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Abstract: Mapping forest AGB (Above Ground Biomass) is of crucial importance to estimate the
carbon emissions associated with tropical deforestation. This study proposes a method to overcome
the saturation at high AGB values of existing AGB map (Vieilledent’s AGB map) by using a map of
correction factors generated from GLAS (Geoscience Laser Altimeter System) spaceborne LiDAR data.
The Vieilledent’s AGB map of Madagascar was established using optical images, with parameters
calculated from the SRTM Digital Elevation Model, climatic variables, and field inventories. In the
present study, first, GLAS LiDAR data were used to obtain a spatially distributed (GLAS footprints
geolocation) estimation of AGB (GLAS AGB) covering Madagascar forested areas, with a density
of 0.52 footprint/km2. Second, the difference between the AGB from the Vieilledent’s AGB map
and GLAS AGB at each GLAS footprint location was calculated, and additional spatially distributed
correction factors were obtained. Third, an ordinary kriging interpolation was thus performed by
taking into account the spatial structure of these additional correction factors to provide a continuous
correction factor map. Finally, the existing and the correction factor maps were summed to improve
the Vieilledent’s AGB map. The results showed that the integration of GLAS data improves the
precision of Vieilledent’s AGB map by approximately 7 t/ha. By integrating GLAS data, the RMSE
on AGB estimates decreases from 81 t/ha (R2 = 0.62) to 74.1 t/ha (R2 = 0.71). Most importantly,
we showed that this approach using LiDAR data avoids underestimating high biomass values
(new maximum AGB of 650 t/ha compared to 550 t/ha with the first approach).
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1. Introduction

Monitoring the carbon cycle and carbon stocks is of high importance to understand climate
change. Several studies have reported that more than 40% of the world’s vegetation carbon stocks
is stored in tropical forests [1,2]. In tropical forests, the quantity of carbon represents 43% to 55% of

Remote Sens. 2017, 9, 213; doi:10.3390/rs9030213 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2017, 9, 213 2 of 19

Above Ground Biomass (AGB) [3–5]. Thus, mapping the AGB of tropical forests is of great importance
in monitoring carbon stocks. Field inventories for AGB estimates, either by destructive (cutting and
then weighing the tree) or non-destructive methods (by means of allometric equations), provide good
estimates. However, these methods are not operational because they involve a great deal of labor
and time and allow AGB estimates only at a local scale. Thus, a forest cannot be mapped using field
inventories, hence the importance of remote sensing technology that facilitates the mapping of AGB.
Indeed, remote sensing technology provides data for AGB estimates that cover large areas with a high
spatial resolution and high revisit time.

Three main remote sensing data types are used for AGB estimates: optical, SAR (Synthetic
Aperture Radar), and LiDAR. Optical images at low or medium resolutions and radar backscattering
coefficient data are robust enough to estimate low to medium level AGB due to saturation of remote
sensing data. Zhao et al. [6] and Lu et al. [7] have shown that optical data allow AGB estimates
until AGB levels between 55 and 159 t/ha, depending on the forest species composition. In addition,
SAR amplitude data, mainly in the L-band, were used to estimate the AGB. Luckman et al. [8]
observed a saturation point of 60 t/ha when plotting the JERS L-band backscattering coefficients as
a function of the forest biomass located in the Central Amazon Basin. Baghdadi et al. [9] found that
the ALOS/PALSAR L-band backscattering coefficients saturate when the biomass of the Brazilian
eucalyptus plantations reaches 50 t/ha. The use of radar backscattering coefficients in the P-band
allows the estimation of higher AGB levels (290 t/ha for P-band [10]). However, to date, there are
no available P-band SAR instruments operating from space, and the airborne P-band SAR data are
commercial, which makes the use of these sensors expensive. The near future space-borne P-band
SAR sensor (BIOMASS mission scheduled to launch in 2020) would allow tomographic analyses of
SAR data for higher level AGB estimates [11]. Since Reigber and Moreira [12], the exploitation of SAR
data for conducting tomographic analyses has been the object of a growing interest within the SAR
community. By using tomography, forest biomass can be investigated by considering not only the
backscatter at each slant range and azimuth location, but also its vertical distribution. The potential of
tomography to characterize forest structure was previously assessed in a number of studies relating
the vertical structure of forests to forest AGB over French Guiana [13–15]. In these studies conducted
in French Guiana, the SAR signal in the P-band coming from upper vegetation layers (determined
using SAR tomographic analyses) was found to be strongly correlated with forest AGB for AGB values
ranging from 200 t/ha to 500 t/ha [13,15]. This finding was the first demonstration that forest AGB
can be determined up to 500 t/ha with a 10% error at the 4-ha scale [14].

Currently, LiDAR is the only available technology able to estimate higher AGB levels (up to
1200 t/ha from airborne LiDAR) [16,17] in comparison to optical and SAR amplitude data. LiDAR
data capture the vertical structure of trees and allow the estimation of tree height up to 40 m with
good precision [18–20]. The tree height derived from LiDAR is strongly correlated with the AGB of
the trees, with no saturation at higher AGB values [19,21,22]. LiDAR data can be acquired from an
aircraft and from space. Airborne and spaceborne LiDAR sensors record waveforms from small (<1 m)
and large footprints (up to 60 m), respectively. Several studies have shown that the estimation of AGB
from airborne LiDAR data is more accurate than that from spaceborne LiDAR [23,24]. However, the
acquisition of airborne LiDAR data is costly, and the spatial coverage is limited to small areas. On the
other hand, the available space-borne LiDAR data acquired by the Ice Cloud and Land Elevation
Satellite (ICESat) are free, but do not provide continuous coverage of the earth. To overcome the
limitation of spatial cover of LiDAR data and the saturation of optical and SAR amplitude data at
medium AGB values, several studies tend to combined LiDAR with optical or SAR data for continuous
AGB mapping at regional and global scales.

