paris Climate Agreement. The uncertainty of
these estimates is studied with error variance estimation, cross-validation and Monte Carlo simulation.
The relative accuracy of activity data at pixel level was found to be 14 per cent at 95 per cent confidence
level and the root mean squared error of biomass estimates to be between 35 and 39 per cent at
1 ha resolution.
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1. Introduction

Traditionally large area forest inventory has been carried out by systematically designed
field campaigns [1,2]. They result in district level and national forest inventories (NFI). Recently,
Light Detection and Ranging (LiDAR) data is often used to improve the accuracy of the forest inventory
parameter estimation in such campaigns. Estimation approaches vary from design-based to model
assisted and model-based estimates. Design-based estimates establish a probabilistic sampling design
that can be proven to be asymptotically un-biased when the number of plots increases. Typical such
designs are systematic, simply random and clustered sampling designs. Model assisted sampling
designs also establish an unbiased estimator but instead of direct probability sampling, a model can
be used to create a sample with uneven selection probabilities. Popular model assisted sampling
designs are two-phased sampling designs and designs that rely on a linear model based on some
auxiliary variables. In all these cases, mean and variance estimators can be explicitly constructed [3].
Model-assisted estimation is a further extension of such methodologies where multiple different
sources, such as field plots and LiDAR sampling, can be combined for producing unbiased estimates
of forest parameters, as in [4].

In model-based estimation, the viewpoint changes from using models to assist sampling based
estimation into using a model that is based on some auxiliary variables, such as LiDAR metrics derived
from the point cloud, as the primary source of information. Field plots no longer provide the data for
the estimates but instead they become a teaching set for the model so that model parameters can be
estimated. This latter paradigm is at the heart of Bayesian estimation theory, where the model is used
to construct a prior estimator, to which field samples are coupled via a likelihood function to produce
the posterior estimate that is a weighted average of the model forecast and the field plots, with weights
inversely proportional to a prior estimate of error in the model and in the measurements, respectively.
As soon as the model chosen becomes non-linear, it is very challenging to provide explicit mean and
variance estimators. Instead, the burden of proof of the unbiased nature of the estimator is shifted to
the calibration plot set that can be sampled based on a design or with a model assisted design. If this is
the case, then asymptotic unbiasedness is tested by cross-validation methods, such as Leave-One-Out
(LOO). Some recent Bayesian studies of forest inventory that have adopted this approach include [5–7].

Another important factor in forest inventory has been the goal of the inventory. In the National
Forest Inventory context, the goal is accurate and precise estimates of total tree population statistics for
large areas. By implication these estimates should then have small systematic error and small standard
deviation. For operational forest planning, the primary need is accurate and precise estimates on much
smaller areas, such as forest stands. But it is also possible to bridge the two goals and produce accurate
and precise estimates along a range of scales from forest stands to entire countries or provinces. In
this case model-based estimation is in practice the only choice, because the cost of dense field surveys
is prohibitive.

In [4] the authors studied model-assisted approach to estimation and inference when using
LiDAR as a tool to inventory Above Ground Biomass (AGB). The article features a methodological
presentation of the estimators of total biomass and biomass per hectare as well as variance estimators.
In [8] the authors concluded that the most urgent problem facing LiDAR-assisted estimation based
on systematic sampling is the very large overestimation of estimator variance by assuming a simple
random sampling design. In [9] the authors observed that standard errors were consistently lower for
the LiDAR-assisted designs than those based purely on sample plots. Results shown in [10] indicate
that an ALS-based survey produces valid inference under design-based and model-based frameworks.
The authors of [11] determined whether profiling LiDAR data can be used to improve the precision
of an existing ground survey. The preliminary results show that use of model-dependent, two-phase
approach can improve the precision of the AGB estimate when considering smaller geographical areas,
i.e., smaller political units (∼1000 km2). In another study, it was discovered that the model precision
was improved when using a pixel-based regression model estimated from scanner data rather than
using the models estimated from profiler data [12].
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However, if we hope to measure forest biomass for the purpose of measuring the carbon captured
in tropical forests and for their potential in mitigating climate change, a much finer spatial resolution
is needed to be able to address and quantify forest degradation at a local level. A few attempts have
been made to produce global or national biomass maps based on satellite data alone [13–16] but use of
satellite data without local ground truth they may contain large systematic errors [17]. For this reason,
combining several data sets that feature both field plots, satellite imagery and recently also Airborne
Laser Scanning (ALS or LiDAR) have become attractive. The articles [18–21] summarize many recent
efforts in this direction. Even national scale biomass maps have been produced [22–26]. Other studies
on using LiDAR sampling to assist in tropical biomass estimation include [27,28]. Also other remote
sensing sources have been proposed for biomass estimates, such as SAR interferometry [29,30].
At the same time, several new guidelines that cover several methodologies have been assembled [31].
However, in most cases of such estimation processes that involve at least three spatial scales and
two hierarchical steps of inference, comprehensive and reliable uncertainty analyses have been
difficult to create, even if several authors have made significant steps in this direction [13,32,33].
A remarkably comprehensive study of estimation errors of LiDAR-based estimation of biomass, applied
to both tropical and boreal forests, and across multiple spatial scales, is presented in articles [34,35].
The analysis presented in them of LiDAR-based model uncertainty starts from tree-level biomass
estimation errors and scales up to millions of hectares. Some of the principal findings of these two
studies are that tree-level errors only dominate the error budget of the estimation at the very local level
of trees. From plot level upwards, the error budget is first dominated by model residual error up to a
scale of 380 m, or some 15 ha, and from that scale onwards by model parameter estimation errors [35].

A recent study produced theoretical variance and mean error estimators for many model-based
forest measurement approaches that involve hierarchical model building in cases where both field
samples, samples of LiDAR-scanned areas and Landsat imagery are present [36]. This paper features
a Bayesian framework for forest estimation, as does the current article, but the formulas estimating
prediction variance are classical ones. When studying the uncertainty of model-based forest maps
at different scales, one faces two principal approaches: validation by independent samples that may
be probabilistic, or error propagation. The latter can be done in cases where models are linear orcan
be linearized by classical variance estimation, whereas in the case of more complex and non-linear
models the prevailing approach is Monte Carlo simulation.

In [34], where the study site was a tropical forest, relative prediction uncertainty was relatively
high, staying at 20% level at 1 ha resolution. While this is partly due to the small size of validation
plots, it is also to some extent caused by the simple two-parameter LiDAR-based model used in the
study. Non-linear models with many more covariates, such as the ones discussed in this article, have
mutually dependent covariate error distributions. If a linear variance analysis is properly applied to
them, e.g., by linearizing model nonlinearities first by Taylor series, they typically yield very wide
confidence intervals that do not reflect the true uncertainty of the estimates. Monte Carlo simulation
and cross-validation therefore are often the most appropriate tools available to test the uncertainty of
nonlinear multivariate models.

As discussed in [37], rational decision related to the maintenance and enhancement of the
multiple functions, such as carbon storage, provided by the forests needs to be based on objective,
reliable information. Integration of mapping and inventory provides an effective framework for the
support of forest management [38]. The research reported in this article is an attempt to combine
high spatial resolution with good overall accuracy for the purpose of mitigating climate change under
the auspices of the United Nations programme for reducing emissions from deforestation and forest
degradation, the so-called REDD+ scheme that is part of the Paris Climate Agreement and a number of
earlier climate summits. REDD+ explicitly requires that the uncertainty of of forest inventory results
is estimated and this is also the goal in the current research effort. The family of methods proposed
here combines several data sources, namely a field plot campaign, sampling by LiDAR and optical
satellite imagery.
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Principles of REDD+ and Monitoring, Reporting and Verification (MRV)

A combination of remote sensing and ground-based forest carbon inventory approaches is
necessary to design and implement an efficient REDD+ MRV system. There are two principal methods
for accounting annual GHG emissions and removals in forest areas. One of them is the gain-loss
method relying on activity data monitoring and emission/removal factors. Activity data monitoring is
based on land use and land cover change analysis by activities over a reference period. Emission factors
refer to emissions of GHGs per unit of activity, and removal factors to emission removals of GHGs per
unit of activity. The other method is the stock change method which is used to estimate net annual
emissions or removals from the difference in total carbon stocks at two points in time. National Forest
Inventory (NFI) permanent sample plot measurements including the relevant carbon pools provide a
basis for these kinds of difference analysis.

IPCC describes methods at three levels of detail, called tiers [39]. Tier 1 is considered as the default
method, and are often based on global datasets to acquire activity data and emission and removal
factors by broad forest types. Tier 2 usually uses the same mathematical structure as Tier 1, but the
countries apply data specific to their national circumstances. These methods require conducting field
inventory campaigns to estimate the values required if they are not available from historical archives.
Tier 3 methods are generally more complex, normally involving modelling and higher resolution land
use and land-use change data. IPCC expects that higher Tier (Tier 2 or Tier 3) methods are targeted
unless the demanded efforts exceed the overall benefits that can be achieved.

Measuring, Reporting and Verification (MRV) of carbon capture in forests—whether tropical,
sub-tropical, temperate or boreal—calls for forest biomass estimation methods that need to be accurate,
precise and affordable for REDD+ to become an effective vehicle in helping humankind to mitigate
climate change. High accuracy means minimal error in estimates, so that tons of carbon can be
reliably converted to financial rewards. Moreover, it is highly desirable to have high spatial resolution
that is needed to target climate mitigation efforts so that performance can be rewarded even at a
local level. Affordability allows frequent, for example biennial, updating of change in biomass and
correspondingly frequent compensation for performance. A family of methods with the generic title of
LiDAR-Assisted Multi-source Program (LAMP), have been proposed that fulfil these requirements.
LAMP methods combine systematic field measurement campaigns, airborne LiDAR sampling and
geographic extension of both of these by satellite imagery.

2. Materials and Methods

In this study we generated a Reference Level (RL) and a biomass map at 1 hectare-scale for the
sub-national region Terai Arc Landscape (TAL) of Nepal. This section introduces the study area and
the data sources used, in particular field sample plots, LiDAR scanning data and Landsat satellite
imagery. Two methods (LAMP2 and LAMP3) are described that were used to calculate the RL and the
biomass map, respectively.

2.1. LiDAR-Assisted Multisource Programme

The family of methods introduced here, called LAMP for LiDAR-Assisted Multi-source Program
for MRV, a term coined by Eric Dinerstein and George Powell, then with WWF US, seeks to fulfil the
three requirements of efficiency, effectiveness and affordability [40]. It achieves this by combining
an initial, relatively small field campaign with also an initial affordable Airborne Laser Scanning
(ALS or LiDAR) sampling campaign with spatial extension and follow-up measurement based on
satellite imagery. Also calculating the past time series of Reference Levels (hereafter RL’s) will be based
on satellite imagery, typically Landsat imagery.

In order to ensure that the three different kinds of materials used to produce RL estimates keep
their accuracy, they are incorporated in a unified statistical framework. This framework shares some
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features of both design-based, model-assisted and model-based spatial statistical paradigms [2,3,41,42],
but on the bottom line it is model-based.

Measurements used in LAMP are first initiated with a statistical sampling of blocks or strips
to be flown with LiDAR, typically covering between one and five percent of the total forest area.
The sampling may be weighted to ensure that all significant forest types are covered by LiDAR.
After LiDAR blocks have been assigned, an either systematic, simple random or clustered random
sampling of field plots is conducted on the blocks. These sample plots are used to calibrate a Bayesian
model of AGB that will be used to estimate AGB from LiDAR metrics.

After AGB estimates are produced on blocks of high spatial resolution (e.g., 20 m by 20 m),
LiDAR blocks will further be sampled in simple random sampling for 1 ha sample areas or as surrogate
plots that will be used to contribute to the estimation of RL’s from satellite data as the teaching set
to replace real field plots. The 1 ha size of these sample areas was chosen as a compromise between
observed LAMP model noise and desired spatial resolution that targets decision making at areas that
can be regarded as forest stands. In other conditions, such as in Finnish boreal forests, forest stands are
typically of 1 hectar size. A similar choice of finest scale was also made in a recent study of biomass
mapping across multiple scales in [35]. AGB estimates on these sample areas are aggregated from the
AGB values on the LiDAR estimation grid. The size of the sample areas can be chosen to correspond
to the size of the 1 ha primary estimation units of the AGB map that are calculated on a 100 m by
100 m grid.

At this point LAMP methods branch at a junction into LAMP2, for Tier 2 level RLs, and LAMP3
for Tier 3 level RLs with a very fine spatial resolution. In LAMP2 methods, analysis of satellite images
is used to stratify the forest into forest types and two forest condition classes for each forest type:
intact and degraded. The areas covered by each stratum are used as Activity Data, and Emission
Factors are calculated as AGB averages of sample areas that fall into each stratum. Other carbon pools
are modelled by empirical functions from AGB values. With LAMP2, RLs can be calculated at district
level. A diagrammatic overview of the LAMP2 algorithm is presented in Appendix A.

In LAMP3, both Activity Data and Emission Factors are deduced directly from AGB estimates on
the chosen estimation units for the satellite model that is a Bayesian model of the same kind as that
used for LiDAR based estimates. Circular 1 ha surrogate plots are used as calibration plots for this
model. In LAMP3, Emission Factors are assigned at the level of primary estimation units, so they can
vary even at 1 hectare spatial scale. A particular challenge with LAMP3 is the complex dependence
of satellite image band values of optical satellites on imaging conditions, season and time. For this
reason, satellite images must be carefully mosaicked before LAMP3 can be applied.

