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Abstract:



Timely and accurate extraction of urban land area using the Suomi National Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite (VIIRS) nighttime light data is important for urban studies. However, a comprehensive assessment of the existing methods for extracting urban land using VIIRS nighttime light data remains inadequate. Therefore, we first reviewed the relevant methods and selected three popular methods for extracting urban land area using nighttime light data. These methods included local-optimized thresholding (LOT), vegetation-adjusted nighttime light urban index (VANUI), integrated nighttime lights, normalized difference vegetation index, and land surface temperature support vector machine classification (INNL-SVM). Then, we assessed the performance of these methods for extracting urban land area based on the VIIRS nighttime light data in seven evaluation areas with various natural and socioeconomic conditions in China. We found that INNL-SVM had the best performance with an average kappa of 0.80, which was 6.67% higher than the LOT and 2.56% higher than the VANUI. The superior performance of INNL-SVM was mainly attributed to the integration of information on nighttime light, vegetation cover, and land surface temperature. This integration effectively reduced the commission and omission errors arising from the overflow effect and low light brightness of the VIIRS nighttime light data. Additionally, INNL-SVM can extract urban land area more easily. Thus, we suggest that INNL-SVM has great potential for effectively extracting urban land with VIIRS nighttime light data at large scales.
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1. Introduction


The world has been experiencing dramatic urban land area growth, primarily due to rapid economic development and population growth [1,2,3]. From 2000 to 2010, the global built-up area was estimated to have increased from 0.60 to 0.87 million km2, with an average annual growth of 3.73% [4]. At this growth rate, the global built-up area will increase to 3.11 million km2 by 2050, which is close to the total terrestrial area of India [4]. Urban expansion causes numerous ecological and environmental effects worldwide [5,6,7,8]. For example, urban expansion in China has resulted in a natural habitat loss of 8647 km2 from 1992 to 2012 [5], and urban expansion in the pan-tropics contributes to a loss in vegetation biomass of 1.38 PgC or approximately 5% of emissions from tropical deforestation and land-use change [9]. Moreover, urban expansion aggravates water shortage, air pollution, and the urban heat island effect, bringing stresses to regional sustainability around the world [1]. To address these issues in urban studies, it is important to extract urban land area using timely and effective approaches [2,3,10].



Recently, the Suomi National Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite (VIIRS) nighttime light data have begun to be a novel data source for the timely and accurate extraction of urban land area [11,12]. In 2013, the Earth Observation Group in the National Oceanic and Atmospheric Administration’s National Geophysical Data Center (NOAA/NGDC) of the United States published the global VIIRS nighttime light test data for 2012. In 2014, it released version 1, and in 2016 nighttime light data became available on a monthly basis between March 2014 and September 2016. The VIIRS nighttime light data are suitable for extracting urban land area due to the effective low nighttime light-detecting capability, with high radiometric resolution, large-scale coverage, and short revisiting period [13,14,15,16]. Specifically, VIIRS can detect nighttime lights within the radiation range from 3 nW·cm−2·sr−1 to 0.02 W·cm−2·sr−1, with a span from 75°N latitude to 65°S, a 3000 km swath, and a 12-h revisiting period [17]. Moreover, compared with Defense Meteorological Satellite Program—Operational Linescan System (DMSP-OLS) nighttime light data published earlier, VIIRS nighttime light data are of much higher quality [17,18]. The spatial resolution improved from 1 to 742 m. The digital number (DN) values also changed from relative light intensity values with a 6-bit quantization limit to calibrated radiance values with a 14-bit quantization, which effectively resolved the saturation problem [17]. Recently, some researchers have used VIIRS data to extract urban land area at regional, national, and global scales. For example, Shi et al. [11] obtained urban land information on 12 major Chinese cities in 2012. Xu et al. [8] extracted urban land area in China in 2015. Sharma et al. [19] extracted worldwide urban land areas in 2014.