At the regional scale, Mitchard et al. [21] estimated the AGB in Lopé National Park in central
Gabon by coupling GLAS, PALSAR (L-band), and SRTM data. Lorey’s height was first derived from
GLAS data and then converted to AGB through a simple equation. This equation was fitted using
plot field measurements of Lorey’s height and AGB. Furthermore, a classification (40 classes) was
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performed using radar and SRTM data to determine regions with homogeneous vegetation. Finally,
GLAS AGB estimates located within each region were averaged, enabling the spatial extrapolation of
AGB estimates. The results showed relative error of AGB estimates of ±25% (AGB between 50 and
900 t/ha). Asner et al. [25] mapped the Aboveground Carbon Density “ACD” (ACD = 0.47 × AGB)
in one northern (659,592 ha) and one southern (1,713,088 ha) region of Madagascar using airborne
LiDAR data, SRTM derived variables, and optical images. First, ground-based ACD estimate plots
located within all forest types were used to calibrate LiDAR data to the ACD. Later, the airborne
LiDAR-derived ACD was related to the SRTM-derived variables and variables derived from optical
data through a linear regression model. Finally, this linear model was applied to map the ACD at 1 ha
resolution in the two regions. The results showed that the uncertainty of AGB estimates is equal to
35% and 10% in the northern and southern regions, respectively (ACD between approximately 5 t/ha
and 300 t/ha in both regions).

At the global scale, Saatchi et al. [22] mapped the AGB of world tropical forests using a
combination of data from 4,079 in situ inventory plots (across the three tropical continents) and
GLAS samples of forest structure, plus optical and microwave imagery with 1-km spatial resolution.
In this study, a power-law functional relationship (R2 = 0.85) between the in situ Lorey’s height and in
situ AGB was first performed. This relationship was then applied to tree height derived from GLAS to
estimate AGB at each GLAS footprint location. Finally, a fusion model based on the maximum entropy
(MaxEnt) approach was performed using spatial imagery to extrapolate AGB measurements from
inventory plots and GLAS footprints to the entire landscape. Baccini et al. [26] derived a carbon density
map of pan-tropical forests using GLAS data together with MODIS images (Bidirectional Reflectance
Distribution Function and land surface temperature) and SRTM data. In this this study, in situ AGB
was first derived from plots within GLAS footprints using trees characteristics. Then, a statistical
relationship between the in situ AGB estimates and GLAS waveform metrics was established, allowing
the estimation of AGB for all GLAS footprints located across the tropics. Finally, a model relating
GLAS-based AGB estimates and MODIS and SRTM data was calibrated and applied to derive the
AGB map. Mitchard et al. [27] assessed the reliability of a global AGB map produced by Saatchi et
al. [22] and Baccini et al. [26] by using an accurate AGB map of Amazonian Columbia as a reference
dataset. Mitchard et al. [27] observed substantial discrepancies between the maps of Saatchi et al. [22]
and Baccini et al. [26] over tropical forest areas (up to ±150 t/ha), even though both maps give similar
means and total AGB values on the continent scale. In addition, the maps of Saatchi et al. [22] and
Baccini et al. [26] have higher AGB values (up to 150 t/ha) in comparison to the accurate AGB map
of Amazonian Columbia. Such bias could be related to the saturation of spatial data and to the use
of an insufficient number of high in situ AGB values during model calibration, which reduces model
performance for the estimation of high AGB values.

The main goal of this study is to investigate the contribution of spaceborne LiDAR data
in overcoming the saturation at high AGB values of existing map produced in Madagascar by
Vieilledent et al. [28] using optical satellite images, a Digital Elevation Model (DEM) and climatic
variables. To produce its AGB map, Vieilledent et al. [28] first use a random forest model to relate
in situ AGB measurements to the EVI (Enhanced Vegetation Index) derived from optical images,
parameters calculated from the SRTM Digital Elevation Model, and climatic variables. Then, this
random forest model was applied to map the AGB of forested areas in Madagascar. To date, the
Vieilledent AGB map is the most recent and accurate map with medium resolution (250 m) for forested
areas in Madagascar. The inconvenience of the Vieilledent AGB map is the inability to measure
high AGB values, and therefore, a new method is required that incorporates LiDAR remote sensing
to overcome such inconvenience. This inconvenience is mainly due to the use of the EVI and the
percent tree cover derived from optical images at medium resolution as predictive variables for AGB
estimates. The optical data at medium resolution saturates at high AGB values and induces an
underestimation of high AGB [6,7]. An improvement in Vieilledent’s AGB map will allow a more
accurate estimation of carbon stocks and mapping in forested areas in Madagascar. In our study,
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The AGB was first estimated from GLAS and DEM metrics, providing a spatially distributed (GLAS
footprints geolocation) AGB estimation (GLAS AGB). Second, the spatial dependency of the additional
correction factors (Vieilledent’s AGB map—GLAS AGB at each GLAS footprint location) was modeled,
and an ordinary kriging interpolation of additional correction factors was performed to provide a
correction factor map. Finally, the correction factor map and Vieilledent’s AGB map were summed to
improve Vieilledent’s AGB map, taking into account the addition of GLAS data in AGB estimation.
A description of the study area and the different datasets used in this study is provided in Section 2.
Section 3 presents the methodology. The results and discussions are shown in Sections 4 and 5,
respectively. Finally, Section 6 presents the conclusion.

2. Study Area and Datasets

2.1. Study Area

Madagascar is an island country in the Indian Ocean located to the southeast of the African
continent (latitude between 12◦S and 26◦S, Figure 1). The total area of the country is approximately
58,154,000 ha, out of which 12,553,000 ha are forests, according to FAO estimates in 2010 (U.N. FAO).
Between 1990 and 2010, Madagascar lost 8.3% of its forest cover (approximately 1,139,000 ha) [1].
Madagascar is composed of three ecoregions, with three forest types defined according to climate and
vegetation type [29]. The eastern, western and southern parts contain mainly moist, dry and spiny
forests, respectively [29] (Figure 1). The climates of the eastern, western and southern ecoregions
are humid, temperate, and arid, respectively. This difference in climate is caused mainly by the
Indian Ocean trade winds, which bring with them variations in precipitation throughout the region.
The terrain in Madagascar is sloping. The slope of the eastern ecoregion reaches 25% and rises
occasionally to reach 30%. The western and southern ecoregions are less sloping, with global slopes of
less than 10%.
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2.2. Datasets

2.2.1. In Situ AGB Data

Nine forest inventories have been conducted to measure the AGB between 1995 and 2013 (1995,
1996, 2007, and 2009 through 2013) in 1771 field plots. The dimensions of the plots were 0.13 ha
(radius = 30 m) in the moist forest, and 0.28 ha (radius = 20 m) in the dry and spiny forests. The AGB
was computed for each tree (i) using the allometric equation defined by Chave et al. [30]:

AGBi = 0.0673 × (ρi Di Hi)
0.976 (1)

where ρi is the tree wood density (g·cm−3), Di is the tree diameter (cm) at a height of 130 cm, and Hi is
the tree height (m). Detailed descriptions about in situ AGB measurement procedures are given in the
studies of Vieilledent et al. [28,31].

