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Abstract: In this paper, we propose a method for using mobile laser-scanning data to estimate
the green space ratio (GSR), a landscape index that represents the proportion of green area to the
whole-view area. The proposed method first classifies and segments vegetation using voxel-based
and shape-based approaches. Vertical planar-surface objects are excluded, and randomly distributed
objects are extracted as vegetation via multi-spatial-scale analysis. Then, the method generates a map
representing occlusion by vegetation, and estimates GSR at an arbitrary location. We applied the
method to a data set collected in a residential area in Kyoto, Japan. We compared the results with
the ground truth data and obtained a root mean squared error of approximately 4.1%. Although
some non-vegetation with rough surfaces was falsely extracted as vegetation, our method seems to
estimate GSR to an acceptable accuracy.

Keywords: green space ratio; mobile scanning data; urban landscape; multi-scale analysis

1. Introduction

In urban planning, provision of green space (GS) in urban areas is one of the most challenging
issues, whereas urban green space (UGS) provides valuable direct and indirect services to the
surrounding areas [1]. For example, Nishinomiya City in Hyogo Prefecture, Japan is promoting
improvement and maintenance of its landscapes. It enacted a regulation for one residential area to
the effect that newly constructed houses should have a green space ratio (proportion of vegetation
to visible area: GSR) of at least 15%. The regulation specifies a simple formula for calculating the
green space ratio [2]. Local governments assess landscape quality from the perspective of aesthetics
before approving new construction. The landscape index is calculated through ground surveys by
local government officials. However, such surveys are time-consuming and expensive when applied
over wide areas, making it difficult to apply the regulation to the entire city and consequently promote
more UGS.

Automatic measures of UGS come mainly from geographic information system (GIS) data
and remotely sensed data [3]. For example, Tian et al. [4] used high-quality digital maps with a
spatial resolution of 0.5 m × 0.5 m to analyze the landscape pattern of UGS for ecological quality.
Gupta et al. [5] calculated an urban neighborhood green index to quantify homogenous greenness
from multi-temporal satellite images. The periodically obtained remotely sensed imagery is suitable
for updating the spatial distribution patterns of GS, but it is limited in that the three-dimensional (3D)
distribution is not directly obtained.

As a tool for directly measuring 3D coordinate values, light detection and ranging (LiDAR)
measures laser light reflected from the surfaces of objects. The discrete LiDAR data are used to model
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the 3D surfaces of objects and derive their attributes. Now, airborne and terrestrial LiDAR are of
operational use. Terrestrial LiDAR is stationary or mobile by vehicle. Applications of LiDAR data to
landscape analysis require the extraction of vegetation via classification and segmentation of point
clouds. In the case of airborne LiDAR, vegetation returns the light in various ways—from the surface,
middle and bottom—whereas buildings return the light mainly from the surface. This unique feature
of multiple returns is a challenge to applying LiDAR data to vegetation extraction. It is well known
that the first and last pulses of the light reflected from vegetation correspond to the top (canopies) and
bottom (ground) of the vegetation, respectively, which allows the heights of the vegetation surface
and ground to be estimated. Thus, we can derive the heights of vegetation by subtracting the ground
height from the vegetation surface height. Over the last decade, full-waveform airborne LiDAR has
been examined [6,7], which can provide more detailed patterns of reflected light and has the potential
to estimate the structure of forests.

In a complex urban area, the automatic extraction of vegetation requires the classification of
man-made and natural objects. This is another challenge to applying LiDAR data to urban vegetation.
One of the most promising approaches is to process the LiDAR data on multiple scales [8–10].
For example, Brodu and Lague [11] presented a method to monitor the local cloud geometry behavior
across several scales by changing the diameter of the sphere for representing local features. Wakita and
Susaki [12] proposed a multi-scale and shape-based method to extract vegetation in complex urban
areas from terrestrial LiDAR data.

Landscape indices related to GS can be calculated from the vegetation extracted from point clouds
or other sources. Susaki and Komiya [13] proposed a method to estimate the green space ratio (GSR)
in urban areas from airborne LiDAR and aerial images intended for the quantitative assessment of
local landscapes. The GSR is defined as the ratio of the area occluded by vegetation to the entire
visible area at a height of a person on the ground. Following Wakita and Susaki [12], Wakita et al. [14]
developed a method to estimate GSR from terrestrial LiDAR data. Huang et al. [15] extracted urban
vegetation using point clouds and remote sensing image. Individual tree crowns were extracted using
the normalized digital surface model from airborne LiDAR data and the normalized vegetation index
(NDVI) from near-infrared image. Yang et al. [16] estimated Green View index using field survey data
and photographs. Yu et al. [17] presented the Floor Green View Index, an indicator defined as the
area of visible vegetation on a particular floor of a building. This index is calculated from airborne
LiDAR data and aerial near-infrared photographs to calculate NDVI. Because of occlusion, more
accurate extraction of vegetation can be achieved using terrestrial LiDAR data. In addition to terrestrial
stationary LiDAR, mobile (or vehicle-based) LiDAR has been examined for this purpose because it is
capable of rapidly measuring the data in a large area [18]. Yang and Dong [19] proposed a method to
segment mobile LiDAR data into objects using shape information derived from the data. However,
mobile LiDAR data have a wide range of point density, and thus the estimation of vegetation may
tend to be unstable when there is vegetation in the far distance. Therefore, in this research, we present
a method to extract vegetation in complex urban areas and estimate a GSR from mobile LiDAR data.