However, challenges still exist for using VIIRS nighttime light data to extract urban land area. First, VIIRS nighttime light data are affected by the overflow effect as non-coherent light radiates in all directions from its source (i.e., the dispersion of light into surrounding areas) [20], resulting in the overestimation of urban land area [5,8]. Second, the VIIRS overpass time is after midnight, i.e., near 1:30 a.m., when most urban areas exhibit some decline in nighttime light brightness, which can lead to an underestimation of urban land area [17]. Thus, further studies are needed for accurate urban land area extraction using VIIRS nighttime light data [5,8,11,19].



Currently, 11 methods within three categories, i.e., thresholding, index, and supervised classification, have been used to extract urban land area using the VIIRS nighttime light data (Table 1). Among them, there are three widely used methods, including local-optimized thresholding (LOT), the vegetation-adjusted nighttime light urban index (VANUI), and the integrated nighttime lights, normalized difference vegetation index (NDVI) and land surface temperature (LST) support vector machine (SVM) classification (INNL-SVM) (Table 1). Generally, LOT determines an optimal threshold according to ancillary data (e.g., socioeconomic data, medium- to high-resolution remote sensing data, etc.) and extracts areas with nighttime light brightness greater than the optimal threshold as urban areas [21]. Using this approach, Xie and Weng [22] obtained urban land information for 2000, 2005, and 2010 in China. The VANUI is an index developed by combining nighttime light data with NDVI data and is used to extract urban land area based on an optimal threshold determined by ancillary data. Using the VANUI, Li et al. [23] extracted urban land area in the southeastern United States from 1992 to 2013. INNL-SVM is a supervised classification approach that integrates nighttime light data, NDVI data, and LST data. It utilizes the SVM classifier to extract urban land area based on training samples [5,24]. Using INNL-SVM, Xu et al. [8] extracted urban land area in China from 1992 to 2015. These three methods largely differ in theory, data source, applied region, and accuracy (Table 1). However, an application assessment of these three methods for the VIIRS nighttime light data is insufficient, limiting broad utilization of the VIIRS nighttime light data for urban land extraction.



Table 1. An overview of the methods for extracting urban land area using nighttime light data.







	
Categories

	
Methods

	
Study Area

	
Year

	
Kappa Index

	
Overall Accuracy

	
Nighttime Light Data

	
Reference






	
Thresholding

	
Empirical thresholding (ET))

	
United States

	
1994–1995

	
**

	
**

	
DMSP-OLS

	
[25,26]




	
City-lights polygon perimeter-based thresholding (CPT)

	
United States

	
1994–1995

	
**

	
**

	
DMSP-OLS

	
[27]




	
Brightness gradient-based thresholding (BGT))

	
274 Chinese cities

	
1992, 2002, 2012

	
**

	
**

	
DMSP-OLS

	
[28]




	
Local-optimized thresholding (LOT)

	
Southeastern United States

	
1992, 1993, 2000

	
**

	
**

	
DMSP-OLS

	
[29]




	
San Francisco, Beijing and Lhasa

	
1994–1995

	
***

	
68.0%–99.2%

	
DMSP-OLS

	
[21]




	
China

	
1992, 1996, 1998

	
***

	
79.5%–82.9%

	
DMSP-OLS

	
[30]




	
China

	
1992–2008

	
0.60

	
86.3%

	
DMSP-OLS

	
[31]




	
Global

	
2000

	
0.55

	
87.0%

	
DMSP-OLS

	
[32]




	
China

	
2000, 2005, 2010

	
0.53–0.56

	
95.2%–94.1%

	
DMSP-OLS

	
[22]




	
12 Chinese cities

	
2012

	
***

	
89.6%–96.3%

	
VIIRS

	
[11]




	
Index

	
Enhanced built-up index (EUBI)

	
The whole world

	
2014

	
**

	
**

	
VIIRS

	
[19]




	
Vegetation-adjusted nighttime light urban index (VANUI)

	
Southeastern United States

	
1992–2013

	
***

	
85.0%

	
DMSP-OLS

	
[23,33]