The field inventories used in this study are those utilized by Vieilledent et al. [28], except those
that were disturbed between 1995 and 2013, which were eliminated through an analysis of forest maps
in 2000 derived by Harper et al. [32] and by the photo-interpretation of Landsat images time series
between 2000 and 2013. The number of field inventories that were not disturbed between 1995 and
2013 is 1194 (Figures 1 and 2).
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Figure 2. (a) Number of field inventories for a given year; (b) distribution of AGB density from
field inventories.

Field inventory methods for AGB estimates allow precise AGB estimates only at the local scale.
Thus, mapping the AGB and calculating the total AGB for given wide forested areas could not be
performed only by means of field inventories. Spaceborne LiDAR have the potential to map AGB,
since these sensors provide precise spatially distributed information about tree height, which is well
correlated to AGB.

2.2.2. Vieilledent’s Aboveground Biomass Map

Vieilledent’s AGB map [28] provides the AGB for forests in Madagascar in 2010, with a spatial
resolution of 250 m. Vieilledent’s AGB map was derived from three types of explicative variables
(vegetation indices, topography, and climatic data) using the Random Forest (RF) regression technique.
Vegetation indices are the EVI (Enhanced Vegetation Index) and the percent tree cover (%VCF), both
derived from MODIS (Moderate Resolution Imaging Spectroradiometer) satellite remote sensing
imagery acquired between 2000 and 2010. A topographic variable (elevation) was obtained from the
30-m resolution SRTM (Shuttle Radar Topography Mission) global elevation dataset. Climatic data
(1950–2000) are the cumulative annual precipitation, mean annual temperature, and temperature
seasonality (standard deviation of monthly temperature × 100), all of which are extracted from the
MadaClim website (http://madaclim.cirad.fr).

http://madaclim.cirad.fr
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To derive Vieilledent’s AGB map, in situ AGB were first related to explicative variables by means
of the RF regression technique. Then, the resulting model was applied to map AGB in forested areas in
Madagascar with spatial resolution of 250 m. Climatic variables were the most important, compared
with EVI, %VCF, and elevation. In the study of Vieilledent et al. [28], a cross-validation procedure was
used to validate the AGB map using field inventories as the reference dataset.

2.2.3. LiDAR Data

LiDAR data were acquired between 2003 and 2009 by the Geoscience Laser Altimeter System
(GLAS) sensor on board the Ice, Cloud, and Land Elevation (ICESat) Satellite. The GLAS sensor
operates in the near-infrared (1064 nm) wavelength and illuminates footprints with a nearly circular
shape that are approximately 70 m in diameter. GLAS LiDAR data are free and available for
all continents. Footprints are separated by approximately 172 m in the along-track direction.
The horizontal geolocation accuracy of the GLAS footprints is 3.7 m (on average), and the vertical
accuracy is between 0 and 3.2 cm over flat surfaces, on average [33,34]. Only the GLA01 and GLA14
data products available from ICESAT/GLAS were used in this study. The GLA01 product contains the
full recorded waveform data. The GLA14 product, derived from the GLA01 product, contains several
useful data for each footprint, such as the cloud flag index, saturation waveform index, land surface
elevation from SRTM, centroid elevation derived from the waveform, and background noise.

To eliminate unreliable GLAS data (i.e., data affected by atmospheric conditions), several
filters were applied: (1) footprints with associated centroid elevations significantly different than
the corresponding SRTM elevations were excluded (|GLAS − SRTM| > 100 m); (2) footprints
corresponding to waveforms with a low signal to noise ratio (SNR) were also removed (SNR < 15) [33];
(3) saturated waveforms were eliminated (saturation index satNdx # 0); and (4) only the cloud-free
footprints were conserved (cloud flag FRir_qaFlag = 15). In addition, GLAS footprints located inside
forest stands (selected using the existing AGB map) were conserved. From the original database of
1,772,000 footprints, 48,247 footprints that respect all criteria mentioned above were kept (Figure 1).
The density of GLAS footprints in forested areas is 0.52 points/km2.

Moreover, metrics were derived from reliable GLAS waveforms provided in the GLA01 product to
represent the vertical variables of the canopy. These metrics are the Waveform extent (Wext), percentile
heights (H) of GLAS waveforms (10 through 90%, with steps of 10%), Leading Edge (LE), and Trailing
Edge (TE). A noise threshold equal to 4.5 times the standard deviation of the background noise was
used to determine the waveform beginning and end [35]. The waveform extent is the difference
between the signal end and signal start. The waveform extent was corrected for slope effects using the
following equation [36,37]:

Wext_cor = Wext × 0.15 − 0.5 × d × tan (θ) (2)

where d is the footprint diameter (in m), and θ is the mean slope of the illuminated surface area.
Wext is expressed in ns and Wext_cor is in m.

In addition, the Gaussian peaks resulting from the decomposition of each GLAS waveform, which
represent canopy features, such as canopy top, canopy trunks, or ground, were identified. In this study,
the first Gaussian peak was considered as the top of canopy return, and the stronger of the last two
Gaussian peaks was selected as the ground return [38]. After identifying the top and ground peaks,
the percentile heights of GLAS waveforms (10 through 90%, with steps of 10%) were also calculated
from the signal beginning. Finally, the leading edge, defined as the elevation difference between the
signal start and the canopy peak’s center, and the trailing edge, defined as the difference between the
signal end and the ground peak’s center [18], were estimated.