In the study reported in the remainder of this article, both kinds of LAMP methods are described
in the section Materials and Methods, along with the description of their application in the TAL
jurisdiction in Southern Nepal. Table 1 presents a step-by-step overview of both methods, indicating
also the sections where the two methods differ, with reference to the section below where each step is
described in more detail.

LAMP2 was used for comprehensive analysis and calculation of RLs for the whole TAL region
over a twelve year period. LAMP3 was used only for producing high resolution AGB maps for a single
year. A series of subsequent analyses, including several validation field campaigns, cross-validation
studies and Monte Carlo simulation of error accumulation were conducted to verify the accuracy of
the estimation processes and they are reported in the last section of Results to provide the uncertainty
analysis of especially the LAMP2 method. A summary of this process and the resulting Reference
Level analysis has been reported in [40] where much technical detail was omitted because of page
restrictions. An application of LAMP towards analyzing the dependence of AGB estimates on field
plot distance from roads in TAL have been reported in [43].
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Table 1. Overview of LiDAR-Assisted Multi-source Program (LAMP)2 and LAMP3 algorithms.

Material: Section

LiDAR: LiDAR data (5% coverage) 2.3
Field data: Vegetation plots (738 plots of 500 m2 within LiDAR coverage) 2.4
Satellite: Satellite data (medium resolution such as Landsat, 100% coverage) 2.5.1

Step Contents

1. Stratify the forest of the study area into the main forest types and forest condition 2.3, 2.5.1,
classes using satellite data (= forest strata map). (Satellite) 2.5.4

2. Sampling of locations for LiDAR data acquisition and field plot collection. Weighted 2.3
random sampling by incorporating the forest strata map, covering all important
forest types.

3. Calibrate LiDAR-to-AGB model with field based AGB. (LiDAR and Field data) 2.5.4

4. LAMP2 Randomly select 1000 circular LiDAR sample areas of 1 ha size for each forest 2.5.4
strata within the LiDAR-area. Purpose: They will be used for calculating a mean
biomass value for each stratum (forest type and condition class).

4. LAMP3 Select 10,000 circular LiDAR sample areas (surrogate plots) using a weighted 2.6.2
random sampling within the LiDAR area. Weights should be the inverse of LiDAR
block sampling. Purpose: To be used as training data (surrogate field data) in
satellite-based model.

5. Use LiDAR-to-AGB model to estimate AGB for the LiDAR sample areas (LAMP2) 2.5.4,
or surrogate plots (LAMP3) 2.6.2

6. LAMP2 Calculate a mean AGB value for each stratum from the LiDAR-model estimates 2.5.4
on LiDAR sample areas. To be used for calculating Emission Factors. Combine
these forest class-specific mean AGB values with the forest strata map of
the entire area.

6. LAMP3 1. Extract satellite-based features (band values, vegetation indices) from mosaicked 2.6.1
satellite-imagery of the entire area. (Satellite)

2. Calibrate Satellite-to-AGB model with the surrogate plot AGB estimates. 2.6.3
3. Estimate AGB for each satellite image pixel with the Satellite-to-AGB model.
4. Post-process the satellite data based AGB estimates with histogram matching 2.6.4

method to avoid saturation effect.

7. The previous steps result in mapped AGB for the entire area, at strata level (LAMP2) 2.5.4, 2.6.3,
or at 1 ha level (LAMP3), respectively. 2.6.4

8. LAMP2 Time-series analysis of satellite data to generate Activity Data for Reference Level, 2.5.5–2.5.8
using stratified satellite imagery of two successive time instances T1 and T2.

8. LAMP3 Time-series analysis based on AGB value differences at 1 ha grid level, estimated 2.6
with the Satellite-to-AGB model from mosaicked satellite-imagery of the entire area
over the whole time period.

2.2. Study Site

Terai Arc Landscape (TAL) is situated along the foothills of the Himalayas in the southernmost
part of Nepal, ranging from the lowlands of Terai region up to the southern slopes of the Himalayas
in Churia hills. The average altitude varies from less than 100 m to 2200 m [44]. The TAL area is
influenced by tropical and subtropical climate. About half of the TAL is covered by subtropical,
mainly deciduous forests. The dominating forest types are sal (Shorea robusta) terai mixed hardwood,
khair-sisau (Acacia catechu/Dalbergia sissoo) and chir pine (Pinus roxburghii).

According to [45], about 1.18 million ha (51.5%) of the total land area was under forest cover
in TAL in 2001. About 79% (0.9 million ha) of the forest is located outside of protected areas and
21% (0.3 million ha) is within protected areas [46]. In 2013, about 241,484 ha of forest were under the
community forest management regime (i.e., 20.5% of the total forest area) and about 45,154 ha of
forest were under the collaborative forest management regime (i.e., 3.8% of the total forest area) [47].
The remaining forests are mostly government-managed forest. Sal (Shorea robusta) is the dominant
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species found in the TAL. In the recent forest resource assessment (FRA) project, the Terai forest
was classified into four major types: Sal Forest, Terai Mixed Hardwood Forest, Sal Mixed with Terai
Hardwood Forest, and Khair-Sissoo.

The TAL is linked with eleven trans-boundary protected areas across Nepal and India. TAL is
home to flagship species like tigers, rhinos, Asiatic wild elephants, and many other endangered species.
This landscape has the second largest population of rhinos and one of the highest densities of tiger
populations in the world. TAL plays an important role in maintaining linkage among these eleven
protected areas in Nepal and India. Along the corridor, the forests connecting these protected areas
vary from dense intact forests to degraded forest patches. Due to human pressure on forest resources,
the forest cover of low land Terai and Churia has decreased during the last three decades. Connectivity
among protected areas is crucial for effective and sustainable landscape level conservation. Hence,
TAL program was started to create a single landscape level functioning unit by connecting 11 protected
areas in Nepal and India through restoration of degraded forest corridors. This would give rise to
trans-boundary dispersal corridors and migration paths for tigers, rhinos, elephants and many other
species, which are crucial for maintaining biological diversity and gene flow. Conservation of the
Churia forests is crucial for preventing soil erosion, flash floods, and recharging the water table of the
Terai, the most productive land in the country. Therefore, sustainable management of TAL will help
maintain biological diversity and also meet national demand of forest products and food supply for its
rapidly growing human population.

2.3. Conducting the LiDAR Campaign

The National Forest Inventory (NFI), 1994 defined "forests" as having a crown cover >10% and
an area >1 hectare. The forest in the study area was stratified using forest type map of TAL based on
LANDSAT 7 [48], with an overall accuracy of 84.5% (Kappa = 0.75) at 30 m resolution, to produce a
LiDAR sample that reflects the full range of variation in biomass over the study area. Different weights
were assigned to the grid cells based on importance of forest types and amount of remaining forest
in each type. The weights were scaled to sum up to one. To give higher weight to rare vegetation
types, the initial expert weights were then scaled and normalized by the inverse of area fraction of the
vegetation types from total area. Probability proportional-to-size sampling [3] based on the forest type
map was used to select 20 sampling areas (5 km × 10 km blocks) covering 5% of the study area for
LiDAR acquisition.

Prior to the field campaign to measure calibration plots for the LiDAR model, the location of
sample plots was designed using systematic cluster sampling within rectangular sample areas, please
see Figure 1. The airborne laser scanning (ALS) campaign was carried in March/April 2011. All blocks
were scanned in full coverage from 2200 m average height above ground using a local helicopter
equipped with a Leica ALS50-II LiDAR-scanner device. Resulting nominal outgoing pulse density at
ground level was in average 0.8 points per square meter. The collected LiDAR data was evaluated
after each flight, and supporting scans were conducted if data gaps or other problems occurred.

Each designed LiDAR block contained six clusters of eight sample plots each (Figure 2).
The distance between cluster centres was 3333 m in West-East and 2500 m in North-South direction.
Within the clusters, the sample plots were aligned in two parallel columns in North-South direction,
with four plots per column. The distance between plots was 300 m in West-East direction, and 300 m
and 150 m in North-South direction in Terai and Siwaliks, respectively. The smaller North-South
distance for Siwaliks was chosen because of the large variations in altitude in the mountainous region.
The plots were of fixed circular shape with 12.62 m radius, equivalent to an area of 500 m2.
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Sources: Esri, HERE, DeLorme, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN,
Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), swisstopo, MapmyIndia, © OpenStreetMap
contributors, and the GIS User Community
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Figure 1. LiDAR blocks in TAL.
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Figure 2. Sampling design: LiDAR block with six clusters of eight field plots each.

2.4. Field Campaigns

The field data was collected in March/April 2011 in Terai and April/May 2011 in Siwaliks.
Plot centre coordinates were recorded using differential GPS with ProMark 3 and MobileMapper
CX devices, and corrected in post-processing mode (GNSS Solutions software (version 3.10.13) and
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MobileMapper Office software (version 3.40a)). 792 sample plots that were located in forest with at
least 10% canopy cover were measured in the field. The measurements at tree-level included all living
trees and shrubs above 5 cm diameter within the plot area.

The tree-level data was divided into 23 different tree species groups. For each field sample plot
the following attributes were derived from the tree-level measurements, by species group and totals:
Stem count (1/ha), mean diameter at breast height weighted by basal area (cm), basal area (m2/ha),
mean tree height weighted by basal area (m), stem volume (m3/ha), and AGB (tons/ha). While mean
diameter at breast height (dbh) and mean basal area were a direct output of the field measurements,
mean tree height, mean volume and mean biomass were estimated using species group-specific
functions and coefficients. In the following we explain in more detail how these estimates were derived.

Tree height was measured in the field only for a subset of trees per plot. Mean tree height per
plot was then calculated using species group-specific height-diameter relationships with non-linear
mixed-effect models. Mixed-effects models are an appropriate tool for modelling the relationship
between tree height and field-measured tree diameter because the explanatory variables are clustered
and thus spatially correlated (compare [49–53]). For the mixed-effect modelling we utilised
height-diameter relationships based on power, Korf and Näslund functions, depending on the
species group.

Tree level volume was calculated from tree height and diameter at breast height, based on species
group-specific volume equations published by [54] for the 23 species groups applied in this project.
Stem volume was converted to stem biomass by applying wood density coefficients documented
for 41 species groups in the Master Plan for the Forestry Sector Nepal (Ministry of Forests and Soil
Conservation of Nepal, 1989). Stem biomass was expanded to foliage and branches based on species
group-specific equations for different diameter classes, taken from [54]. Above-ground tree biomass
was calculated by summing up biomass of stem, foliage and branches.

Finally, the field plot data was screened for outliers. A plot is considered an outlier if it has
plausible measurement or positioning errors, or if we suspect a disturbance of the area during the time
between field campaign and LiDAR campaign. To detect outliers the field data was checked against
LiDAR observations. If the difference between mean tree height calculated from field measurements
and the 90th percentile of the first-pulse returns that was used as a surrogate for mean canopy height,
was more than 10 m, the field plot was removed from the dataset. A rough estimate of AGB per plot
was modelled from LiDAR data by regressing LiDAR-derived vegetation height and field-measured
biomass. If the modelled biomass value differed more than 500 tonnes per hectare from the biomass
that was estimated from field measurements, the plot was removed. The removal of outliers from the
model parameter calibration step is essential in Bayesian modelling to regularize model formation:
outliers will cause more harm than benefit to model construction. “Viable” outliers should be kept in
the validation set, though. In total, 54 field plots were excluded from modelling, so that the remaining
number of plots used in our study was 738. Statistics of the field data are shown in Table 2.

Table 2. Statistics of the field data (712 plots).

Variable Name (Unit) Min Max Mean StD

Mean diameter weighted by basal area (cm) 5.9 127.9 34.2 17.0
Mean tree height weighted by basal area (m) 2.9 36.0 15.8 6.1
Basal area (m2/ha) 0.1 53.4 18.4 10.6
Number of trees (1/ha) 20 2219 679.3 450.1
Stem volume (m3/ha) 0.3 680.9 149.8 114.0
Total above-ground biomass (tons/ha) 0.4 829.1 189.1 142.6

2.5. LAMP2 with Stratification for Reference Level Generation

The Reference Level is calculated by multiplying Activity Data (forest area changes) with Emission
Factors. Therefore it is essential to know (1) how much land changed within each forest type from
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one structural class to another in a given time period (Activity Data); and (2) how much carbon will
be emitted when a forest class changes to another class (Emission Factors). To derive such Emission
Factors, we need to know how much biomass and carbon is contained in each forest type and structural
class. In the following we describe how Activity Data and Emission Factors were derived.

2.5.1. Satellite Data Acquisition and Processing

The best available Landsat 5 and Landsat 7 data, based on minimizing cloud cover from
1999, 2002, 2006, 2009 and 2011, were used as the raw data for generating activity data. ImgTools
software (version 2.2) was used to conduct Spectral Mixture Analysis (SMA) of Landsat satellite
imagery, Figure 3, into fractions with natural break points, known as endmembers [48]. SMA uses
these endmembers to develop generic spectral libraries for green vegetation (GV), non-photosynthetic
vegetation (NPV), and bare soil. The software has algorithms to generate water mask as well as
shadow mask which are used to generate a normalized difference factional index (NDFI) and the
shade-normalized green vegetation (GVs) [55,56].