	
Supervised classification

	
Classification and regression tree (CART)

	
99 Chinese cities

	
2010

	
0.53

	
94.4%

	
DMSP-OLS

	
[34]




	
K-nearest-neighbors (KNN)

	
99 Chinese cities

	
2010

	
0.58

	
96.2%

	
DMSP-OLS

	
[34]




	
Random forests (RF)

	
99 Chinese cities

	
2010

	
0.60

	
96.4%

	
DMSP-OLS

	
[34]




	
Integrated nighttime lights and NDVI SVM classification (INN-SVM) *

	
25 Chinese cities

	
2000

	
0.62

	
90.5%

	
DMSP-OLS

	
[35]




	
China

	
2008

	
0.69

	
90.0%

	
DMSP-OLS

	
[36]




	
99 Chinese cities

	
2010

	
0.57

	
96.7%

	
DMSP-OLS

	
[36]




	
Integrated nighttime lights, NDVI and LST SVM classification (INNL-SVM) *

	
China

	
1992–2012

	
0.66

	
95.2%

	
DMSP-OLS and VIIRS

	
[5]




	
55 Chinese cities

	
2006

	
0.33–0.80

	
73.4%–98.4%

	
DMSP-OLS

	
[24]




	
China

	
1992–2015

	
0.60

	
92.62%

	
DMSP-OLS and VIIRS

	
[8]








* NDVI: normalized difference vegetation index; SVM: support vector machine; LST: land surface temperature; ** The accuracy assessment was not performed; *** The Kappa index was not used in the accuracy assessment.








The objective of this study was to assess the LOT, VANUI, and INNL-SVM methods for extracting urban land area using the VIIRS nighttime light data. To achieve this goal, we first selected seven evaluation areas with various natural and socioeconomic conditions in China, which is experiencing rapid urbanization. Then, we extracted year 2015 urban land area for these evaluation areas using the LOT, VANUI, and INNL-SVM methods. Finally, we assessed the accuracy of these methods, and a discussion of their merits and disadvantages is provided.




2. Study Area and Data


2.1. Study Area


We selected seven evaluation areas with diverse natural and socioeconomic conditions based on the major biomes in China to represent regional discrepancies (Figure 1, Table 2). Each evaluation area is approximately 2.5 thousand km2 (100 × 100 pixels) and includes one core city with an urban population exceeding 1 million (Table 2). Among these areas, the Kunming area in a tropical and sub-tropical moist broadleaf forests biome has the highest mean annual temperature of 14–16 °C and the largest mean annual precipitation of 800–1000 mm. In 2014, the core city had an urban population of 3.55 million and a gross domestic product (GDP) per capita of 71.75 thousand RMB yuan. The Jiamusi area, which is located in a flooded grasslands and savannas biome, has the lowest mean annual temperature of 2–4 °C. In 2014, the core city had an urban population of 1.36 million and a GDP per capita of 43.37 thousand RMB yuan. The Urumqi area, which is in a desert and xeric shrubland biome, has the lowest mean annual precipitation of 100–200 mm. In 2014, the core city had an urban population of 2.58 million and a GDP per capita of 94.84 thousand RMB yuan.


Figure 1. Study area.
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Table 2. Description of the selected evaluation areas.







	
Evaluation Area *

	
Biome

	
Mean Annual Temperature (°C)

	
Mean Annual Precipitation (mm)

	
City

	
Urban Population in 2014 (Thousand Persons) **

	
GDP Per Capita in 2014 (Thousand·RMB·Yuan) **






	
Kunming

	
Tropical and sub-tropical moist broadleaf forests

	
14–16

	
800–1000

	
Kunming

	
3549.20

	
71.75




	

	

	
Anning

	
262.80

	
71.34




	

	

	
Yiliang

	
174.50

	
32.52




	

	

	
Jinning

	
116.10

	
35.40




	

	

	
Congming

	
115.30

	
31.14




	

	

	
Fumin

	
51.90

	
36.26




	

	