Remote Sens. 2017, 9, 213 7 of 19

2.2.4. Digital Elevation Model

The SRTM (Shuttle Radar Topography Mission) Digital Elevation Model (DEM) with a spatial
resolution of 30 m was used is this study. Three variables were derived from the DEM: slope (θ), Terrain
Index (TI), and surface Roughness (Roug). The TI map was obtained by calculating the difference
between the highest and lowest altitude in a 3 × 3 pixel moving window. The surface Roug map
was obtained by computing the standard deviation of the elevation in a 3 × 3 pixel moving window.
All SRTM derived variables (θ, TI, and Roug) were resampled (averaging the value of the cells) to
250 m (Vieilledent’s AGB map resolution).

3. Methodology

The methodology to improve the precision of Vieilledent’s AGB map consisted of (1) finding a
model predicting in situ AGB from both GLAS and DEM metrics using in situ AGB neighboring GLAS
footprints at a distance of up to 250 m; (2) applying the previous model to all GLAS footprints to derive
the AGB (GLAS AGB); (3) calculating the additional correction factors, which were the differences
between Vieilledent’s AGB map and GLAS AGB, at each footprint location; (4) performing an ordinary
kriging interpolation to map the additional correction factors; and (5) improving Vieilledent’s AGB
map by adding the kriged additional correction factors to Vieilledent’s AGB map. It should be noted
that our methodology is not over reliant on the existing AGB map (Vieilledent’s AGB map) because
the data used to produce this AGB map is available for free with global coverage, and therefore it
was possible to reproduce Vieilledent’s AGB map. A brief scheme explaining the procedures for the
improvement of Vieilledent’s AGB map is shown in Figure 3.
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To assess the relevance of our approach, first, the improved AGB map was compared to the in
situ AGB to determine the gain in precision brought to Vieilledent’s AGB map. Then, the accuracy of
the improved AGB map was compared to the accuracy of (1) the most recent pan-tropical AGB map
produced by Avitabile et al. [39] (Avitabile’s AGB map); and (2) another AGB map computed in this
present study using our database (48,247 GLAS-derived AGB, DEM metrics, and field inventories)
following the method proposed by Baccini et al. [26], called “Baccini’s approach AGB map”.
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3.1. Estimation of the AGB from GLAS Data

Madagascar is composed of three climatic ecoregions with three different forest types (Figure 1).
The western and southern ecoregions have lower in situ AGB values (<150 t/ha on average) compared
to the eastern ecoregion (>250 t/ha on average). Accordingly, two different multilinear models were
built to relate the in situ AGB to the GLAS metrics (Wext_cor, LE, TE, H10 through H90 with a 10% step)
and DEM data (slope, TI, and Roug). The first model links the in situ AGB from the eastern ecoregion
to the GLAS and DEM metrics. Similarly, the second model relates the in situ AGB from the western
and southern ecoregions to the GLAS and DEM metrics. A step-wise regression technique (with both
forward and backward processes) was used to select the best variables to be used for AGB estimation.
Finally, these multilinear models were applied to all GLAS footprints, using only best variables to
derive the AGB (GLAS AGB). GLAS footprints did not intersect in situ AGB. To associate an in situ
AGB value with GLAS footprints, we considered a maximum of 250 m between the in situ AGB and
GLAS footprints.

3.2. The Improved AGB Map

An ordinary kriging (OK) interpolation was used to improve the precision of Vieilledent’s AGB
map. The OK model allows the interpolation of additional correction factors (Vieilledent’s AGB
map—GLAS AGB at each GLAS footprint locations) based solely on a regionalized linear model
known as a semivariogram. The semivariogram describes the spatial dependency between additional
correction factors and draws the semi-variance γ as a function of the distance between samples h using
the following function:

γ(h) =
1

2N(h)

N(h)

∑
i=1

[e(si)− e(si + h)]2 (3)

where γ(h) is the semi-variance as a function of the lag distance h, N(h) is the pairs data number
separated by h, and e is a local measure of the additional correction factors at locations si and si + h.
The semivariogram function has three main parameters: (1) the nugget: the semi-variance value at h
close to zero; (2) the sill: semivariance at which no spatial correlation exists at long distances [40]; and
(3) the range: the distance at which the sill is reached.

After drawing the empirical semivariogram samples, and assuming an order-2 stationary process
(fixed Esperance and homogeneous spatial dependency over all space), an admissible model in R2

is fitted to the empirical variogram, determining the semivariogram function parameters. Ordinary
kriging (centered on an unknown value) is thus performed using a fitted semivariogram function,
which estimates the value e and the prediction variance at any location s0 (location where no additional
correction factors are available) using the linear equation:

ẑê(s0) =
n

∑
i=1

λie(si) (4)

where ê(s0) is the predicted value at an unvisited location s0 and λi are the kriging weights of n
neighboring samples [40]. The weights λi depend on the fitted semivariogram function, the distance
to the predicted location, and the spatial design of e data.

From that framework, a sub-variogram model was built for each ecoregion to respect the
conditions of stationarity. Then, for each ecoregion, an OK interpolation was performed using the
additional correction factors within that ecoregion to create a correction factor map. Furthermore, the
correction factor map of that ecoregion was adding to the part of Vieilledent’s AGB map that overlaps
to increase its precision. Finally, the two improved AGB maps (of both eastern and western ecoregions)
derived using the two variograms were combined to obtain the improved AGB map that covered all of
Madagascar with a spatial resolution of 250 m.
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To calculate the precision of the improved AGB map, first, a spatial intersection between the in
situ AGB and the improved AGB map pixels was performed. Then, AGB pixels that contained at least
two in situ AGB were selected, as well as the associated in situ AGB. Finally, the RMSE and R2 were
calculated by using the averaged values of the in situ AGB located within the same AGB pixel. The in
situ AGB used to build the model for AGB estimation from GLAS data were not used to calculate the
precision of the improved AGB map.

3.3. Comparison between the Improved AGB Map and Avitabile’s AGB Map

The precision of the improved AGB map was compared to that of the pan-tropical AGB map
produced by Avitabile et al. [39] (Avitabile’s AGB map). Avitabile’s AGB map was used as benchmark
because, to date, this map is considered to be the most recent and accurate pan-tropical AGB map.
Avitabile et al. [39] combined the global AGB map of Saatchi et al. [22] and Baccini et al. [26] into
a pan-tropical AGB map (1 km resolution) using reference AGB data. The fusion model consists
of bias removal and weighted linear averaging of both the Saatchi et al. [22] and Baccini et al. [26]
AGB maps to produce an AGB map with higher accuracy. The bias removal consisted of adding the
mean difference between the input map and the reference AGB data to the input maps (Saatchi’s and
Baccini’s AGB maps). The results showed that the RMSE of Avitabile’s AGB map (89 t/ha) is lower by
15%–21% than that of the input maps (Saatchi’s and Baccini’s AGB maps).