A decision tree, built in the software was adjusted for the TAL based on the spectral curves of SMA
components, to classify images into forest, non-forest, water bodies using fractional cover and GVs.
The forest was further classified into intact and degraded forest using NDFI values. In order to avoid
spectral confusion in areas previously deforested or degraded, this historical contextual information
was used in combination with spectral curves to delineate areas of regrowth.

Figure 3. Basic image processing steps in ImgTools (taken from [56] with permission).

2.5.2. Image Processing

Image processing was done using different modules in ImgTools which are described below
(Figure 3).

1. Spectral Mixture Analysis (SMA): ImgTools was used to carry out spectral mixture analysis for each
Landsat scene. The SMA module of ImgTools decomposes the spectral mixture, commonly found
in the pixel reflectance values of remotely sensed data, into fractions with natural break points,
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known as endmembers. SMA module uses these endmembers to develop generic spectral libraries
for green vegetation (GV), non-photosynthetic vegetation (NPV), bare soil and clouds [55,56].

2. Water Mask: This module creates a water mask as a layer using fractional image.
3. Cloud and Shade Mask: This module creates a cloud and shade mask layer that is used in

deriving NDFI.
4. Normalized Difference Factional Index (NDFI): In this module, the fractions developed from the

SMA analysis: GV, NPV, Soil are processed to quantify the percentage of pixels lying outside
the range of zero to 100% and to evaluate fraction value consistency for pixels over time (i.e.,
that pixels with intact forest values were similar over time). Only pixels with at least 98% of the
values within zero to 100% and those that showed mean fraction value consistency over time were
used by the software algorithm for computing Normalized Difference Fraction Index [55].

NDFI =
GVshade − (NPV + Soil)
GVshade + (NPV + Soil)

where GVshade (or GVs) is the shade-normalized GV fraction given by GVshade = GV
100 − shade .

2.5.3. Image Classification

A decision tree to provide the supervised classification of forest structure built in ImgTools was
adjusted for the TAL (Figure 4) based on the spectral curves of SMA components, to classify images
into forest, non-forest, water bodies using fractional cover and GVs. The forest was further classified
into intact and degraded forest using NDFI values. In order to avoid spectral confusion in areas
previously deforested or degraded, this historical contextual information was used in combination
with spectral curves to delineate areas of regrowth.

Figure 4. Decision Tree and Definition of Forest for Terai Arc Landscape.
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1. Non-Forest—An area is classified as non-forest when it meets one of following criteria:

a. 53 < GVs < 65
b. GVs > 65 and GV > 68
c. GVs < 52 but soil + NPV > 14

2. Water: GVs < 52 but soil + NPV < 15
3. Forest: GVs ≥ 66 and GV < 69 (Justification here is forest will have shade from tall trees but the

grassland will have virtually no shade)

a. Intact forest: 66 < GV < 69 and NDFI > 168
b. Degraded forest: 66 < GV < 69 and NDFI < 168

4. Regeneration

a. Classified as intact forest in step 3 above and classified in previous time period as non-forest
or degraded

b. Classified as degraded forest in step 3 above and classified in previous time period
as deforested

The decision tree classification was then used to classify each satellite image into 5 classes:
intact (undisturbed) forest, degraded forest, non-forest, water and cloud-shadow classes to produce a
forest type map of TAL [48] with four major forest types: (1) Sal forest; (2) Sal dominated mixed forest
(here after “Sal mixed forest”); (3) other than Sal dominated forest (here after “other mixed forest”) and
(4) Riverine. These four forest types were overlaid on the forest structural map to generate forest type
and condition maps for each time period. The study assumed forest types do not change from one
type to another type (i.e., from Sal forest to mixed forest or riverine forest or vice versa) in 10–20 years.

2.5.4. Generation of Emission Factors Using Tier-2 LiDAR-Assisted Multi-Source Programme (LAMP2)

The Tier–2 version of LAMP is based on using stratification to increase accuracy of biomass
estimates. The change in biomass density of forest per hectare over time is calculated as the difference
in biomass content of three forest conditions: deforested, degraded and intact. For deforested area
carbon density is always taken to be zero. Degraded and intact forest in each forest type—these are
the strata of the LAMP Tier-2 stratification—are assumed to have a spatially and temporally constant
biomass density. This constant biomass density for each stratum is estimated by random sampling
thousands of grid cells per stratum in each forest type over biomass density map, generated in LiDAR
blocks using Sparse Bayesian method. The aboveground carbon density values (tons/ha) are calculated
by using carbon fraction 0.47 of AGB [57].

LAMP2 step 1: Stratifying of forest on the study area using satellite data
In the first step of the LAMP2 approach, the forest extent over the entire study area was
stratified based on the forest types into Sal, Sal mixed, other mixed and riverine [48]. These strata
were further divided into two conditions, intact and degraded, resulting in a total of eight forest classes.

LAMP2 step 2: Estimating forest parameters for LiDAR blocks
In the second step of the LAMP approach, a regression model was generated based on the relationship
between LiDAR metrics (height and density distribution) and field based biomass data. It has been
shown that Sparse Bayesian methods offer a flexible and robust tool for regressing LiDAR pulse
histograms with forest parameters. While performing comparably to traditional regression methods,
they are computationally more efficient and allow better flexibility than step-wise regression [7,58].
To correspond to the field plot size of 500 m2, the modelling of forest parameters was carried out
at 22.4 m × 22.4 m grid-cell level. By using this grid size we also reduce the impact of potential
Lidar-DEM errors introduced by steep terrain that will have a more pronounced effect on smaller grid
cells. The Lidar metrics selected by the model for estimating above-ground biomass are described
in [40]. The model was validated against an independent sample of 46 plots.
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LAMP2 step 3: Deriving forest class-specific mean biomass values
In the third step of the LAMP2 approach, LiDAR model estimates are generated for a random sample
of locations within the LiDAR blocks. These estimates are combined with the forest strata map to
calculate mean biomass for each forest class. The procedure of this calculation is described in more
detail in the paragraph below.

Within each of the eight forest type and condition classes 1000 circular LiDAR sample areas of 1 ha
size were randomly allocated. To do so, the forest types and condition map of 2011 (LAMP2 step 1)
was overlaid with the LiDAR data coverage. In this case a random sampling without weights was
sufficient since the sampling was done separately for each forest class. If less than 50% of a LiDAR
sample area belonged to same class as its center point, it was removed. If a LiDAR sample area had
50% or more of its area outside the forest mask or outside the LiDAR blocks, it was also removed.
The remaining 7710 LiDAR sample areas were sub-divided into 500 m2 rectangular cells (estimation
units) for the LiDAR model output. To allow forest class-specific biomass estimations, only those
cells were used that were falling with their center into the same class as the original center point
of the LiDAR sample area (intended forest class). The regression model based on LiDAR features
(LAMP2 step 2) was applied to predict AGB for the cells. As the LiDAR sample areas contained a
varying number of cells, the final results were aggregated as area-weighted mean for each forest class.
Statistics of the results by forest class are shown in Table 3. The mean biomass-per-hectare values
calculated from LiDAR features were then applied to the corresponding forest classes to create a
stratified biomass map.

Table 3. Statistics of the forest class- specific estimations for above-ground biomass, mean carbon
density and carbon dioxide equivalent CO2e (t/ha).

Above-Ground Biomass (t/ha) C and CO2e ValuesClass Nr of Plots Mean Min Max StD C (t/ha) CO2e (t/ha)

1-Sal intact 988 235.6 20.4 509.5 84.1 110.7 406.0
2-Sal degraded 969 173.2 0.0 425.3 72.9 81.4 298.5
3-Salmix intact 966 183.2 0.0 556.9 84.7 86.1 315.7
4-Salmix degraded 946 146.4 0.0 539.6 106.2 68.8 252.3
5-Othermix intact 985 186.1 5.5 479.5 94.0 87.4 320.7
6-Othermix degraded 943 143.2 0.4 461.6 86.8 67.3 246.8
7-Riverine intact 934 171.1 0.0 405.5 46.8 80.4 294.9
8-Riverine degraded 979 99.4 0.0 505.6 57.9 46.7 171.3

The carbon stock is calculated as 47% of the AGB consistent with IPCC GPG (Chapter 4,
Table 4.4) [39]. Therefore, the emission factors for each forest type and condition were calculated by
multiplying the AGB by 0.47 (Table 3). When the forest changes from intact or degraded forest to
deforestation all carbon was assumed to be released. But when forest goes from intact to degraded the
difference in the mean carbon contents between intact and degraded forest is assumed to be emitted,
for example when intact Sal forest changes to degraded Sal forest, 29.3 tC/ha or 107.5 tCO2/ha are
emitted. The emission factors for regeneration forest changing to deforestation or degradation, and for
sequestrations due to regeneration are calculated with the IPCC default value of 2.8 tC/ha/year or
10.3 tCO2/ha/year. Emission factors were derived by calculating the difference between the carbon
and carbon dioxide equivalent, CO2e, values in Table 3 to reflect the loss of carbon or amount of
emissions, calculated in tons of carbon dioxide CO2e when land area containing various forest types
transitions from one structure to another.

2.5.5. Calculation of Emissions from Below-Ground Biomass

Based on IPCC GPG we used 20% of above-ground CO2 emissions as the below-ground emissions.
Below-ground biomass was assumed to result in emissions at the time of mortality.
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2.5.6. Time-Series Analysis of Satellite Data to Generate Activity Data

To delineate areas of deforestation, degradation and regeneration, we completed a time-series
analysis of forest change for the TAL for four time periods, 1999–2002, 2002–2006, 2006–2009 and
2009–2011, using the classified images. A pair of classified images for the same satellite scene was run
through a change detection algorithm in the ERDAS Imagine software (version 9.3) [55], to produce a
change matrix at pixel level. This resulted in a 25–class matrix for the first set of image pairs (1999 and
2002). Any forested area under the cloud and cloud shadow (cloud-shadow class) was considered as
unchanged within each period (1999–2002) for the purpose of this study. Likewise, areas remaining in
same classes within each period were also considered unchanged. The change classes derived from
the change matrix are listed below (Table 4) as Deforestation 1–3, Degradation, and Regeneration 1–3.

Table 4. New classes derived from the change matrix.

Change Matrix Change Class

Intact forest to non-forest Deforestation 1
Intact forest to degraded forest Degradation
Degraded forest to non-forest Deforestation 2
Non-forest to dense regenerating forest Regeneration 1
Non-forest to sparse regenerating forest Regeneration 2
Degraded forest to regenerating forest Regeneration 3
Regeneration forest to non-forest Deforestation 3

For the subsequent time-series analysis the base classified image for that series (older of 2 images)
was adjusted to reflect changes in the previous time period; for example, change classes derived
in Table 4 as a change between 1999 and 2002 were delineated and re-coded in the 2002 scene,
before comparing change between 2002 and 2006. All three types of deforestation were merged into one
deforestation class because they represent areas going from forest to non-forest. Therefore, each base
image potentially has nine classes: Intact Forest, Degraded Forest, Non-forest, Water, Cloud/Shadow,
Deforestation, Regeneration 1, Regeneration 2, and Regeneration 3. The change analysis between
2002 and 2006 resulted in a 45-class change matrix with nine classes (described above) representing
actual change in forest conditions. These nine change classes were adjusted in the base image (2006)
for analyzing time series between 2006 and 2009. The same process was repeated for 2009 and 2011
series. The areas under each activity (Deforestation 1–3, Degradation, and Regeneration 1–3) for each
time series analysis were used to generate activity data (Table 5). Activities Regeneration 1–3 were
combined to a single Regeneration activity because all these activities were differentiated only based
on activities in the previous time period that resulted in regeneration in the current period, thus their
growth rates and mean carbon content are assume to be same.

2.5.7. Generating Reference Level (RL)

The RL is generated by multiplying areas changed under each activity by the appropriate emission
factor, i.e., mean carbon stocks in each forest type to calculate amount of CO2 emission due to that
particular activity.

RL = Activity data × Emission factors (1)

The amount of CO2 released due to loss of forest carbon resulting from deforestation and
degradation is termed as gross emissions while intake of CO2 by growing plants during forest
regeneration is called sequestration. Therefore, net carbon loss is equal to gross emissions minus
sequestrations. The reference emissions level (RL) for TAL is based on net carbon accounting process.
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Table 5. Activity data for different forest types between 1999 and 2011.