	
Chengjiang

	
19.40

	
37.16




	
Zhengzhou

	
Temperate broadleaf and mixed forests

	
13–15

	
600–800

	
Zhengzhou

	
4078.30

	
60.11




	

	

	
Xinzheng

	
436.20

	
81.81




	

	

	
Xinmi

	
410.90

	
75.08




	

	

	
Zhongmou

	
381.30

	
77.90




	

	

	
Xingyang

	
306.30

	
92.69




	

	

	
Wuzhi

	
222.70

	
41.23




	

	

	
Yuanyang

	
193.10

	
16.54




	
Yinchuan

	
Temperate coniferous forests

	
8–10

	
200–300

	
Yinchuan

	
1247.68

	
61.95




	

	

	
Helan

	
112.66

	
44.00




	

	

	
Yongning

	
97.98

	
49.89




	
Hohhot

	
Temperate grassland, savanna, and shrubland

	
4–6

	
300–400

	
Hohhot

	
1790.68

	
134.07




	

	

	
Tumotezuo

	
46.98

	
57.10




	
Jiamusi

	
Flooded grassland and savanna

	
2–4

	
400–600

	
Jiamusi

	
1355.50

	
43.37




	
Lanzhou

	
Montane grassland and shrubland

	
8–10

	
300–400

	
Lanzhou

	
1852.90

	
80.73




	

	

	
Yuzhong

	
48.85

	
21.97




	
Urumqi

	
Desert and xeric shrubland

	
4–6

	
100–200

	
Urumqi

	
2578.00

	
94.84




	

	

	
Changji

	
372.90

	
74.48








* The name of the largest city was used as the name of each evaluation area; ** The urban population and GDP were obtained from the statistical yearbooks for corresponding provinces [37].









2.2. Data


The VIIRS nighttime light data for 2015 were obtained from the NOAA/NCEI (formerly NGDC) website [38]. These data include monthly average radiance composite images from January to August 2015 produced using nighttime data from the VIIRS Day/Night Band (DNB) acquired from the visible infrared radiometer onboard the Suomi NPP satellite. Prior to averaging, the DNB data are filtered to exclude data impacted by stray light, lightning, lunar illumination, and cloud–cover [39]. The spatial resolution is 15 arc-seconds (742 m), with a spectral range from 0.5 to 0.9 μm [17]. The DN unit is nW·cm−2·sr−1, and the geographic coordinate system is WGS-1984. To make full use of the information derived from eight monthly composites for 2015, we followed the monthly composition approach to produce a mean annual value composite of the VIIRS nighttime light data and resampled it to a spatial resolution of 500 m [17]. The VIIRS nighttime light data have a high quality with temporal consistency (Figure 2a) and without saturation effect (Figure 2b).


Figure 2. Quality assessment of VIIRS nighttime light data. (a) The mean and standard deviation of the VIIRS nighttime light data in the region with consistent observations in China from January to August in 2015; (b) distribution of DN values in the annually composited VIIRS nighttime light data for China in 2015.
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Moderate-resolution Imaging Spectroradiometer (MODIS) 16-day composite images of the NDVI in 2015 were obtained from the National Aeronautics and Space Administration (NASA) [40]. These data included NDVI images from January to August of 2015, and each image was a composite of the maximum NDVI values observed over 16 days at a resolution of 500 m. These data were radiometrically calibrated, precisely georeferenced, and corrected for atmospheric effects before distribution. Furthermore, based on the work of Lu et al. [41], we produced an annual maximum value composite (MVC) image of the NDVI for 2015. Although an annual MVC image of the NDVI conceals land-cover changes that occur during the year, it can efficiently reduce cloud contamination while capturing changes in spatial vegetation characteristics [42].