Avitabile’s AGB map is produced with a spatial resolution of 0.00833◦ (1 km) and the WGS-84
geographic projection. To make Avitabile’s and the improved AGB map comparable, Avitabile’s AGB
map was re-projected into UTM (Universal Transverse Mercator), to be in the same projection as the
improved AGB map. In addition, the improved AGB map was resampled to 1 km as follows: the AGB
pixels of the improved AGB map that fall within each cell of Avitabile’s AGB map were averaged.

Finally, Avitabile’s AGB map and the improved AGB map resampled to a spatial resolution
of 1 km were compared to the in situ AGB in the same manner adopted to validate the improved
AGB map. However, to validate these maps, we used AGB pixels that cover more than three in situ
AGB values.

3.4. Comparison between the Improved AGB Map and the AGB Map from Baccini’s Approach

To assess the relevance of our approach it was important to compare it to Baccini’s approach,
since the latter is the most commonly used approach for AGB mapping [22,25,41]. First, we used our
database (48,247 GLAS derived AGB, DEM metrics, and field inventories) and the auxiliary variables
from the study of Vieilledent et al. [28], to produce a AGB map following the method proposed by
Baccini et al. [26]. Then, we compared between precision of the improved AGB map and the precision
of the AGB map from Baccini’s approach. The precision of the AGB map from Baccini’s approach was
calculated in the same manner used to validate the improved AGB map.

To produce the AGB map using Baccini’s approach, first, the established relationships between
in situ AGB and both GLAS and DEM metrics (cf. Section 3.1) were applied to derive the AGB from
each GLAS datapoint (48,247 footprints). Second, the GLAS-derived AGB values were related to the
three types of explicative variables in the study of Vieilledent et al. [28] using the random forest model.
Finally, the random forest model was applied for AGB mapping with a spatial resolution of 250 m, and
the AGB map from Baccini’s approach was obtained.

Baccini et al. [26] provided a pan-tropical AGB map covering Madagascar. In their study, the
in situ AGB measurements used to build the relationship with GLAS and DEM metrics are missing
over Madagascar. Therefore, Baccini’s AGB relationship is not representative enough to derive AGB
estimates from GLAS metrics, leading to an AGB map with poor precision. For this reason, Baccini’s
AGB map was reproduced in the present study using our in situ AGB measurements available
for Madagascar.
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4. Results

4.1. Estimation of the AGB from GLAS

14 plots neighboring GLAS footprints at a distance of 250 m in the eastern ecoregion were used
to relate the in situ AGB to all GLAS and DEM metrics (Wext_cor, LE, TE, H10 through H90, slope,
TI, and Roug). Similarly, 13 plots were used to link the in situ AGB to all GLAS and DEM metrics in
the western and southern ecoregions. Considering a distance lower than 250 m to associate an in situ
AGB value with GLAS footprints yields an insufficient sample number to build a model that predicts
in situ AGB from both GLAS and DEM metrics. As an example, at a distance lower than 100 m, only
6 samples are available.

For the eastern ecoregion, the results showed that the RMSE of AGB estimated using all GLAS
and DEM metrics was equal to 56.2 t/ha (Relative Root Mean Square Error “RRMSE” ~20%, R2 = 0.90).
For the western and southern ecoregions, the RMSE of AGB estimated from all GLAS and DEM metrics
was equal to 20.7 t/ha (RRMSE~34%, R2 = 0.59). Moreover, the results show that for all ecoregions, the
most significant variables for AGB estimates, determined using a stepwise regression, were Wext_cor,
LE, H80 and TI:

AGBinsitu = Wext_cor + LE + H80 + TI (5)

Table 1 shows the coefficients and p-values for each significant variable. The use of significant
variables to derive the AGB decreases the error of in situ AGB estimates. For the eastern ecoregion, the
RMSE decreased from 56.2 to 51.5 t/ha (RRMSE~18%, R2 = 0.91) when only the significant variables
were used (Figure 4a). In addition, for the western and southern ecoregions, the use of significant
variables decreased the RMSE of AGB estimates from 20.7 to 18.9 t/ha (RRMSE~31%, R2 = 0.66)
(Figure 4b). Finally, these linear regression models were applied using only significant variables to
derive the AGB from all GLAS footprints.

Table 1. Coefficients and p-values of each significant variable.

Eastern Ecoregion Western/Southern Ecoregion

Coefficient p Value Coefficient p Value

Wext_cor 35.13 0.002 4.66 0.033
lead −14.79 0.002 −3.35 0.041
H80 −11.99 0.048 −5.26 0.048
TI 13.72 0.000 7.00 0.013
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4.2. The Improved AGB Map

To improve Vieilledent’s AGB map, the ordinary kriging technique was used. First, the difference
(additional correction factors) between the AGB from Vieilledent’s AGB map and the GLAS AGB
was calculated at the location of each GLAS footprint. Second, the semivariogram of the additional
correction factors was performed for each ecoregion separately to respect the conditions of stationarity.
Figure 5 shows the semivariogram samples (black points) obtained in the eastern ecoregion (Figure 5a)
and in the western and southern ecoregions (Figure 5b). Semivariogram samples were then fitted
using an exponential function with a nugget of 17,014 (t/ha)2, partial sill “difference between the
nugget and the sill” of 10,710 (t/ha)2 and range of 16,699 m for the eastern ecoregion (Figure 5a), and
with a nugget of 197 (t/ha)2, partial sill of 191 (t/ha)2 and range of 261 m for the western and southern
ecoregions (Figure 5b). Furthermore, for each ecoregion, the additional correction factors were kriged
using the exponential equation with the associated parameters (nugget, partial sill, and range) to
provide a correction factor map for that ecoregion. Later, the correction factor map of that ecoregion
was added to the corresponding part of Vieilledent’s AGB map to increase its precision. Finally, the
two sub-improved AGB maps were combined to obtain the improved AGB map covering Madagascar.
The improved AGB map has the same resolution as Vieilledent’s AGB map (250 m).Remote Sens. 2017, 9, 213 11 of 19 
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Figure 5. Variograms of the additional correction factors with the associated parameters (nugget,
partial sill, and range). (a) Eastern ecoregion; (b) western and southern ecoregions.