Activity Data (ha)Forest Type Transition Activity 1999–2002 2002–2006 2006–2009 2009–2011 12-Year Total

Sal Forest

Intact to Deforested Deforestation 1 11,583 2085 9488 17,914 41,070
Degraded to Deforested Deforestation 2 4322 679 615 1651 7268
Regenerated to Deforested Deforestation 3 905 2117 6655 9677
Intact to Degraded Degradation 10,831 1342 3141 17,488 32,803
Deforested to regrowth Regeneration 24,635 35,951 6313 10,008 76,907

Sal Mixed

Intact to Deforested Deforestation 1 8487 2291 10,588 20,332 41,697
Degraded to Deforested Deforestation 2 7632 1395 964 1927 11,918
Regenerated to Deforested Deforestation 3 1996 3405 12,821 18,222
Intact to Degraded Degradation 10,186 1661 10,003 10,375 32,225
Deforested to regrowth Regeneration 32,597 40,999 4995 11,886 90,477

Other Mixed

Intact to Deforested Deforestation 1 2029 273 2661 3308 8271
Degraded to Deforested Deforestation 2 674 175 514 284 1647
Regenerated to Deforested Deforestation 3 174 870 1536 2580
Intact to Degraded Degradation 1570 216 380 1250 3417
Deforested to regrowth Regeneration 2483 5239 1251 3461 12,434

Riverine

Intact to Deforested Deforestation 1 918 160 255 1663 2995
Degraded to Deforested Deforestation 2 458 59 39 163 719
Regenerated to Deforested Deforestation 3 76 147 752 974
Intact to Degraded Degradation 697 81 225 877 1881
Deforested to regrowth Regeneration 2202 3306 510 244 6262

2.5.8. Calculating Net Emissions Level

Following formula was used to calculate RL for TAL:

Reference level =
∑ Emdef1 + ∑ Emdef2 + ∑ Emdef3 + ∑ Emdeg − ∑ Seqreg

y
, (2)

where ∑ Emdef1 is the sum of emissions from deforestation of intact forest over y years, ∑ Emdef2
is the sum of emissions from deforestation of degraded forest over y years, ∑ Emdef3 is the sum of
emissions from deforestation of regenerated forest over y years, ∑ Emdeg is the sum of emissions from
degradation over y years, and ∑ Seqreg is the sum of sequestrations from regeneration over y years.

2.6. LAMP3 with Estimation of Above-Ground Biomass at 1 ha-Scale

The LAMP3 method is based on a two-stage regression modelling by incorporating field data
(sample plots), LiDAR data (sample blocks) and full-coverage satellite imagery. It results in estimates
of AGB on 1-hectare resolution.

In addition to the collected field plot data and LiDAR sample data that have been described
in Section 2.3, five medium-resolution Landsat 5 TM scenes of processing Level 1T from years
2009/2010 were acquired to cover the entire study area. The data were ortho-rectified and corrected
for atmospheric and radiometric effects. After masking out cloud and snow areas, pixel values from
overlapping areas between adjacent images were extracted. To obtain a homogeneous mosaic data set,
the five Landsat scenes were spectrally normalised relative to each other.

2.6.1. Variance-Preserving Landsat Image Mosaicking

Due to variation in acquisition conditions (e.g., solar illumination, atmospheric scattering and
atmospheric absorption) the same ground object on two overlapping images can result in different
spectral values [59]. Because of this, radiometrically uniform mosaics using multitemporal scenes
should be created before employing satellite imagery into carbon assessment. To overcome radiometric
differences between multitemporal scenes, relative normalization is performed under an assumption
of a linear relationship between overlapping regions of multitemporal images [60–65], where the
linear transformation of a pixel intensity for image Pk is defined by two coefficients: shift ak and
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scale factor bk, k = 1, ..., N, here N is the number of images in the set. In [66], we proposed
a variance-preserving mosaic (VPM) algorithm that minimizes overall error of the normalization
and aims to preserve average variance of normalized images. We introduced the corresponding
additive penalty function and used the Limited memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS)
algorithm to find solution to the optimization problem. Then, to avoid down-scaling of the output
image intensity with bk < 1, we calculate the final scale factors for all images: b∗k = bk/ min bk ≥ 1,
and recalculate the corresponding shift coefficients.

With the normalisation algorithm in use, the differences between overlapping pixels is minimized
while at the same time the original variance in the images is preserved. For each image, optimised
normalisation coefficients (shift and scale factor) were found and applied to adjust the image data
(Table 6). The normalisation was performed separately for each spectral band.

Table 6. Normalisation coefficients a (shift) and b (scale factor) applied to the Landsat scenes
during mosaicking.

Path / Row Band a b

141/41

1 −561.12 2.12
2 −365.57 1.62
3 −135.51 1.28
4 0 0.84
5 −140.97 1.02
7 −180.50 1.01

142/41

1 −276.10 1
2 −123.43 1
3 −73.20 1
4 −170.56 1
5 −79.19 1
7 −98.55 1

143/40

1 −1146.87 2.16
2 −618.48 1.55
3 −326.08 1.23
4 −709.97 1.43
5 −258.92 1.24
7 −154.35 1.17

143/41

1 −267.44 1.26
2 −111.18 1.18
3 −23.62 1.12
4 −152.39 1.06
5 −178.36 1.15
7 −79.64 1.02

144/40

1 −603.32 1.44
2 −383.87 1.28
3 −229.26 1.16
4 −387.02 1.22
5 −1.37 1.08
7 23.84 1.01

2.6.2. Applying the LiDAR Model to Calculate AGB Estimates on Surrogate Plots

In the first stage of modelling, the LiDAR-based regression model as described in Section 2.5.4 was
applied to predict forest characteristics for a set of 10,000 circular-shaped surrogate plots (simulated
field plots) of 1-hectare size within the forested area of the LiDAR-scanned blocks. The locations of
the surrogate plots were selected through weighted random sampling using the inverse of the block
weights applied in LiDAR block sampling (see Section 2.5.4). The chosen surrogate plot size of one
hectare is on the one hand large enough to decrease edge effects and to compensate for geometrical
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discrepancies between LiDAR and satellite data, and on the other hand it is consistent with the desired
output resolution of the final LAMP3 biomass estimates. To predict forest characteristics for the
surrogate plots, each 1-hectare surrogate plot was first divided using a grid with cell size of 500 m2.
Estimates were calculated for each grid cell within the surrogate plot, so that the estimation area unit
was the same as used in model formation to prevent a possible bias due to the scale-dependent LiDAR
features. Finally, grid cell estimates were aggregated over the 1-hectare surrogate plot area.

2.6.3. LAMP3 Model Construction

In the second modelling stage, the AGB values that were estimated for the surrogate plots
from LiDAR data are applied as simulated ground-truth to generate a regression model between
above-ground biomass and features derived from the Landsat mosaic in order to derive biomass
values for all forests in the project area. LiDAR data acquired through airborne laser scanning over
forested areas provides a sufficiently accurate reference when estimating AGB from satellite imagery.
Therefore, LiDAR-derived estimates of AGB can be used as a substitute for real field measurements
because they represent each average AGB values over a much larger area than that of a traditional
field plot. Average AGB values over 1 ha are more stable than those over 500 m2. Unlike field plots,
surrogate plots also include forest on difficult and inaccessible terrain in mountainous regions while
still reaching an accuracy that is comparable or close to those of field measurements (described in
Section 2.5.1 and in Section 3.4.4).

For each surrogate plot area, the spectral mean values were extracted from Landsat 5 TM imagery
acquired for a similar time as the LiDAR data. In addition to the values in the visible and infrared
image bands, two vegetation indices were calculated from the Landsat data to facilitate the biomass
modelling, namely the normalized difference vegetation index (NDVI) and the atmospherically
resistant vegetation index (ARVI). The ARVI is an enhancement of the NDVI that is relatively resistant
to atmospheric factors like aerosol. It uses reflectance in the blue band to correct red reflectance for
atmospheric scattering [67]. Sparse-Bayesian method was used to regress the satellite-derived variables
with the LiDAR-derived forest characteristics for the locations of the surrogate plots. The regression
model was validated using k-fold cross-validation against the LiDAR-based estimates on all 1-hectare
surrogate plots. The model was applied to estimate basal area, volume and above-ground biomass
from the satellite-based variables for the entire study area using an output grid of 100 m × 100 m (1 ha)
cell size. Non-forested areas were clipped off from the resulting map using the forest mask published
by the FRA Nepal project [68].

2.6.4. Variance-Preserving Histogram Matching

Optical remote-sensing does not capture information from below dense canopy covers as is the
case for sub-tropical forests in TAL. This results in a “saturation effect” present in the biomass estimates
which leads to underestimation of biomass in areas with high AGB concentrations [69,70]. This problem
does not concern LiDAR which can penetrate even through a closed canopy cover to return information
from ground-level. To compensate for the saturation effect, the satellite-based biomass estimates
were post-processed by applying a histogram matching method using the biomass distribution in
the LiDAR-based surrogate plots as a reference. A similar approach of calibrating satellite-derived
predictions to reference data has been used e.g., by [25] for the creation of a pan-tropical biomass map.

In our case, the reference biomass values were sorted by their value and binned into equally sized
quantiles. 1000 of such quantiles consisting each of 10 surrogate plot values have been used. For each
quantile, the mean biomass value was calculated from the surrogate plots of that quantile. In the same
way also the predicted biomass values of the Landsat-based model applied to the entire study area
were binned into quantiles, using the same number of quantiles as for the reference data. The mean
value of each quantile of the estimated data was replaced by the mean value of the corresponding
quantile of the reference data. This way the value range of the satellite-based estimates was matched
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with the value range of the reference data (surrogate plots), preserving the original standard deviation
in the reference data and improving the regression trend line.

By applying this method we assume that the surrogate plots are a representative and unbiased
sample of the biomass distribution over the entire TAL area. We base our assumption on the fact that
the locations of surrogates were indeed generated as a random sample by applying the inverse weights
of those used in the LiDAR block sampling (compare Section 2.6.2). However, it must be acknowledged
that a deviation of the sampled distribution from the distribution of the entire population may lead to
a bias in the final biomass results.

3. Results

3.1. Reference Emissions Level (RL) Estimation

The RL analysis shows that during the 12-year period between 1999 and 2011 total of
52,245,991 tons CO2 (tCO2e) was emitted from the forest sector in the TAL, an average emission
of 4,353,833 tons CO2e per year (Table 7). In the period 2006–2011, emissions averaged 6,879,686 tCO2e
per year, 58% higher than the 12–year average, and in the period 2009–2011, emissions averaged
11,412,396 tCO2e per year or 162% higher than the 12–year average.

Table 7. Forest-related CO2 emissions in Terai Arc Landscape (TAL) between 1999 and 2011.

CO2 Emissions (tCO2e)
Period Above-Ground Below-Ground Total

1999–2002 13,136,430 2,627,286 15,763,716
2002–2006 1,736,537 347,307 2,083,845
2006–2009 9,644,698 1,928,940 11,573,637
2009–2011 19,020,661 3,804,132 22,824,793

Total 12-year 43,538,325 8,707,665 52,245,991
Average annual 3,628,193.79 725,639 4,353,833

3.2. Reference Level at District Level

TAL falls under 12 districts or administrative units so district-level analysis was conducted to
better understand geographic trends. District-level RL analysis is presented in Table 8. In addition
to the significant differences in rates of deforestation and degradation for the various time intervals,
there are also significant geographic variations in the distribution of forest-related emissions. Three of
the 12 districts—Kailali, Kachnapur and Dang—accounted for 51% of the carbon loss of the TAL during
the RL period.

Table 8. Total CO2 emission (tCO2e) by districts for 4 time intervals.

1999–2002 2002–2006 2006–2009 2009–2011 12-Year Emissions

Kahchanpur 1,326,570 120,105 296,008 3,499,486 5,242,169
Kailali 3,736,460 93,151 911,511 7,891,560 12,632,682
Bardia 425,756 151,066 312,516 3,116,150 4,005,488
Banke 1,227,909 304,491 2,515,125 567,689 4,615,215
Dang 2,600,210 582,332 4,759,420 892,183 8,834,146

Kapilbastu 1,594,386 113,716 1,025,029 380,993 3,114,124
Rupandehi 597,963 (24,121) 72,593 224,251 870,686

Nawalparasi 1,869,896 171,651 758,771 456,103 3,256,421
Chitwan 1,388,989 267,881 250,988 1,315,372 3,223,230

Parsa 189,225 76,152 142,864 872,272 1,280,513
Bara 395,579 96,825 207,383 1,615,801 2,315,588

Rautahat 410,772 130,596 321,429 1,992,933 2,855,730
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3.3. High-Resolution AGB Maps Calculated in TAL with LAMP3

Estimation of AGB Change with LAMP3

The biomass estimates predicted at 1-hectare with the LAMP3 method were compared against the
highly accurate LiDAR predictions for the locations of the surrogate plots described in Section 2.6.2.
The initial predictions of total AGB significantly underestimate areas rich in biomass (saturation
effect) and overestimate areas of low biomass. The histogram matching step (compare Section 2.6.4)
overcomes this problem but causes an increase of the root mean square error (RMSE).

After histogram matching, the final estimates of total AGB with LAMP3 achieve an RMSE of
39%. Mean tree height and basal area are the most accurately estimated variable with 26% RMSE.
For all predicted variables the mean values and standard deviations of the estimates match with the
mean values and standard deviations of the reference data. The validation statistics before and after
histogram matching are shown in Tables 9 and 10. Figure 5 illustrates the comparison between the
LAMP3 results and LiDAR predictions, before and after histogram matching.

To compare the results obtained with LAMP2 and LAMP3, a high resolution AGB map of TAL
was produced with LAMP3. In the Figure 6 below, a part of a district in Terai is displayed, illustrating
the high spatial resolution obtainable with direct AGB estimates with LAMP3. The areas identified
with both methods as deforested or degraded coincide reasonably well by visual analysis, but a
comprehensive comparative analysis has not yet been possible to carry out. It can be seen from the
images that inhomogeneity of satellite images causes some artefacts to appear into the biomass maps,
but the level of these artificial features stays within the standard deviation of the model based estimator.
Further research into the calibration of satellite images will be conducted in order to reduce the impact
of image inhomogeneity.