MODIS eight-day composite images of nighttime LST (MOD11A2) in 2015 were also obtained from NASA [40]. These images were available from January to August of 2015 at a resolution of 1 km. The nighttime LST data were retrieved based on the generalized split window algorithm with thermal infrared data obtained from the MODIS sensors. The nighttime LST data were preprocessed with geometric correction and cloud removal and then composited based on average nighttime LST values over an eight-day period [43]. Studies have shown that nighttime LST data are better suited for distinguishing between urban and non-urban land areas compared with daytime surface temperature data [44]. Therefore, nighttime LST data were used. According to Mildrexler, Zhao, and Running [45], we produced an annual nighttime LST image for 2015 using the MVC method.



Landsat-8 Operational Land Imager (OLI) images for the evaluation areas in 2015 with a spatial resolution of 30 m (Table 3) were obtained from the USGS website [46].



Table 3. Landsat-8 OLI data.







	
Evaluation Area

	
Path/Row

	
Date






	
Kunming

	
129/43

	
5 January 2015




	
Zhengzhou

	
124/36

	
15 September 2015




	
Yinchuan

	
129/33

	
1 September 2015




	
Hohhot

	
126/32

	
30 October 2015




	
Jiamusi

	
115/28

	
15 September 2015




	
Lanzhou

	
130/35

	
10 October 2015




	
Urumqi

	
143/29

	
24 September 2015










Biome boundaries were obtained from the Terrestrial Ecoregions Database provided by the World Wildlife Fund for Nature (WWF) [47]. Moreover, Chinese administrative boundaries (1:4,000,000 scale) were obtained as GIS files from the National Geomatics Center of China [48].





3. Method


3.1. Extraction of Urban Land Area based on Different Methods


3.1.1. Local-Optimized Thresholding (LOT)


Following the methods suggested by Henderson et al. [21], Cao et al. [35], and Liu et al. [31], we first extracted urban land area in 2015 for each evaluation area using the Landsat-8 OLI data through visual interpretation. Then, we determined the optimal thresholds for each evaluation area using the urban land area extracted from the Landsat-8 OLI data as reference data. Specifically, referencing Bhatti and Tripathi’s 2014 analysis [49], we used bands 4, 5, and 7 of the Landsat-8 OLI data to produce false color images of each city, and utilized the high-spatial resolution imageries in Google Earth to identify the standards for interpretation (i.e., color, shape, and texture). Based on these standards, we extracted urban land with Landsat-8 OLI data. After that, optimal thresholds were selected based on the time that the urban land area extracted using the VIIRS nighttime light data best matched the reference data with regard to the spatial extent. The selection of optimal thresholds can be summarized using the following equation:


[image: there is no content]



(1)




where Tj is the threshold for nighttime light in the jth evaluation area, Kappaj is the kappa coefficient calculated using the urban land area extracted based on the Tj threshold from the VIIRS nighttime light and reference data, and [image: there is no content] and [image: there is no content] are nighttime light minimum and maximum values for the jth evaluation area in the VIIRS nighttime light data, respectively. Finally, we extracted areas with values greater than optimal thresholds in the VIIRS nighttime light data and regarded them as urban land for each evaluation area in 2015.




3.1.2. Vegetation-Adjusted Nighttime Light Urban Index (VANUI)


Following Zhang et al. [33] and Li et al. [23], we calculated the VANUI based on both the VIIRS nighttime light data and NDVI data. The equation for calculating the VANUI is as follows:


[image: there is no content]



(2)




where [image: there is no content] is the VANUI value for the ith pixel in the jth evaluation area, [image: there is no content] is the NDVI value for the ith pixel, and [image: there is no content] is the normalized DN value of nighttime light for the ith pixel. [image: there is no content] is calculated using the following equation:
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(3)




where [image: there is no content] is the original DN value of nighttime light for the ith pixel in the jth evaluation area and [image: there is no content] and [image: there is no content] are minimum and maximum values of nighttime light for the jth evaluation area in the VIIRS nighttime light data, respectively.