The feasibility of the OK to improve Vieilledent’s AGB map was assessed by analyzing the
evolution in the accuracy of Vieilledent’s AGB map after the integration of GLAS data. This evolution
was determined by comparing the precision of Vieilledent’s AGB map to that of the improved AGB
map (Vieilledent’s AGB map with the integration of GLAS data). As for the improved AGB map, the
precision of Vieilledent’s AGB map was calculated using AGB pixels that cover at least two in situ AGB
values. The precision of Vieilledent’s AGB map and the improved AGB map were calculated using
128 samples (each sample was obtained by averaging at least two in situ AGB values). These samples
are located in all ecoregions and have values within the range of in situ AGB used to build the models
relating in situ AGB to both GLAS and DEM metrics (Figure 6). Figure 6a shows the AGB from
Vieilledent’s AGB map as a function of the average in situ AGB. Similarly, the comparison between the
AGB from the improved AGB map and the average in situ AGB is shown in Figure 6b. The results show
that the OK decreased the RMSE of Vieilledent’s AGB map by 6.9 t/ha; the RMSE of the improved
AGB map is 74.1 t/ha (R2 = 0.71, RRMSE = 28.2%) compared to an RMSE of 81.0 t/ha (R2 = 0.62,
RRMSE = 30.8%) for AGB estimates from Vieilledent’s AGB map.
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Figure 6. (a) Vieilledent’s AGB map as a function in situ AGB; (b) the improved AGB map as a function
of in situ AGB. N is the number of samples used for validation.

In addition, statistics were calculated separately for in situ AGB lower and higher than 400 t/ha.
For in situ AGB lower than 400 t/ha, the precision of the improved AGB map was better than the
precision of Vieilledent’s AGB map; the RMSE of the improved AGB map was 61.7 t/ha (R2 = 0.52)
and the RMSE of Vieilledent’s AGB map was 69.3 t/ha (R2 = 0.49). Similarly, for AGB higher than 400
t/ha, the precision of the improved AGB map (RMSE = 125.6, R2 = 0.34) was better than the precision
of Vieilledent’s AGB map (RMSE = 131.4 t/ha, R2 = 0.17). Thus, the precision of Vieilledent’s AGB
map was improved for both lower and higher values of AGB.

4.3. Comparison between Vieilledent’s AGB Map and the Improved AGB Map

A comparison between Vieilledent’s AGB map and the improved AGB map was also performed.
At the scale of Madagascar, the results showed that the mean AGB values from both maps are similar
(204.8 t/ha for Vieilledent’s AGB map, and 197.0 t/ha for the improved AGB map). However, important
differences between these maps were observed when the two maps were compared visually (Figure 7).
In particular, in the north of the eastern ecoregion, the improved AGB map was able to provides
much higher AGB values (up to 647.7 t/ha) compared to Vieilledent’s AGB map (maximum AGB
pixel value of 529.5 t/ha). In addition, the absolute difference between both maps (the improved
AGB map—Vieilledent’s AGB map) was more important in the eastern ecoregion than in the western
and southern ecoregions (Figure 7c). In the eastern ecoregion, this difference (the improved AGB
map—Vieilledent’s AGB map) frequently reaches values lower than −100 t/ha and higher than 100
t/ha. For both the western and southern ecoregions, intermediate difference values were obtained
(between –40 and 100 t/ha). In addition, the relative difference between the improved AGB map and
Vieilledent’s AGB map was performed. For the eastern ecoregion, the results showed that the AGB
estimates from Vieilledent’s AGB map were generally decreased and increased by 25% and 50% at the
most, respectively. The increase (up to 50%) was observed mainly for a dense forest stand located in
the north of the eastern ecoregion, whereas the decrease (up to 25%) was observed throughout the
eastern ecoregion. For both the western and southern ecoregions, the decreases and the increases of
the AGB estimates from Vieilledent’s AGB map were up to 50% and 100%, respectively.



Remote Sens. 2017, 9, 213 13 of 19

Remote Sens. 2017, 9, 213 12 of 19 

 

precision of Vieilledent’s AGB map; the RMSE of the improved AGB map was 61.7 t/ha (R2 = 0.52) 

and the RMSE of Vieilledent’s AGB map was 69.3 t/ha (R2 = 0.49). Similarly, for AGB higher than 400 

t/ha, the precision of the improved AGB map (RMSE = 125.6, R2 = 0.34) was better than the precision 

of Vieilledent’s AGB map (RMSE = 131.4 t/ha, R2 = 0.17). Thus, the precision of Vieilledent’s AGB map 

was improved for both lower and higher values of AGB. 

4.3. Comparison between Vieilledent’s AGB Map and the Improved AGB Map 

A comparison between Vieilledent’s AGB map and the improved AGB map was also performed. 

At the scale of Madagascar, the results showed that the mean AGB values from both maps are similar 

(204.8 t/ha for Vieilledent’s AGB map, and 197.0 t/ha for the improved AGB map). However, 

important differences between these maps were observed when the two maps were compared 

visually (Figure 7). In particular, in the north of the eastern ecoregion, the improved AGB map was 

able to provides much higher AGB values (up to 647.7 t/ha) compared to Vieilledent’s AGB map 

(maximum AGB pixel value of 529.5 t/ha). In addition, the absolute difference between both maps 

(the improved AGB map—Vieilledent’s AGB map) was more important in the eastern ecoregion than 

in the western and southern ecoregions (Figure 7c). In the eastern ecoregion, this difference (the 

improved AGB map—Vieilledent’s AGB map) frequently reaches values lower than −100 t/ha and 

higher than 100 t/ha. For both the western and southern ecoregions, intermediate difference values 

were obtained (between –40 and 100 t/ha). In addition, the relative difference between the improved 

AGB map and Vieilledent’s AGB map was performed. For the eastern ecoregion, the results showed 

that the AGB estimates from Vieilledent’s AGB map were generally decreased and increased by 25% 

and 50% at the most, respectively. The increase (up to 50%) was observed mainly for a dense forest 

stand located in the north of the eastern ecoregion, whereas the decrease (up to 25%) was observed 

throughout the eastern ecoregion. For both the western and southern ecoregions, the decreases and 

the increases of the AGB estimates from Vieilledent’s AGB map were up to 50% and 100%, 

respectively. 