Table 9. Error statistics for the LAMP3 estimates before histogram matching, when compared to LiDAR
predictions, on 9805 surrogate plots of 1-hectare size each.

Estimates Surrogate Plots
Variable

Mean Std Mean Std
RMSE RMSE (%) Bias Bias (%)

AGB, t/ha 198.2 53.1 198.1 88.1 69.8 35.2 0.12 0.06
Volume, m3/ha 157.1 42.5 157.0 71.0 56.5 36.0 0.10 0.06

Basal area, m2/ha 19.2 4.1 19.2 6.1 4.6 23.8 0.05 0.00
Diameter, cm 35.0 4.3 35.0 10.2 9.3 26.6 0.02 0.00
Height, cm 16.2 2.1 16.2 4.2 3.7 22.6 0.00 0.00

Table 10. Error statistics for the LAMP3 estimates after histogram matching, when compared to LiDAR
predictions, on 9805 surrogate plots of 1-hectare size each.

Estimates Surrogate Plots
Variable

Mean StD Mean StD
RMSE RMSE (%) Bias Bias (%)

AGB, t/ha 198.0 88.2 198.1 88.1 77.5 39.1 −0.04 −0.02
Volume, m3/ha 157.0 71.1 157.0 71.0 63.0 40.1 −0.03 −0.02

Basal area, m2/ha 19.2 6.1 19.2 6.1 5.0 25.9 −0.00 −0.00
Diameter, cm 35.0 10.2 35.0 10.2 11.2 31.9 −0.00 −0.00
Height, cm 16.2 4.2 16.2 4.2 4.3 26.4 −0.00 −0.00
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(a) (b)

Figure 5. Above-ground-biomass estimated with LAMP3 method against the LiDAR-based predictions
(reference), for the locations of 1-hectare sized surrogate plots (see Section 2.6.3). Regression trend
line of the linear model in orange, optimal trend line in black. (a) Results before histogram matching;
(b) Results after histogram matching.

3.4. Uncertainty Assessment

Uncertainty assessment of forest inventory often has two somewhat divergent goals. On the one
hand, we wish to bind population totals of large forest areas between tight confidence intervals. On the
other hand, medium and high resolution forest parameter maps, such as biomass or carbon maps,
should also be as accurate and precise as possible. The latter purpose serves the needs of operational
planning of forest interventions and in that case large-scale forest statistics are often not very relevant.

LAMP methods aspire to serve both purposes as well as possible, although some degree of
trade-off is still necessary. The principal goal of LAMP processes is to produce accurate and precise
high-resolution forest biomass maps. But a secondary goal is to construct that map in a manner that
allows high-resolution results to be aggregated to large area averages without engendering significant
systematic error.

There are two main principles by which this is achieved. Firstly, a field campaign to collect
calibration plots for the model-based estimation must be design-based [3]. Secondly, the regression
method applied in model building must be an unbiased estimator, such as a linear regression model.
An underlying assumption in this latter process is that a linear correlation exists between biomass and
the co-variates used to estimate it in the model. The first condition is fulfilled for both LAMP model
trials in TAL, where as the latter condition is fulfilled for an individual LAMP3 model, such as the
one built for AGB estimation in TAL, but not for the methodology as a whole, because covariates are
picked up and dropped by the Sparse Bayesian algorithm in a non-linear fashion, and also because
it often turns out that the relationship between most, if not all, satellite-based covariates and AGB is
quite non-linear.

To address the fullest range of these divergent goals, the uncertainty assessment of the biomass
estimates described in the following subsections has been conducted from several different angles.
Firstly, classical variance estimation was carried out on the two-level regression of LAMP3 to assess
the impact of model residuals. Secondly, several different field plot assessments of both LAMP
estimates were conducted that feature analysing the impact of field plot size on error variance and
the accuracy of the LiDAR model at high spatial resolution, so as to validate the usability of sample
areas for Emission Factor estimation in LAMP2 and that of surrogate plots as a teaching set in LAMP3.
Furthermore, a separate accuracy assessment was conducted on Activity Data in LAMP2 using a
confusion matrix and validation on high-resolution satellite imagery. And finally, a cross-validation
analysis of both the LiDAR model and the LAMP models was conducted against two different
validation sets: the calibration plot set of 738 field plots and a set of ten thousand surrogate plots
interpreted through the LiDAR model.
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(a)
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Rautahat District 1999

±0 5 102.5 Kilometers

(b)
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280.5
230.5
180.5
130.5
80.5
30.5

Rautahat District 2010

±0 5 102.5 Kilometers

(c)

Figure 6. The three Figure 6a–c depict the estimated forest degradation and deforestation in the
Rautahat district in TAL. (a) is the analysis of deforestation and forest degradation between the years
1999 and 2010 with LAMP2 Activity Data; (b) is the LAMP3 estimated AGB in that same area in 1999
and (c) is Above Ground Biomass (AGB) as estimated with LAMP3 in 2010. The areas coincide well, but
in the LAMP3 process every primary estimation unit of one hectare gets an individual Emission Factor:
the difference of the carbon density on that unit between the years at which it has been calculated.
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3.4.1. Variance Estimation of Two-Level Regression Models

Recently, the authors in [36] have produced variance estimators for homogeneous and
inhomogeneous two-layer estimation processes based on linear models. Since the models used
in the current LAMP3 are linear, a study was conducted to apply the methods introduced in [36] to
these estimates. Following this reference, the tables included in Appendix B indicates the Standard
Deviations at different scales based on a Monte Carlo study.

A heteroscedastic model construction was assumed and covariance matrices of both the LiDAR
model and the satellte model were constructed. Based on these matrices, a variance estimator for the
model predictions was constructed and applied at several different forest biomass map resolutions,
ranging from 500 ha to 10,000 ha. The resulting absolute and relative standard deviations are presented
in Table A1.

3.4.2. Validation of Activity Data through Additional Field Verification

A weighted random stratified sampling design was used to select 200 field plots of 1-ha
(100 m × 100 m) covering intact (no change), deforested, degraded, and regenerated areas based
on time series analysis. The goal was to cover about 5% area of each change category. However,
after field visits, the team found 110 (>50%) sampling plots were concentrated in 4 eastern districts.
Therefore, to maintain consistent sampling across the study area, only 50 plots were selected randomly
from these 4 district resulting in 140 potential sampling plots across the TAL. Among these plots,
the field team was able to measure only 103 plots, other plots were inaccessible. Using GPS, the field
crew navigated to the center of 1-ha plot to collect information on forest condition types (intact,
degraded, deforested and regeneration). The field crew also estimated crown closure, ground cover
based on visual observation. A relascope was used to estimate basal areas of tress in each 1-ha plot.
The plots were categorized based on these information as intact, degraded, deforested and regeneration.
These plots were then overlaid over the forest change map from time series analysis between 2009
and 2011, to generate an error-matrix and 95% confidence interval for accuracy assessment. The
field plots were overlaid on the changed map resulted from a time series analysis of 2011 and 2014
satellite data, for an accuracy assessment of the activity data. The activity data viz. intact, deforested,
degraded, and regenerations derived from the time series data and data observed/measured in the
field were tallied. Tallied numbers were then multiplied by the proportions of area in each activity,
based on the change map derived from time series analysis of 2011 and 2014 data, to generate an
error-matrix and 95% confidence intervals for each activity (Table 4), following the process used by [71].
Overall accuracy of activity data was 85% ± 14% at 95% confidence interval. The producer’s accuracy
and user’s accuracy for each activity with 95% confidence intervals are presented in the Table 11.

Table 11. An error matrix showing accuracy of forest change between 2009 and 2011 with
95% confidence intervals.

Activity Intact Deforestation Degradation Regeneration Total Mapped Area Proportion Wi
(ha) (ha)

Intact 0.704 0.016 0.008 0.142 0.871 858,910 0.871
Deforestation 0.008 0.063 0.001 0.002 0.074 72,700 0.074

Degraded 0.003 0.005 0.024 0.000 0.032 31,398 0.032
Regeneration 0.001 0.003 0.001 0.020 0.024 23,623 0.024

Total 0.716 0.086 0.034 0.164 1.000 986,631 1.000
Overall accuracy 0.81 ± 0.09

Producer’s accuracy 0.98 ± 0.065 0.73 ± 0.024 0.72 ± 0.017 0.87 ± 0.061
User’s 0.81 ± 0.092 0.86 ± 0.007 0.76 ± 0.009 0.82 ± 0.004

3.4.3. Impact of Field Plot Size

The impact of validation field plot size on the reported root mean square error (RMSE) in forest
inventory has been studied in detail [72]. In general, larger field plot size yields smaller RMSE when
the estimates do not contain significant systematic error. In general, field validation exercises should
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be conducted with field plots that have a size that matches the size of the primary estimation unit. If
the latter is rather large, as is the case in the current study with 1 ha unit size, comprehensive field
campaigns that calculate and measure every tree on a statistically adequate number of large field plots
are not feasible. We therefore must resort to an analysis of the impact of field plot size to the precision
of forest parameter estimates.

To study the relative impact of both variance between plots and that of the edge effect on different
plot sizes, additional field plots were collected from LiDAR-covered area in Terai Arc Landscape (TAL),
Nepal, during March 2013. The main objective was to analyse the impact of field plot size on LiDAR
model accuracy. Field measurements on larger sized plots of 30 m radius were carried out within the
area of two LiDAR blocks, in order to compare results and accuracy between LiDAR predictions derived
from field plots of different size (small plots versus large plots). The aim was to see if it is possible
to reduce costs by collecting few larger plots instead of many smaller plots. In earlier studies [73–75]
researchers have demonstrated that the larger plot minimizes edge effects, increases sample variance,
and maintains a greater amount of spatial overlap between ground-reference and LiDAR. The effect
of the GPS error on model accuracy is smaller in larger plots because of relatively larger overlap.
Two LiDAR blocks were selected for extra field plot collection: one representing typical Terai Sal and
associated forests, and another one representing Siwaliks Sal and dry deciduous forest types. The
plot design was based on weighted random sampling using LiDAR canopy-height information from
existing LiDAR data to capture the full heterogeneity of the forest. Field measurements were taken
from 48 plots, while 2 plots were inaccessible. For 38 plots, a fixed circular plot with outer radius
of 30 m was used, equivalent to an area of 2826 m2. For 10 plots, an outer radius of 40 m was used,
equivalent to an area of 5026.5 m2. For every tree on these large plots, the distance to the plot centre
was also recorded, so as to facilitate simulations of validation results also on smaller circular plots by
restricting the tree lists by this distance.

The overall AGB variance within the plot sample strongly decreases with increasing plot size
from 5 m to ∼10 m. However, it was found that beyond a plot radius of ∼15 m, increasing plot size
does not decrease between-plot variance of AGB anymore, see Figure 7a.

(a) (b)

Figure 7. The effect of field plot size (5–40-m radius) on between plot variance and on number of edge
trees within plots. Results with radii 5–30 m are based on 46 plots; results with radii 31–40 m are based
only on 10 plots: (a) Between plot variance of total AGB; (b) Average portion of edge trees within plots.

To study the edge effect, the amount of edge trees within a plot was calculated for varying plot
sizes. An edge tree was defined as a tree which is within 1 m distance from plot edge on either side.
It was found that the portion of edge trees in relation to all trees on the plot greatly decreases as the plot
size increases. Beyond a plot radius of ∼15 m, increasing plot size does not significantly decrease the
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edge effect anymore, see Figure 7b. After the change in edge effect stabilizes, the difference between
the plot sizes is more or less random in nature.

3.4.4. LiDAR Model Errors on Different Plot Sizes

For each plot set (5 m plots, 6 m plots, . . . , 40 m plots), a linear regression model was created
between AGB and LiDAR variables for the plot locations. The Sparse Bayesian method was applied
to find the best predictors out of the 46 LiDAR variables to estimate biomass, for each plot set
separately. This means, for each plot set a different linear regression model was used to estimate
biomass. Leave-one-out cross validation technique was then used for predicting biomass for each plot
within a plot set. The biomass estimates were validated against 30 m plot data, for all plot sets. This was
done in order to make the validation comparable between the different plots sets: When validated
against the same field data, differences between plot sets resulting from measurement errors could
be excluded.

The results show that model errors and bias significantly decrease up to a radius of about 15 m,
while there are only small improvements beyond that (Figures 8a–c). The Coefficient of determination
improves slightly longer, but does also reach its apex after some 20 m (Figure 8d). Since there have
been only 10 plots available with radius above 30 m, the model errors for those plot sets are higher
because 10 plots are not sufficient to create a good linear regression model.