We followed the approach reported by Li et al. [23] to extract urban land area based on the VANUI. Specifically, optimal VANUI thresholds were determined using urban land area extracted from the Landsat-8 OLI data as reference data. The selection of optimal thresholds can be expressed using the following equation:
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(4)




where Tj is the VANUI threshold in the jth evaluation area, Kappaj is the kappa coefficient calculated using urban land area extracted based on the Tj threshold from the VANUI and reference data, and [image: there is no content] and [image: there is no content] are minimum and maximum values of the VANUI for the jth evaluation area, respectively. Pixels with VANUI values exceeding the optimal thresholds were extracted as urban pixels for each evaluation area in 2015.




3.1.3. Integrated Nighttime Lights, Normalized Difference Vegetation Index, and Land Surface Temperature Support Vector Machine Classification (INNL-SVM)


Following He et al. [5] and Xu et al. [8], we performed INNL-SVM to extract urban land area based on three steps, including training sample selection, SVM classification, and post-classification. First, we selected urban and non-urban land training samples for each evaluation area using urban land characteristics based on the VIIRS nighttime light data, NDVI data, and LST data. According to Yang et al. [36] and He et al. [5], we recognized pixels with nighttime light exceeding 1 nW·cm−2·sr−1 as potential urban land and calculated average and standard deviation values of potential urban land nighttime light data, NDVI data, and LST data. Because urban land has stronger nighttime light, lower NDVI values, and higher LST values, the following equation was used to obtain urban and non-urban land training samples based on average and standard deviation values:


[image: there is no content]



(5)




where [image: there is no content] is the class value of 1 (urban) or 0 (non-urban) at the ith pixel in the jth region in the training sample image. [image: there is no content], [image: there is no content], and [image: there is no content] are nighttime light, NDVI, and LST values at the ith pixel in the jth region, respectively. [image: there is no content], [image: there is no content], and [image: there is no content] denote threshold VIIRS, NDVI, and LST values in the jth region, respectively, which were calculated using the following formulas:


[image: there is no content]



(6)
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(7)






[image: there is no content]



(8)




where [image: there is no content], [image: there is no content], and [image: there is no content] represent the average values of the potential urban land nighttime light, NDVI, and LST data in the jth region, respectively. [image: there is no content], [image: there is no content], and [image: there is no content] denote the standard deviation of the potential urban land nighttime light, NDVI, and LST data in the jth region, respectively.



Second, we extracted urban land area using the general SVM classifier based on the training samples. This method classifies potential urban land into urban and non–urban land using a hyperplane with maximal margin, which was derived by solving the following constrained quadratic programming problem:


[image: there is no content]



(9)




where [image: there is no content] represents the training sample vectors, and [image: there is no content] represents the corresponding class label. [image: there is no content] represents the kernel function, for which the radial basis function was selected with the only free parameter σ set to 1.0 in the following formula:
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(10)







After classification was complete, we further performed post-classification, in which we recognized pixels with nighttime light values less than the regional average as non-urban pixels. The post-classification process can be summarized by the following formula:


[image: there is no content]



(11)




where [image: there is no content] is the class value of 1 (urban) or 0 (non-urban) at the ith pixel in the jth region in the 2015 urban land image. After performing the three steps, we obtained the urban land extent in each evaluation area.





3.2. Accuracy Assessment of Urban Land


According to Liu et al. [31] and He et al. [5], we used the urban land area extracted from Landsat-8 OLI images to assess the accuracy of urban land area extracted using the LOT, VANUI, and INNL-SVM methods, respectively. The kappa coefficient was used as the primary indicator, whereas overall accuracy (OA), commission error (CE), omission error (OE), quantity of disagreement (QD), and allocation of disagreement (AD) were used as auxiliary indicators. Specifically, the kappa coefficient was calculated using the following formula [50]:


[image: there is no content]



(12)




where [image: there is no content] is the kappa coefficient for the mth method in the jth evaluation area, [image: there is no content] is the total area, [image: there is no content] is the non-urban land area extracted using both the Landsat-8 OLI image and the mth method, [image: there is no content] is the urban land area extracted using both the Landsat-8 OLI image and the mth method, [image: there is no content] is the urban land area only extracted using the Landsat-8 OLI image, and [image: there is no content] is the urban land area only extracted using the mth method. The OA, CE, and OE were calculated using the following equations:
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(13)
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(14)






[image: there is no content]



(15)




where [image: there is no content], [image: there is no content] and [image: there is no content] are the OA, CE, and OE for the mth method in the jth evaluation area, respectively. The AD and QD were calculated using the following equations [51]:


[image: there is no content]



(16)






[image: there is no content]



(17)




where [image: there is no content] and [image: there is no content] are the AD and QD for the mth method in the jth evaluation area, respectively.