  
(a) (b) 

Remote Sens. 2017, 9, 213 13 of 19 

 

  
(c) (d) 

Figure 7. (a) Vieilledent’s AGB map [28] (b) the improved AGB map; (c) map of the absolute difference 

(the improved AGB map—Vieilledent’s AGB map); (d) map of the relative difference. SD: Standard 

Deviation. 

Finally, the carbon stock was computed from both Vieilledent’s AGB map and the improved 

AGB map. To compute the carbon stock, the sum of AGB pixel values was first multiplied by 0.47 to 

convert AGB to carbon stock, and then multiplied by 6.25 to convert from hectares to an area of 250 

m × 250 m (the improved AGB map pixel resolution). The carbon stock in Madagascar from the 

improved AGB map was estimated to be 0.85964 × 1015 PgC (1 PgC = 1015 grams carbon) compared to 

0.89350 × 1015 from Vieilledent’s AGB map. 

4.4. Comparison between the Improved AGB Map and Avitabile’s AGB Map 

Avitabile’s AGB map and the improved AGB map resampled to a spatial resolution of 1 km 

were compared to in situ AGB values (Figure 8). The samples used to build the models for AGB 

estimation from GLAS and DEM metrics were not used to validate the improved AGB with a spatial 

resolution of 1 km. The results showed that Avitabile’s AGB map is much less accurate (RMSE = 168.9 

t/ha, RRMSE = 53.9%, R2 = 0.04) than the improved AGB map with a 1 km spatial resolution (RMSE = 

68.9 t/ha, RRMSE = 22.0%, R2 = 0.80). 

Finally, the carbon stock was calculated from Avitabile’s AGB map and the improved AGB map 

with a spatial resolution of 1 km. The carbon stock from Avitabile AGB was 1.08548 PgC, which is 

considerably higher than the carbon stock value calculated from the improved AGB map with spatial 

resolution of 1 km (0.85628 PgC). 

Figure 7. (a) Vieilledent’s AGB map [28] (b) the improved AGB map; (c) map of the absolute
difference (the improved AGB map—Vieilledent’s AGB map); (d) map of the relative difference.
SD: Standard Deviation.



Remote Sens. 2017, 9, 213 14 of 19

Finally, the carbon stock was computed from both Vieilledent’s AGB map and the improved AGB
map. To compute the carbon stock, the sum of AGB pixel values was first multiplied by 0.47 to convert
AGB to carbon stock, and then multiplied by 6.25 to convert from hectares to an area of 250 m × 250 m
(the improved AGB map pixel resolution). The carbon stock in Madagascar from the improved AGB
map was estimated to be 0.85964 × 1015 PgC (1 PgC = 1015 grams carbon) compared to 0.89350 × 1015

from Vieilledent’s AGB map.

4.4. Comparison between the Improved AGB Map and Avitabile’s AGB Map

Avitabile’s AGB map and the improved AGB map resampled to a spatial resolution of 1 km
were compared to in situ AGB values (Figure 8). The samples used to build the models for AGB
estimation from GLAS and DEM metrics were not used to validate the improved AGB with a
spatial resolution of 1 km. The results showed that Avitabile’s AGB map is much less accurate
(RMSE = 168.9 t/ha, RRMSE = 53.9%, R2 = 0.04) than the improved AGB map with a 1 km spatial
resolution (RMSE = 68.9 t/ha, RRMSE = 22.0%, R2 = 0.80).Remote Sens. 2017, 9, 213 14 of 19 
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Finally, the carbon stock was calculated from Avitabile’s AGB map and the improved AGB map
with a spatial resolution of 1 km. The carbon stock from Avitabile AGB was 1.08548 PgC, which is
considerably higher than the carbon stock value calculated from the improved AGB map with spatial
resolution of 1 km (0.85628 PgC).

4.5. Comparison between the Improved AGB Map and the Baccini’s Approach AGB Map

In this section, the precision of the improved AGB map and the precision of the AGB map from
Baccini’s approach were compared. The results show that the AGB map from Baccini’s approach has
quite low precision, with a RMSE of 135 t/ha (RRMSE = 51.5%), in comparison to the precision of the
improved AGB map, with a RMSE of 74.1 t/ha (RRMSE = 28.2%) (Figure 9). For the AGB map from
Baccini’s approach, the RMSE is equal to 118.1 t/ha and 212.2 t/ha for in situ AGB lower and higher
than 400 t/ha, respectively. In addition, the AGB map from Baccini’s approach was not able to map
AGB higher than 500 t/ha (value obtained from the AGB map using Baccini’s approach).
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5. Discussion

In this study, a method based on the use of GLAS data was developed mainly to overcome the
saturation at high AGB values of the existing AGB map derived by Vieilledent et al. [28] using optical
images, parameters computed from DEM, climatic variables, and field inventories. A good correlation
between in situ AGB and GLAS and DEM metrics was obtained (R2 = 0.91 for the eastern ecoregion,
and R2 = 0.66 for the western and southern ecoregions). Despite the fact that the relationships between
in situ AGB and both GLAS and DEM metrics was built with only a few in situ AGB samples (14 for
the eastern ecoregion, and 13 for the western and southern ecoregions) located within a distance of
250 m from GLAS footprints, the integration of GLAS data leads to an improvement in the precision
of Vieilledent’s AGB map (Figure 6). This improvement was possible because Vieilledent’s AGB
map was created by using the EVI (Enhanced Vegetation Index) computed from optical images as
an input parameter. The EVI saturates at higher AGB levels, leading to an underestimation of high
AGB values, which limits the estimation of AGB to lower values (lower than 550 t/ha in the study
of Vieilledent et al. [28]). In contrast, our approach is based on the integration of LiDAR GLAS data,
which are able to provide much higher AGB values, and thus improve Vieilledent’s AGB map (derived
using optical data), even in densely forested areas (in situ AGB up to 650 t/ha). However, results
showed that the improved AGB map values still underestimate the in situ AGB values for AGB
higher than 350 t/ha. This is probably due to the fact that (1) the used spaceborne LiDAR data are not
sufficiently dense (0.5 points/km2) to completely eliminate the high underestimation of AGB for values
higher than 350 t/ha and (2) the data used, mainly optical (such as EVI), to derive the Vieillendent’s
AGB map have low sensitivity to high AGB values (high than 350 t/ha). Fayad et al. [42] showed that
the use of dense spaceborne and airborne LiDAR data in addition to other data (optical, DEM, and
environmental) provides good estimation of the AGB. In general, the integration of GLAS-derived AGB
moderately increases the precision of Vieilledent’s AGB map by 7.6 t/ha and 5.8 t/ha for AGB values
lower and higher than 400 t/ha, respectively. Considering in our method remote sensing variables
that describe the floristic composition and the biogeography characteristics of forested areas would
improve the precision of GLAS-derived AGB and consequently, the correction factor map, and thus
brought a larger improvement to Vieilledent’s AGB map. Finally, our approach could be applied to
improve the most recent and accurate pan-tropical AGB map produced by Avitabile et al. [39] because
GLAS LiDAR shots cover the pan-tropical forested areas [43]. Applying our approach would improve
Avitabile’s AGB map mainly by overcoming the problem of saturation at high AGB values.