(a) (b)

(c) (d)

Figure 8. Model statistics for LiDAR model made using varying field plot sizes. Models with radii
5–30 m are based on 46 plots; models with radii 31–40 m are based only on 10 plots: (a) Absolute RMSE
(t/ha); (b) Relative RMSE; (c) bias (t/ha); and (d) R2 of LiDAR model.
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3.4.5. Validation of Results by a Separate Field Campaign

The LiDAR model was calibrated with 738 field plots of 12.6-m radius (500 m2) and validated
against plots of 30-m radius. To calculate biomass estimates for the 30-m plots, each validation
plot (with area of 2826 m2) was split into 500 m2 estimation units (cells). This was done because
the optimal estimation area for a model is equal to the size of the calibration plots, i.e., in this
case 500 m2. For each estimation unit, a separate estimate was produced by the model. Finally,
an area-weighted average of all the biomass estimates within a validation plot was derived from the
cell-level estimates of that plot. The estimates of the 30-m plots were compared to the field based
values, and error statistics were calculated. The relative RMSE was 17%, and the achieved R2 0.92.
No significant bias was present (relative bias 1.3%). Validation results are shown in Table 12 and
Figure 9. As comparison, the figure includes also the validation results for the model with the original
calibration field plots using leave-one-out cross-validation. This comparison demonstrates the error
dependency on scale. The validation results directly depend on the validation plot size: The LiDAR
model achieves significantly better validation results when being validated against the larger (30 m)
plots, even though the model itself is the same.

(a) (b)

Figure 9. Scale-dependency of validation results for 12.6 m-plot model: (a) Scattergram showing the
measured (x-axis) and estimated (y-axis) AGB of 30 m-plots; (b) Scattergram the measured (x-axis) and
estimated (y-axis) AGB of 12.6 m -plots (leave-one-out validation).

Table 12. Error statistics for the LiDAR model built from 738,12.6 m-plots. The model predictions of
AGB were validated against field data from 30 m plots.

Estimates Ref. Plots Error

Variable Mean Std Mean Std RMSE Rel. RMSE (%) Bias Rel. Bias (%)

AGB in Tonnes/hectare 182.8 104.2 180.4 108.5 30.8 17.1 2.4 1.3

4. Discussion and Conclusions

In order for MRV methods to succeed in mitigating climate change, they have to be designed so
that results are efficient, effective and verifiable. Efficiency means that monitoring can be conducted
frequently, ideally on a biennial basis, i.e., every second year, to match the agreed reporting frequency of
the Paris Climate Agreement. On the other hand efficiency cannot sacrifice verifiability. MRV processes
must produce reliable data on carbon captured in forests that donors can trust. Therefore MRV results
must be accurate and contain no systematic errors. Finally, in order for REDD+ to be also effective,
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it must reward mitigation efforts that have a true impact. Often this means addressing sustainable
forest use practices at a very local level, so that rewards can be distributed on a small scale to benefit
the people that in practice tend or log in forests.

To achieve these goals, MRV cannot constantly depend solely on comprehensive field campaigns
across a country or a jurisdiction. Such large-scale measurement efforts can, when well designed,
be accurate and deliver on verifiability ([1,2,41,76,77] and references therein), but will fall short either on
effectiveness, if plots are laid out too sparsely, or affordability, if plots are assigned to, say, every hectare.
Methods based purely on remote sensing will, on the other hand, fall short on accuracy since without
ground truth there is no way to guarantee that they contain no systematic error.

A combination of field measurements and remote sensing based MRV processes is therefore
called for for simultaneously achieving the triple goals of accuracy, precision and affordability.
Different remote sensing modalities have different properties. Optical satellite images provide frequent
and comprehensive coverage of almost any forest area, but there are many difficult issues in associating
band values with biomass. Airborne Laser Scanning (ALS or LiDAR) on the other hand provides high
quality height information of trees but is expensive to collect over large areas.

The results obtained with LiDAR-Assisted Multi-source Program are encouraging. Nepal was
accredited with 14 million tons’ worth of CO2 emission rights by the Forest Carbon Partnership Facility
(FCPF) of the World Bank, based on the Reference Levels at district level calculated with LAMP2.
These calculations were incorporated in the required Emission Reduction Project Idea Note (ERPIN) in
2014. Currently the Government of Nepal is pursuing the next stage of that process and producing an
Emission Reductions Program Document, ERPD. This work will involve projecting future emissions
and their reduction on the same area: the Terai Arc Landscape.

As seen from the additional field validation of Activity Data in Table 12, there is some amount,
roughly 85%, of mis-classification between forest classes. These can be caused e.g., by optical
effects, such as mountain shadows, or other differences caused e.g., by different times of day,
weather conditions and seasonal variation. Mis-classification will possibly result in artificial carbon
dioxide emissions and/or carbon sinks when they occur between different assessment time intervals.
Such optical artefacts are common in all land use class based biomass assessment approaches and
they are a prime motivator to introducing LiDAR wall-to-wall surveys or LiDAR sampling, as in the
LAMP3 method, into REDD+ MRV processes.

As explicitly calculated and reported in [35], the source of biomass estimation errors across
many spatial scales in LiDAR based forest estimation changes as a function of scale. At the
smallest, individual tree scale allometric model errors are prevalent, as the authors found out from a
comprehensive destructively tested tree database. But already at typical field plot levels, LiDAR model
residuals become the dominant source of estimation error. According to these authors, the next change
in error domination occurs at roughly 380 m resolution that corresponds to 15 ha resolution, after which
LiDAR model parameter estimation errors become dominant. Their model uses only two LiDAR
metrics as covariates whereas the ones adopted in the current research typically have between ten and
twenty LiDAR or satellite covariates in the model and a relatively comprehensive calibration set of
738 plots of 500 m2 size or 9908 surrogate plots of 1 ha size. The exact error budget might therefore
shift from the conclusions of [35], but its overall pattern will very likely remain quite similar.

The process and cost of acquiring the necessary LiDAR scans and the corresponding field plots has
been analysed in [78]. In that study, LAMP was seen as a viable alternative to traditional comprehensive
field campaigns and to possess the additional potential of producing high-resolution carbon density
maps also in the follow-up stages. In that study it was estimated that the total cost of LAMP will remain
lower than continuous monitoring of field plots already from the second monitoring stage onwards.

While LAMP2 has been vindicated so far by a donor process, LAMP3 still needs further
development steps. Inhomogeneous satellite imagery remains a formidable issue for direct estimation
of AGB. In that respect, new remote sensing modalities provide reason for hope. Radar interferometry
is capable of providing accurate height information. Also new developments in LiDAR technology,
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such as so-called single-photon or Geiger-mode LiDARs, have the potential of dramatically reducing
LiDAR acquisition costs over large areas in the near future [79].

As can be seen from Table A1, the classical variance estimator produces a higher standard
deviation of estimation error on small estimation units when compared to a LOO validation, such as
the one shown in Table 10. This is to be expected, since the posterior error variance in a Bayesian
estimator is typically smaller than in the prior estimator [6], and the variance estimators presented
in [36] correspond to prior estimators since they assume additive variance accumulation in both stages
of the estimation process which ignores the fact that both models have been calibrated based on the
same field plot set. But if the field plot set were not a probabilistic sample of the forest area, then LOO
variance estimates could be much too low.
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Abbreviations

The following abbreviations are used in this manuscript:

AGB Above-Ground Biomass
ALS Airborne Laser Scanning
ARVI Atmospherically Resistant Vegetation Index
COP Conference of the Parties
dbh mean Diameter at Breast Height
ERPIN Emission Reduction Project Idea Note
ERPD Emission Reductions Program Document
FCPF Forest Carbon Partnership Facility
FRA Forest Resource Assessment
FREL Forest Reference Emission Level
FRL Forest Reference Level
GHG GreenHouse Gas
GPS Global Positioning System
HAG Height Above Ground
IPCC Intergovernmental Panel on Climate Change
LAMP LiDAR-Assisted Multi-source Program
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L-BFGS Limited memory Broyden-Fletcher-Goldfarb-Shanno
LiDAR Light Detection And Ranging
MRV Measuring, Reporting and Verification
NDVI Normalized Difference Vegetation Index
NFI National Forest Inventory
PCM Persistent Change Monitoring
REDD+ Reduce Emissions from Deforestation and forest Degradation
RL Reference Level
RMSE Root Mean Square Error
SMA Spectral Matrix Analysis
TAL Terai Arc Landscape
UNFCCC United Nations Framework Convention on Climate Change
VPM Variance-Preserving Mosaic

Appendix A. LAMP2 Algorithm Diagram
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Figure A1. LAMP2 algorithm diagram.

Appendix B. Estimation of Population Variance and Standard Deviation in LAMP3 Methods

To get an estimate on the total population variance, combining both the LiDAR model and
LAMP3 model variances, a recent article was applied for this purpose. Saarela et al. [36] use similar
methodology to produce population mean volume for a Finnish forest area as has been described in
this article (the LAMP3 method). They also provide equations to calculate the covariance-variance
matrix, Equation (A2), and to derive the population variance using the matrix, Equation (A3). The
covariance-variance matrix takes into consideration both, the LiDAR model variance, Equation (A1), as
well as the satellite-based model variance. As a difference, Saarela et al. [36] have LiDAR and Satellite
models which are applied in same size estimation units, whereas here the field plots and surrogate
plots are of different size. This size difference and its effect on variance has not been considered here.
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As heteroskedasticity of random errors was present in results, a heteroscedasticity-consistent
covariance-variance matrix was applied, first introduced by [80] White (1980). The model is calculated
by first calculating the covariance matrix of LiDAR model (Equation (A1)), and then the combined
satellite-LiDAR covariance (Equation (A2)).

Covariance matrix for LiDAR model was:

ĈovHC

(
β̂S

)
=
(

XT
S XS

)−1
(
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i xT

i xi

)(
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, (A1)

where XS is a matrix of LiDAR predictors for sample S meaning the field plots, ê2
i is the squared

residuals of ith observation in field sample (Sa), xi is the vector of LiDAR predictors of observation
i. The residuals were corrected according to [36] by a correction factor [81] multiplying the residuals
with m

m − p − 1 , where m equals the number of field plots and p equals the number of LiDAR predictors
in model.

Covariance matrix for satellite model was then:
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where ZSa is a matrix of Landsat predictors for sample Sa meaning the surrogate plots, ŵ2
i is the

squared residuals of ith observation in surrogate sample (Sa), zi is the vector Landsat predictors
of observation i, XSa is a matrix of LiDAR predictors for sample Sa. The residuals were corrected
similarly as in Equation (A1) by multiplying the residuals with M

M − q − 1 , where M equals the number
of surrogate plots, and q equals the number of Landsat predictors in model.

The covariance matrix of models was then used in variance estimator [82]:

V = ιT
UZUĈovHC (α̂Sa)ZT

UιU, (A3)

where ιU equals a U-length vector of values 1/U, and U is the number of estimation units, in this case
1,312,957, which was the number of forested 1 ha size cells in result grid for LAMP3. ZU is the matrix
of Landsat predictors for grid U.

The variance calculations were done by using all field plots (738) and all surrogate plots (9805).
To test the effect of number of plots to the results, also subsets of field and surrogate plots were drawn
using Simple Random Sampling (SRS) and same covariance and variance calculations were applied
using the subsets of plots and surrogate plots. The subsets were drawn 100 times for each sample size
and aboveground biomass and variance was calculated accordingly. Average aboveground biomass
and variance were calculated for each subset size. The subsets were done for three different subset
sizes for both field and surrogate plots, subsets (m) of 50, 100, and 500 field plots, as well as subsets
(M) of 500, 1000, and 5000 surrogate plots, respectively.

The results were calculated using two different estimations of aboveground biomass, LAMP3 and
OLSLAMP estimates. OLSLAMP is a straightforward two-level linear regrssion model and its
results were calculated directly with Equations (A1)–(A3). The current LAMP3 method uses variance
imputation from the LiDAR model and its results were derived using the corresponding covariance
inflation factor that multiplies the satellite model covariance term in Equation (A2) with

VLAMP3

VOLSLAMP
ISa , (A4)

where VLAMP3 is the variance of surrogate plots LAMP3 estimates, VOLSLAMP is the variance of
surrogate plots OLSLAMP estimates, and ISa is an q × q identity matrix. This inflation increases
the covariance matrix to the level it is in LAMP3 estimation.
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Results of variance calculations are presented in Table A1. The table has the OLSLAMP estimate
of aboveground biomass from surrogate plots, the variances of both OLSLAMP and LAMP3, and the
absolute and relative standard deviation of both OLSLAMP and LAMP3 methods. As expected the
variance and standard deviation decrease considerably when sample sizes increase. The covariance
inflation increases the variance and standard deviation of LAMP3 only little when compared to
OLSLAMP. This tells that majority of the variation comes from the LiDAR model stage of estimation
that reflects the true variation of forest AGB at 1 ha resolution but that gets suppressed at coarser
resolution because of lack of systematic error.

To address the scale dependency of LAMP3 uncertainty with a Bayesian approach, a study was
conducted on one LiDAR block with full forest coverage. The area of the block was divided into
3 differently sized grids: 1 ha, 10 ha and 100 ha. For each grid, OLSLAMP and LAMP3 estimates
were computed for all grid cells and compared to the LiDAR predictions for the cells (reference).
Covariance inflation was performed in LAMP3 by using the biomass distribution of the LiDAR
predictions as a reference.

Table A1. Average estimated surrogate plot aboveground biomass (AGB-LAMP), and variance and
standard deviation (SD) of OLSLAMP and LAMP3 methods calculated using four different sets of field
and surrogate plots. Field plots (m): 50, 100, 500. Surrogate plots (M): 500, 1000, 5000. The last set has
all field plots (738) and surrogate plots (9805). All sets, excluding the full set, have been ran 100 times
and an average of sample results have been added to table.