Specifically, the LOT, VANUI, and INNL-SVM were implemented using the ENVI 4.8/IDL8.0 software [52], and the accuracy assessment was performed using the ArcMap 10.0 software [53].





4. Results


Among the three methods, INNL-SVM had the best performance with an average kappa of 0.80, an average OA of 97.33%, an average QD of 1.49%, an average AD of 1.18%, an average CE of 26.89%, and an average OE of 8.44% (Figure 3, Figure 4 and Figure 5). The LOT method had an average kappa of 0.75, an average OA of 96.92%, an average QD of 1.05%, an average AD of 2.03%, an average CE of 26.03%, and an average OE of 19.65% (Figure 3, Figure 4 and Figure 5). The VANUI method had an average kappa of 0.78, an average OA of 97.20%, an average QD of 1.16%, and an average AD of 1.64% (Figure 3, Figure 4 and Figure 5). INNL-SVM had the highest average kappa (2.56% higher than that of VANUI and 6.67% higher than that of LOT), the highest average OA (0.13% higher than VANUI and 0.41% higher than LOT), the lowest AD (0.46% lower than VANUI and 0.85% lower than LOT), and the lowest OE (5.25% lower than VANUI and 11.21% lower than LOT) (Figure 3, Figure 4 and Figure 5).


Figure 3. Accuracy assessment.
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Figure 4. Accuracy evaluation of the different methods: (a) kappa; (b) overall accuracy; (c) quantity disagreement; (d) allocation disagreement; (e) omission error; and (f) commission error.



[image: Remotesensing 09 00175 g004]





Figure 5. Accuracy comparison of the different methods. (a) Increase of kappa; (b) Increase of overall accuracy; (c) Decrease of quantity disagreement; (d) Decrease of allocation disagreement; (e) Decrease of omission error; (f) Decrease of commission error.
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In the Hohhot evaluation area, INNL-SVM showed the highest accuracy with a kappa of 0.86, an OA of 98.51%, a QD of 0.82%, an AQ of 0.67%, a CE of 24.58%, and an OE of 9.40% (Figure 3, Figure 4 and Figure 5). In this area, the INNL-SVM accuracy was much higher than that of both the LOT and VANUI methods in terms of kappa (7.50% higher than LOT and 3.61% higher than VANUI), OA (0.60% higher than LOT and 0.26% higher than VANUI), AD (0.81% lower than LOT and 0.47% lower than VANUI), CE (3.89% lower than LOT and 1.10% lower than VANUI), and OE (7.71% lower than LOT and 4.47% lower than VANUI) (Figure 3, Figure 4 and Figure 5).



In the Yinchuan evaluation area, INNL-SVM showed a relatively low accuracy, with a kappa of 0.72, an OA of 96.11%, a QD of 3.36%, an AD of 0.53%, a CE of 39.43%, and an OE of 4.51% (Figure 3, Figure 4 and Figure 5). Nonetheless, the INNL-SVM accuracy was still higher than the accuracy of the LOT and VANUI methods, with much higher kappa values (7.46% and 4.35% higher, respectively) and OA (0.03% and 0.17% higher, respectively), as well as much lower AD (2.38% and 1.35% lower, respectively) and OE (20.39% and 11.57% lower, respectively) (Figure 3, Figure 4 and Figure 5).