Our approach uses an existing AGB map (Vieilledent’s AGB map). The use of an existing AGB
map does not represent an inconvenience, since it would have been possible for us to derive this
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AGB map from freely available remote sensing data. The advantage of the proposed approach is that
despite LiDAR data density of 0.5 points/km2, a simple ordinary kriging seems sufficient to improve
an AGB map derived using optical data (such as Vieilledent’s AGB map). It should be noted that GLAS
footprints have a good distribution over forested areas in Madagascar. The main potential limitation
of our approach is the unavailability of GLAS data since 2009 (GLAS data are between 2003 and 2009).
Thus, this method could be applied to improve an AGB map created using data from between 2003
and 2009 and to an AGB map for forests with conditions that have not changed with respect to the
period between 2003 and 2009. In addition, field inventories are necessary to apply our approach.
However, a relatively low number of field inventories could be enough to calibrate LiDAR and SRTM
metrics data to AGB [25].

In this paper, we also compared the improved AGB map and the most recent pan-tropical AGB
map provided by Avitabile et al. [39]. Avitabile’s AGB map was created using a fusion of data from
Baccini’s and Saatchi’s AGB maps and reference data. The results showed that the improved AGB
map has better precision than Avitabile’s AGB map. This is because the reference data used for the
calibration of the fusion model in the study of Avitabile et al. [39] does not cover the ranges of AGB
values of forested areas in Madagascar (up to 700 t/ha according to our in situ AGB measurements).
These reference data used by Avitabile et al. [39] (60 samples) are located in a zone to the north of
Madagascar characterized by in situ AGB values lower than 235 t/ha [39].

In addition, the most popular method, proposed by Baccini et al. [26], for AGB mapping was
applied using our in situ AGB measurements to produce an AGB map (Baccini’s approach AGB map).
The results showed that the accuracy of the Baccini’s approach AGB map was lower than the accuracy
of the improved AGB map. Thus, it seems that using optical data as predictive variables to derive
AGB estimates do not allow to the accurate estimation of high AGB values, even if GLAS-derived AGB
values are used to establish the relationship with the optical data.

Finally, our approach could be applied to improve the existing global pan-tropical AGB map,
mainly by overcoming the problem of saturation at high AGB values, from which most of these recent
pan-tropical maps, such as Avitabile’s AGB map and Baccini’s AGB map, suffer.

6. Conclusions

This study analyzed the potential of LiDAR sensor data and ICESat/GLAS data to improve a AGB
map recently established in Madagascar (Vieilledent’s AGB map) using optical and digital elevation
model spatial imagery and climatic variables. First, GLAS data were used to provide AGB estimates
at 48,247 footprint locations covering the forested areas in Madagascar between 2003 and 2009 with
a density of 0.5 points/km2 of forest (Figure 1). Second, the additional correction factors, which are
the difference between Vieilledent’s AGB map and GLAS AGB, were calculated. Third, an ordinary
kriging interpolation was performed using these additional correction factors to provide a correction
factor map. Finally, Vieilledent’s AGB map and the correction factor map were summed to improve
Vieilledent’s AGB map.

The results showed that the precision of the improved AGB map (RMSE = 74.1 t/ha, R2 = 0.71,
N = 128) produced is better than that of the Vieilledent’s AGB map (RMSE = 81.0 t/ha, R2 = 0.62,
N = 128). In addition, results showed that the improved AGB map allows higher estimates of AGB
than Vieilledent’s AGB map. Indeed, the AGB values in the improved AGB map reach 650 t/ha,
whereas the maximum AGB value in Vieilledent’s AGB map is 550 t/ha. For the improved AGB map,
the number of AGB pixels (size = 250 m × 250 m) with a value higher than 550 t/ha is 13,241, covering
an area of approximately 68,917 ha in the eastern ecoregion, out of which 61,865 ha represent one
continuous forest stand located to the north of the eastern ecoregion.

Moreover, the results show that our approach provides more precise AGB estimates in comparison
to the approaches proposed by Baccini et al. [26] and Avitabile et al. [39]. This is because the in situ
AGB measurements used to calibrate the GLAS data, i.e., derive AGB from GLAS metrics, cover the
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range of all in situ AGB values. In addition, optical data that saturate at higher AGB values were not
used in the procedure, which leads to the improvement in Vieilledent’s AGB map.

A limitation of our method is the unavailability of new GLAS data because ICESat ceased
operations in 2009. However, this method could be applied to improve existing AGB maps constructed
for forests before 2010 because data acquired by ICESat between 2003 and 2009 are free. The Global
Ecosystem Dynamics Investigation LiDAR (GEDI) mission (launch date in 2019) will ensure LiDAR
data with a smaller footprint (25 m) for better mapping of pan-tropical forests.

Finally, we assume that the nominal year of the improved AGB map is 2010 because we used the
Vieilledent’s AGB map performed for the year of 2010, in addition to spaceborne LiDAR data acquired
between 2003 and 2009.
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