OLSLAMP OLSLAMP LAMP3 OLSLAMP LAMP3 OLSLAMP LAMP3
Data Size Area, ha Estimates, Variance, Variance, SD, SD, Relative SD, Relative SD

tons/ha (tons/ha)2 (tons/ha)2 tons/ha tons/ha % %

m = 50 2.5 ha
M = 500 500 ha 198.2 32972.2 33,985.4 181.6 184.4 91.6 93.0

m = 100 5 ha
M = 1000 1000 ha 198.2 6211.1 6453.1 78.8 80.3 39.8 40.5

m = 500 25 ha
M = 5000 5000 ha 198.2 260.9 280.4 16.2 16.7 8.2 8.5

m = 738 36.9 ha
M = 9805 9805 ha 198.2 141.7 149.5 11.9 12.2 6.0 6.2

Table A2. Error statistics for the comparison of LAMP3 estimates of above-ground biomass before and
after histogram matching against LiDAR estimates, at different scales.

Estimation Estimates Reference RMSE RMSE Rel. Bias Bias Rel.

Size
Method

Mean Std Mean Std
ha tons/ha tons/ha tons/ha tons/ha tons/ha % tons/ha %

1 OLSLAMP 218.1 70.3 221.3 80.1 58.9 26.6 −3.2 −1.5
1 LAMP3 229.9 77.6 221.3 80.1 52.0 23.5 8.6 3.9
10 OLSLAMP 217.8 60.8 218.1 65.6 43.4 19.9 −0.3 −0.1
10 LAMP3 229.4 66.1 218.1 65.6 38.6 17.7 11.3 5.2

100 OLSLAMP 217.8 51.9 216.2 51.4 33.9 15.7 1.6 0.7
100 LAMP3 228.2 53.5 216.2 51.4 31.6 14.6 12.0 5.5
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As can be seen from Table A2 and Figures A2–A4, the relative RMSE attains a level of 15 % at
a resolution of 100 ha, while the relative Standard Deviation of error is still 40 % at a resolution of
1000 ha when we use classical variance estimates from [36] .

(a) (b)

Figure A2. AGB predictions with LAMP3 at 1-hectare scale compared to Lidar estimates. (a) OLSLAMP;
(b) after LAMP3. Regression trend line of the linear model in red, optimal trend line in black.

(a) (b)

Figure A3. AGB predictions with LAMP3 at 10-hectare scale compared to Lidar estimates.
(a) OLSLAMP; (b) LAMP3. Regression trend line of the linear model in red, optimal trend line
in black.
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(a) (b)

Figure A4. AGB predictions with LAMP3 at 100-hectare scale compared to Lidar estimates.
(a) OLSLAMP; (b) LAMP3. Regression trend line of the linear model in red, optimal trend line
in black.

References

1. Tomppo, E.; Gschwantner, T.; Lawrence, M.; McRoberts, R.E. National Forest Inventories—Pathways for
Common Reporting; Springer Science+Business Media B.V.: Berlin, Germany, 2010.

2. McRoberts, R.E. Probability- and model-based approaches to inference for proportion forest using satellite
imagery as ancillary data. Remote Sens. Environ. 2010, 114, 1017–1025.

3. Särndal, C.-E.; Swensson, B.; Wretman, J. Model Assisted Survey Sampling; Springer: Berlin, Germany, 1992.
4. Gregoire, T.G.; Ståhl, G.; Næsset, E.; Gobakken, T.; Nelson, R.; Holm, S. Model-assisted estimation of biomass

in a LiDAR sample survey in Hedmark County, Norway. Can. J. For. Res. 2011, 41, 83–95.
5. Varvia, P.; Lähivaara, T.; Maltamo, M.; Packalén, P.; Tokola, T.; Seppänen, A. Unvertainty Quantification

in ALS-Based Species-Specific Growing Stock Volume Estimation. IEEE Trans. Geosci. Remote Sens.
2016, doi:10.1109/TGRS.2016.2628960.

6. Nyström, M.; Lindgren, N.; Wallerman, J.; Grafström, A.; Muszta, A.; Nyström, K.; Bohlin, J.; Willén, E.;
Fransson, J.E.S.; Ehlers, S.; et al. Data Assimilation in Forest Inventory: First Empirical Results. Forests
2015, 6, 4540–4557.

7. Junttila, V.; Kauranne, T.; Leppänen, V. Estimation of Forest Stand Parameters from LiDAR Using Calibrated
Plot Databases. For. Sci. 2010, 56, 257–270.

8. Gregoire, T.G.; Næsset, E.; McRoberts, R.E.; Ståhl, G.; Andersen, H.-E.; Gobakken, T.; Ene, L.; Nelson, R.
Statistical rigor in LiDAR-assisted estimation of aboveground forest biomass. Remote Sens. Environ.
2016, 173, 98–108.

9. Næsset, E.; Gobakken, T.; Bollandsås, O.M.; Gregoire, T.G.; Nelson, R.; Ståhl, G. Comparison of precision
of biomass estimates in regional field sample surveys and airborne LiDAR-assisted surveys in Hedmark
County, Norway. Remote Sens. Environ. 2013, 130, 108–120.

10. Ene, L.T.; Næsset, E.; Gobakken, T.; Gregoire, T.G.; Ståhl, G.; Nelson, R. Assessing the accuracy of regional
LiDAR-based biomass estimation using a simulation approach. Remote Sens. Environ. 2012, 123, 579–592.

11. Nelson, R.; Gobakken, T.; Næsset, E.; Gregoire, T.G.; Ståhl, G.; Holm, S.; Flewelling, J. Lidar sampling—Using
an airborne profiler to estimate forest biomass in Hedmark County, Norway. Remote Sens. Environ.
2012, 123, 563–578.

12. Ståhl, G.; Holm, S.; Gregoire, T.G.; Gobakken, T.; Næsset, E.; Nelson, R. Model-based inference for biomass
estimation in a LiDAR sample survey in Hedmark County, Norway. Can. J. For. Res. 2011, 41, 96–107.

13. Mitchard, E.T.A.; Saatchi, S.S.; Baccini, A.; Asner, G.P.; Goetz, S.J.; Harris, N.L.; Brown, S. Uncertainty in the
spatial distribution of tropical forest biomass: A comparison of pan-tropical maps. Carbon Balance Manag.
2013, 8, 10.



Remote Sens. 2017, 9, 154 33 of 36

14. Saatchi, S.S.; Houghton, R.A.; dos Santos Alvala, R.C.; Soares, J.V.; Yu, Y. Distribution of aboveground live
biomass in the Amazon basin. Glob. Chang. Biol. 2007, 13, 816–837.

15. Le Toan, T.; Quegan, S.; Davidsoc, M.W.J.; Balzter, H.; Paillou, P.; Papathanassiou, K.; Plummer, S.; Rocca, F.;
Saatchi, S.; Shugart, H.; et al. The BIOMASS mission: Mapping global forest biomass to better understand
the terrestrial carbon cycle. Remote Sens. Environ. 2011, 115, 2850–2860.

16. Reimer, F.; Asner, G.P.; Joseph, S. Advancing reference emission levels in subnational and national REDD+
initiatives: A CLASlite approach. Carbon Balance Manag. 2015, 10, 5.

17. Bellot, F.F.; Bertram, M.; Navratil, P.; Siegert, F.; Dotzauer, H. The High-Resolution Global Map
of 21st-Century Forest Cover Change from the University of Maryland (’Hansen Map’) Is Hugely
Overestimating Deforestation in Indonesia. FORCLIME Forests and Climate Change Programme, Indonesia,
2014. Available online: http://forclime.org/documents/press_release/FORCLIME_Overestimation%20of%
20Deforestation.pdf (accessed on 2 September 2016).

18. Corona, P.; Fattorini, L.; Franceschi, S.; Scrinzi, G.; Torresan, C. Estimation of standing wood volume in forest
compartments by exploiting airborne laser scanning information: Model-based, design-based, and hybrid
perspectives. Can. J. For. Res. 2014, 44, 1303–1311.

19. Hilker, T.; Wulder, M.A.; Coops, N.C.; Linke, J.; McDermid, G.; Masek, J.G.; Gao, F.; White, J.C. A new data
fusion model for high spatial- and temporal-resolution mapping of forest disturbance based on Landsat and
MODIS. Remote Sens. Environ. 2009, 113, 1613–1627.

20. Johnson, K.D.; Birdsey, R.; Finley, A.O.; Swantaran, A.; Dubayah, R.; Wayson, C.; Riemann, R. Integrating
forest inventory and analysis data into a LIDAR-based carbon monitoring system. Carbon Balance Manag.
2014, 9, 3.

21. Wulder, M.A.; White, J.C.; Nelson, R.F.; Næsset, E.; Ørka, H.O.; Coops, N.C.; Hilker, T.; Bater, C.W.;
Gobakken, T. Lidar sampling for large-area forest characterization: A review. Remote Sens. Environ. 2012,
121, 196–209.

22. Asner, G.P. Tropical forest carbon assessment: Integrating satellite and airborne mapping approaches.
Environ. Res. Lett. 2009, 4, 034009.

23. Asner, G.P.; Knapp, D.E.; Martin, R.E.; Tupayachi, R.; Anderson, C.B.; Mascaro, J.; Sinca, F.; Chadwick, K.D.;
Sousan, S.; Higgins, M.; et al. The High-Resolution Carbon Geography of Perú; A Collaborative Report of the
Carnegie Airborne Observatory and the Ministry of Environment of Perú; Carnegie Airborne Observatory;
the Ministry of Environment of Peru: Lima, Peru, 2014.

24. Asner, G.P.; Mascaro, J.; Anderson, C.; Knapp, D.E.; Martin, R.E.; Kennedy-Bowdoin, T.; van Breugel, M.;
Davies, S.; Hall, J.S.; Muller-Landau, H.C.; et al. High-fidelity national carbon mapping for resource
management and REDD+. Carbon Balance Manag. 2013, 8, 7.

25. Avitabile, V.; Herold, M.; Heuvelink, G.B.M.; Lewis, S.L.; Phillips, O.L.; Asner, G.P.; Armston, J.; Asthon, P.;
Banin, L.F.; Bayol, N.; et al. An integrated pan-tropical biomass map using multiple reference datasets.
Glob. Chang. Biol. 2015, doi:10.1111/gcb.13139.

26. Hansen, E.H.; Gobakken, T.; Solberg, S.; Kangas, A.; Ene, L.; Mauya, E.; Næsset, E. Relative efficiency of ALS
and InSAR for biomass estimation in a Tanzanian rainforest. Remote Sens. 2015, 7, 9865–9885.

27. Molina, P.X.; Asner, G.P.; Abadía, M.F.; Manrique, J.C.O.; Diez, L.A.S.; Valencia, R. Spatially-Explicit testing
of a general aboveground carbon density estimation model in a western Amazonian forest using airborne
LiDAR. Remote Sens. 2016, 8, 1–15.

28. Lohne, T.P.; Solberg, S.; Næsset, E.; Gobakken, T.; Hansen, E.H.; Zahabu, E. Estimation of tropical forest
biomass using radargrammetric DEMs derived from TerraSAR-X stripmap image. In Proceeding of the
5th TerraSAR-X Science Team Meeting, German Aerospace Center (DLR), Oberpfaffenhofen, German,
8 July 2013.

29. Solberg, S.; Næsset, E.; Gobakken, T.; Bollandsås, O.M. Forest biomass change estimated from height change
in interferometric SAR height models. Carbon Balance Manag. 2014, 9, 1–12.

30. Kaasalainen, S.; Holopainen, M.; Karjalainen, M.; Vastaranta, M.; Kankare, V.; Karila, K.; Osmanoglu, B.
Combining Lidar and Synthetic Aperture Radar Data to Estimate Forest Biomass: Status and Prospects.
Forests 2015, 6, 252–270.

31. Global Forest Observations Initiative. Integrating Remote-Sensing and Ground-Based Observations for Estimation
of Emissions and Removals of Greenhouse Gases in Forests: Methods and Guidance from the Global Forest Observations
Initiative; Group on Earth Observations: Geneva, Switzerland, 2016.

http://forclime.org/documents/press_release/FORCLIME_Overestimation%20of%20Deforestation.pdf
http://forclime.org/documents/press_release/FORCLIME_Overestimation%20of%20Deforestation.pdf


Remote Sens. 2017, 9, 154 34 of 36

32. Pelletier, J.; Ramankutty, N.; Potvin, C. Diagnosing the uncertainty and detectability of emission reductions
for REDD+ under current capabilities: An example for Panama. Environ. Res. Lett. 2011, 6, 024005.

33. Lusiana, B.; van Noordwijk, M.; Johana, F.; Galudra, G.; Suyanto, S.; Cadisch, G. Implications of uncertainty
and scale in carbon emission estimates on locally appropriate designs to reduce emissions from deforestation
and degradation (REDD+). Mitig. Adapt. Strateg. Glob. Chang. 2014, 19, 757–772.

34. Chen, Q.; Laurin, G.V.; Valentini, R. Uncertainty of remotely sensed aboveground biomass over an African
tropical forest: Propagating errors from trees to plots to pixels. Remote Sens. Environ. 2015, 160, 134–143.

35. Chen, Q.; McRoberts, R.E.; Wang, C.; Radtke, P.J. Forest aboveground biomass mapping and estimation
across multiple spatial scales using model-based inference. Remote Sens. Environ. 2016, 18, 350–360.