5. Discussion


5.1. INNL-SVM Provides a Reliable Approach for Rapidly and Accurately Extracting Urban Land Area Using VIIRS Nighttime Light Data


First, INNL-SVM can rapidly extract urban land information independently without ancillary data for facilitating sample selection. Among three popular methods, both the LOT and VANUI approaches require ancillary data to determine optimal thresholds [23,32,33]. However, numerous human and computational resources are needed to obtain one-time accurate ancillary data for large-scale studies. Therefore, it is difficult to extract urban land information for multiple years at large spatial scales using either the LOT or VANUI method [23,32,33]. By contrast, INNL-SVM can automatically determine thresholds for training sample selection and SVM classification according to regional characteristics of nighttime light, vegetation coverage, and LST, increasing its efficiency for extracting urban land area at large scales and over long time series [5,8].



Second, INNL-SVM clearly reduces errors arising from the overflow effect and low brightness of some urban areas in the VIIRS nighttime light data. Because the overflow effect exists in the VIIRS nighttime light data [54], extracting urban land with the LOT method based solely on nighttime light data resulted in obvious overestimation (Area A in Figure 6). In addition, the VIIRS overpass time is near 1:30 a.m., when some urban areas exhibit a decline in nighttime brightness [17], resulting in urban land area underestimation for the LOT method (Area B in Figure 6). The VANUI, which combines nighttime light and NDVI data, benefits from the characteristic that urban land vegetation coverage is generally lower than non-urban land [35], which reduces urban land CE and OE by mitigating the overflow effect and impacts of low brightness (Areas A and B in Figure 6). However, the difference between urban land and barren land vegetation coverage is not obvious. Therefore, barren land near urban areas results in obvious CE using the VANUI, specifically in arid and semiarid regions such as the Hohhot evaluation area (Area C in Figure 6). Moreover, in arid and semiarid regions, some urban areas have relatively higher vegetation coverage than non-urban areas, and these urban areas would be omitted using the VANUI (Area D in Figure 6). The LST in urban areas is usually higher than the LST in surrounding non-urban areas because of the combined effects of impervious urban surfaces, buildings, and atmospheric pollutants [5,55]. In arid/semiarid and pre-urban regions without obvious differences in vegetation coverage between urban land and non-urban land, INNL-SVM integrating LST data can be used to better distinguish urban land and non-urban land and thus improve the accuracy of extracted urban land area (Areas C and D in Figure 6).


Figure 6. Spatial comparison of the results of different methods (in columns) for two regions (Zhengzhou as the 1st example, and Hohhot as the 2nd example).
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Third, existing methods for improving LST data will enable increasing INNL-SVM accuracy in the near future. Recently, some researchers have successfully used geographically weighted regression (GWR) and temperature cycle models (TCMs) to improve the spatial resolution of the MODIS LST data and reduce the effects of meteorological factors (e.g., clouds, wind, and snow) [56,57]. Such approaches provide reliable means for increasing INNL-SVM accuracy, which is limited by spatial resolution and the LST data quality (Figure 4 and Areas E and F in Figure 6). Therefore, INNL-SVM has great potential for effectively extracting urban land areas using the VIIRS nighttime light data over multiple years at a large scale.





6. Conclusions


INNL-SVM had the highest accuracy for extracting urban land area using the VIIRS nighttime light data. The average NNL-SVM kappa for the seven evaluation areas was 0.80, which was 2.56% higher than VANUI and 6.67% higher than LOT. The superior performance of INNL-SVM is mainly attributed to the integration of nighttime light, NDVI, and LST data. Through integration, INNL-SVM utilizes both the social (intensity of human activities) and physical (vegetation cover conditions and surface temperature) indicators of urban development. This effectively resolves urban land overestimation and underestimation arising from the overflow effect and low light brightness in the VIIRS nighttime light data and similar vegetation cover between urban land and non-urban land in arid/semi-arid regions. Additionally, INNL-SVM can rapidly extract urban land area by automatically selecting training samples. Thus, INNL-SVM provides an effective approach for the timely and accurate extraction of urban land area using VIIRS nighttime light data and has the potential for wide application.
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