36. Saarela, S.; Holm, S.; Grafström, A.; Schnell, S.; Næsset, E.; Gregoire, T.; Nelson, R.; Ståhl, G. Hierarchical
model-based inference for forest inventory utilizing three sources of information. Ann. For. Sci. 2016, 73,
895–910.

37. Corona, P. Consolidating new paradigms in large-scale monitoring and assessment of forest ecosystems.
Environ. Res. 2016, 144, 8–14.

38. Corona, P. Integration of forest mapping and inventory to support forest management. iFor. Biogeosci. For.
2010, 3, 59–64.

39. Intergovernmental Panel on Climate Change (IPCC). Good Practice Guidance for Land Use, land-Use Change
and Forestry (IPCC/IGES); Penman, J., Gytarsky, M., Hiraishi, T., Krug, T., Kruger, D., Pipatti, R., Buendia, L.,
Miwa, K., Ngara, T., Tanabe, K., et al., Eds.; IPCC: Geneva, Switzerland, 2003.

40. Joshi, A.R.; Tegel, K.; Manandhar, U.; Aguilar-Amuchastegui, N.; Dinerstein, E.; Eivazi, A.; Gamble, L.;
Gautam, B.; Gunia, K.; Gunia, M.; et al. An accurate REDD+ reference level for Terai Arc Landscape,
Nepal using LiDAR assisted Multi-source Programme (LAMP). Banko Janakari 2015, 24, 23–33.

41. Tomppo, E.; Haakana, M.; Katila, M.; Peräsaari, J. Multi-Source National Forest Inventory—Methods and
Applications; Managing Forest Ecosystems; Springer: Berlin, Germany, 2008.

42. Gregoire, T.G. Design-based and model-based inference in survey sampling: Appreciating the difference.
Can. J. For. Res. 1998, 28, 1429–1447.

43. Rana, P.; Korhonen, L.; Gautam, B.; Tokola, T. Effect of field plot location on estimating tropical forest
above-ground biomass in Nepal using airborne laser scanning data. ISPRS J. Photogramm. Remote Sens.
2014, 94, 55–62.

44. Gautam, B.; Peuhkurinen, J.; Kauranne, T.; Gunia, K.; Tegel, K.; Latva-Käyrä, P.; Rana, P.; Eivazi, A.;
Kolesnikov, A.; Hämäläinen, J.; et al. Estimation of Forest Carbon Using LiDAR-Assisted Multi-source
Programme (LAMP) in Nepal. In Proceedings of the Technical Commission VI, Education and Outreach,
Working Group 6, Pokhara, Nepal, 12–13 September 2013.

45. Department of Forests, Ministry of Forest and Soil Conservation, GoN. Forest Cover Change Analysis of the Terai
Districts (1990/91-2000/01); Department of Forests, Ministry of Forest and Soil Conservation: Kathmandu,
Nepal, 2005.

46. Department of Forests, Ministry of Forest and Soil Conservation. REDD, forestry and climate change cell.
Emission Reductions Project Idea Note; Department of Forests, Ministry of Forest and Soil Conservation:
Kathmandu, Nepal, 2014.

47. Department of Forests, Ministry of Forest and Soil Conservation, GoN. Hamro Ban; Department of Forests,
Ministry of Forest and Soil Conservation: Kathmandu, Nepal, 2013.

48. Joshi, A.; Shrestha, M.; Smith, J.; Ahearn, S. Forest Classification of Terai Arc Landscape (TAL) Based on Landsat 7
Satellite Data; Technical Report; WWF-US: Washington, DC, USA, 2003.

49. Eerikäinen, K. Predicting the height-diameter pattern of planted Pinus kesiya stands in Zambia and
Zimbabwe. For. Ecol. Manag. 2003, 175, 355–366.

50. Calama, R.; Montero, G. Interregional nonlinear height-diameter model with random coefficients for stone
pine in Spain. Can. J. For. Res. 2004, 34, 150–163.

51. Mehtätalo, L. A longitudinal height-diameter model for Norway spruce in Finland. Can. J. For. Res.
2004, 34, 131–140.

52. Nothdurft, A.; Kublin, E.; Lappi, J. A non-linear hierarchical mixed model to describe tree height growth.
Eur. J. For. Res. 2006, 125, 281–289.

53. Sharma, M.; Parton, J. Height-diameter equations for boreal tree species in Ontario using a mixed-effects
modelling approach. For. Ecol. Manag. 2007, 249, 187–198.



Remote Sens. 2017, 9, 154 35 of 36

54. Sharma, E.R.; Pukkala, T. Volume Equations and Biomass Prediction of Forest Trees of Nepal; Publication Series of
the Ministry of Forests and Soil Conservation of Nepal; Forest Survey and Statistics Division: Kathmandu,
Nepal, 1990; pp. 1–16.

55. Souza, C., Jr.; Roberts, D.A.; Cochrane, M.A. Combining spectral and spatial information to map canopy
damage from selective logging and forest fires. Remote Sens. Environ. 2005, 98, 329–343.

56. Souza, C., Jr.; Siqueira, J.V. ImgTools: A software for optical remotely sensed data analysis. In Proceedings
of the XVI Simpósio Brasileiro de Sensoriamento Remoto (SBSR), Foz do Iguaçu-PR, Brazil, 13–18 April 2013.

57. Intergovernmental Panel on Climate Change (IPCC). Guidelines for National Greenhouse Gas Inventories.
2006. Available online: http://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/4_Volume4/V4_04_Ch4_
Forest_Land.pdf (accessed on 2 September 2016).

58. Junttila, V.; Maltamo, M.; Kauranne, T. Sparse Bayesian Estimation of Forest Stand Characteristics from
Airborne Laser Scanning. For. Sci. 2008, 54, 543–552.

59. Yuan, D.; Elvidge, C.D. Comparison of relative radiometric normalization techniques. ISPRS J. Photogramm.
Remote Sens. 1996, 51, 117–126.

60. Song, C.; Woodcock, C.E.; Seto, K.C.; Lenney, M.P.; Macomber, S.A. Classification and change detection using
landsat TM data: When and how to correct atmospheric effects? Remote Sens. Environ. 2001, 75, 230–244.

61. Du, Y.; Teillet, P.M.; Cihlar, J. Radiometric normalization of multitemporal high-resolution satellite images
with quality control for land cover change detection. Remote Sens. Environ. 2002, 82, 123–134.

62. Gibbs, H.K.; Brown, S.; Niles, J.O.; Foley, J.A. Monitoring and estimating tropical forest carbon stocks:
Making REDD a reality. Environ. Res. Lett. 2007, 2, 045023.

63. Canty, M.J.; Nielsen, A.A. Automatic radiometric normalization of multitemporal satellite imagery with the
iteratively re-weighted MAD transformation. Remote Sens. Environ. 2008, 112, 1025–1036.

64. Zhang, L.; Yang, L.; Lin, H.; Liao, M. Automatic relative radiometric normalization using iteratively weighted
least square regression. Int. J. Remote Sens. 2008, 29, 459–470.

65. Liu, S.-H.; Lin, C.-W.; Chen, Y.-R.; Tseng, C.-M. Automatic radiometric normalization with genetic algorithms
and a Kriging model. Comput. Geosci. 2012, 43, 42–51.

66. Eivazi, A.; Kolesnikov, A.; Junttila, V.; Kauranne, T. Variance-preserving mosaicing of multiple satellite
images for forest parameter estimation: Radiometric normalization. ISPRS J. Photogramm. Remote Sens.
2015, 105, 120–127.

67. Kaufman, Y.J.; Tanré, D. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Trans.
Geosci. Remote Sens. 1992, 30, 261–270.

68. Forest Resource Assessment Nepal Project/Department of Forest Research and Survey. LiDAR Assisted
Multisource Programme (LAMP) in Terai Arc Landscape (TAL); Forest Resource Assessment Nepal
Project/Department of Forest Research and Survey: Kathmandu, Nepal, 2014.

69. Næsset, E. Some Challenges in Forest Monitoring—Proposing a “Research Platform” for
Development, Training and Validation of Spaceborne Technologies in Brazil. 2009. Available online:
http://www.dsr.inpe.br/Brazil_Norway_Workshop/ERIK%20NAESSET_Challenges_in_florest_
monitoring_Proposing_a_research_platform_for_development_traning.pdf (accessed on 2 September 2016).

70. García, M.; Riaño, D.; Chuvieco, E.; Danson, F.M. Estimating biomass carbon stocks for a Mediterranean
forest in central Spain using LiDAR height and intensity data. Remote Sens. Environ. 2010, 114, 816–830.

71. Olofsson, P.; Foody, G.M.; Stehman, S.V.; Woodcock, C.E. Making better use of accuracy data in land
change studies: Estimating accuracy and area and quantifying uncertainity using stratified estimation.
Remote Sens. Environ. 2013, 129, 122–131.

72. Mauya, E.W.; Hansen, E.H.; Gobakken, T.; Bollandsås, O.M.; Malimbwi, R.E.; Næsset, E. Effects of field
plot size on prediction accuracy of aboveground biomass in airborne laser scanning-assisted inventories in
tropical rain forests of Tanzania. Carbon Balance Manag. 2015, doi:10.1186/s13021-015-0021-x.

73. Mascaro, J.; Detto, M.; Asner, G.; Muller-Landau, H. Evaluating uncertainty in mapping forest carbon with
airborne LiDAR. Remote Sens. Environ. 2011, 115, 3770–3774.

74. Frazer, G.; Magnussen, S.; Wulder, M.; Niemann, K. Simulated impact of sample plot size and
co-registration error on the accuracy and uncertainty of LiDAR-derived estimates of forest stand biomass.
Remote Sens. Environ. 2011, 115, 636–649.

75. Gobakken, T.; Næsset, E. Assessing effects of positional errors and sample plot size on biophysical stand
properties derived from airborne laser scanner data. Can. J. For. Res. 2009, 39, 1036–1052.

http://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/4_Volume4/V4_04_Ch4_Forest_Land.pdf
http://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/4_Volume4/V4_04_Ch4_Forest_Land.pdf
 http://www.dsr.inpe.br/Brazil_Norway_Workshop/ERIK%20NAESSET_Challenges_in_florest_monitoring _Proposing_a_research_platform_for_development_traning.pdf
 http://www.dsr.inpe.br/Brazil_Norway_Workshop/ERIK%20NAESSET_Challenges_in_florest_monitoring _Proposing_a_research_platform_for_development_traning.pdf


Remote Sens. 2017, 9, 154 36 of 36

76. Maltamo, M.; Næsset, E.; Vauhkonen, J. Forestry Applications of Airborne Laser Scanning. Concepts and Case
Studies; Managing Forest Ecosystems; Springer: Berlin, Germany, 2014.

77. Tokola, T. Remote Sensing Concepts and Their Applicability in REDD+ Monitoring. Curr. For. Rep.
2015, 1, 252–260.

78. Kandel, P.N. Estimation of above Ground Forest Biomass and Carbon Stock by Integrating Lidar,
Satellite Image and Field Measurement in Nepal. J. Nat. Hist. Mus. 2015, 28, 160–170.

79. Swatantran, A.; Tang, H.; Barrett, T.; DeCola, P.; Dubayah, R. Rapid, High-Resolution Forest Structure and
Terrain Mapping over Large Areas using Single Photon Lidar. Sci. Rep. 2016, doi:10.1038/srep28277.

80. White, H. A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity.
Econom. J. Econom. Soc. 1980, 48, 817–838.

81. Davidson, R.; MacKinnon, J.G. Estimation and Inference in Econometrics; Oxford University Press: New York,
NY, USA, 1993.

82. Ståhl, G.; Saarela, S.; Schnell, S.; Holm, S.; Breidenbach, J.; Healey, S.P.; Patterson, P.L.; Magnussen, S.;
Næsset, E.; McRoberts, R.E.; et al. Use of models in large-area forest surveys: Comparing model-assisted,
model-based and hybrid estimation. For. Ecosyst. 2016, 3, 1–11.

c© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	LiDAR-Assisted Multisource Programme
	Study Site
	Conducting the LiDAR Campaign
	Field Campaigns
	LAMP2 with Stratification for Reference Level Generation
	Satellite Data Acquisition and Processing
	Image Processing
	Image Classification
	Generation of Emission Factors Using Tier-2 LiDAR-Assisted Multi-Source Programme (LAMP2)
	Calculation of Emissions from Below-Ground Biomass
	Time-Series Analysis of Satellite Data to Generate Activity Data
	Generating Reference Level (RL)
	Calculating Net Emissions Level

	LAMP3 with Estimation of Above-Ground Biomass at 1 ha-Scale
	Variance-Preserving Landsat Image Mosaicking
	Applying the LiDAR Model to Calculate AGB Estimates on Surrogate Plots
	LAMP3 Model Construction
	Variance-Preserving Histogram Matching


	Results
	Reference Emissions Level (RL) Estimation
	Reference Level at District Level
	High-Resolution AGB Maps Calculated in TAL with LAMP3
	Uncertainty Assessment
	Variance Estimation of Two-Level Regression Models
	Validation of Activity Data through Additional Field Verification
	Impact of Field Plot Size
	LiDAR Model Errors on Different Plot Sizes
	Validation of Results by a Separate Field Campaign


	Discussion and Conclusions
	LAMP2 Algorithm Diagram
	Estimation of Population Variance and Standard Deviation in LAMP3 Methods