2. Data Used and Study Area

We used a mobile LiDAR system, Trimble MX5, which is a vehicle-mounted LiDAR whose
angles were set to 30◦ for pitch rotation and 0◦ for heading rotation. The height of LiDAR was
set to approximately 2.3 m. It measures 550,000 points per second at a maximum distance of
800 m. The system also has three cameras, which were set to −15◦, 0◦ and 15◦ for heading rotation.
The camera resolution was five million pixels. The measurements were carried out on 3 March 2014
in the Higashiyama Ward of Kyoto, Japan. Higashiyama contains plenty of GS around traditional
temples and shrines. Figure 1 shows the study area.

To assess the accuracy of the GSR estimated in this research, we used images taken on 11 April
2015 using a camera with a fisheye lens. Although there was almost a year between the mobile LiDAR
and image data, we compared the equivalent color information in the point clouds and the camera
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images and concluded that the effect of the time gap was not significant. The camera used was an
EOS Kiss X3 by Canon, and the fisheye lens was a 4.5-mm F2.8 EX DC Circular Fisheye by Sigma.
We selected 18 points as assessment positions, labeled P1 to P18 in Figure 1. We took two images
covering the forward and backward views at each position. We manually colored the vegetation areas
and converted two images into one panoramic image, from which we calculated the measured GSR.
At each position, we measured actual GSR and estimated GSR from LiDAR data. The measured GSRs
were used as the ground truth for validating the estimated GSR results.
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3. Green Space Ratio (GSR)

Assume that the vegetation distribution in 3D coordinates is known in advance. We vary the
azimuth from 0◦ to 360◦ and determine the maximum and minimum elevation angles at which
the view is occluded by vegetation. Figure 2a) shows the viewable area from the perspective of a
person facing in the direction of the azimuth φ. We assume that φ and the elevation angle θ are
uniformly divided into intervals ∆φ and ∆θ, respectively. We vary the value of φ in steps of ∆φ from
0◦ to 360◦—∆φ, and search for vegetation points along each ray at angle φ within the maximum
range Dmax. At every vegetation point, we can calculate the values of θ at which occlusion occurs
because of vegetation and thereby determine the maximum elevation angle θmax and the minimum
elevation angle θmin within the maximum range Dmax (Figure 2a). If multiple populations of vegetation
exist, the maximum and minimum elevation angles occluded by each one are examined (Figure 2b).
As a result, we can generate a map similar to the one shown in Figure 3 (referred to hereinafter as an
occlusion map). The GSR in azimuth–elevation angle space is given by

GSR =
A2

A1 + A2
× 100, (1)

where A1 and A2 denote the non-vegetation area and the occluded vegetation area, respectively,
in azimuth–elevation angle space. According to Equation (1), the GSR can take any value between
0% and 100%.
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Figure 2. Maximum elevation angle θmax at which occlusion by vegetation is present from the viewpoint
of a human of height h along azimuth φ within the maximum range Dmax. (a) Minimum elevation
angle θmin is estimated by referring to the ground surface height of a point where θmax is observed
in the case where no object exists between the human and vegetation. (b) In the case where multiple
populations of vegetation exist, maximum and minimum elevation angles occluded by each one are
examined. In (b), e1 and e3 denote the eye sights at the maximum elevation angles, whereas e2 and e4

denote the eye sights at the minimum elevation angles.
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Figure 3. Occlusion map for calculating green space ratio (GSR) in azimuth–elevation angle space.
GSR is defined as the ratio of occluded vegetation area to the entire area.

4. Methodology for Estimating GSR from Mobile Scanning Data

Figure 4 shows the method for estimating GSR in this research. First, it classifies the point clouds
measured using mobile LiDAR into vegetation and non-vegetation. Then, assuming the position of
a viewpoint, it generates an occlusion map indicating how much vegetation is available in the view.
Finally, it calculates GSR for the viewpoint.

Remote Sens. 2017, 9, 215  5 of 16 

 

 
Figure 3. Occlusion map for calculating green space ratio (GSR) in azimuth–elevation angle space. 
GSR is defined as the ratio of occluded vegetation area to the entire area. 

4. Methodology for Estimating GSR from Mobile Scanning Data 

Figure 4 shows the method for estimating GSR in this research. First, it classifies the point 
clouds measured using mobile LiDAR into vegetation and non-vegetation. Then, assuming the 
position of a viewpoint, it generates an occlusion map indicating how much vegetation is available 
in the view. Finally, it calculates GSR for the viewpoint. 

 
Figure 4. Flowchart of the proposed method for estimating GSR from mobile scanning data. 

4.1. Vegetation Extraction 

The extraction of vegetation is based on volumetric pixel (voxel)-based analysis to reduce 
computational time. Voxels is a cuboid volumetric element, and it is an effective approach to process 
huge amount of point clouds by assigning point clouds to voxels [20]. The flowchart of vegetation 
extraction is shown in Figure 5. Local and contextual features are used to classify point clouds. Local 
features are calculated using a set of points in each voxel. A planar surface is fitted to the points to 
calculate a normal vector and express the 3D distribution characteristics using principal component 
analysis (PCA). The contextual features are derived from the horizontality of the normal vectors and 
the connectivity of the neighboring voxels. The extraction process is repeated twice with voxels of 
different sizes. The sizes are set according to the length of leaves. In the first screening, the majority 
of vegetation points are extracted but sparse vegetation points are not classified. Therefore, the 
second screening, with a larger voxel size, extracts the remaining vegetation points. 

φ
-180 1800

-90

90

0

θ

A2 : vegetation area

A1 : non-vegetation area

Green Space Ratio (GSR) =
A1 + A2

A2
Elevation angle (deg)

Azimuth angle (deg)

Calculation of 
occlusion by 

vegetation

Voxels

Vegetation voxels

Mobile LiDAR data

Occlusion map

Green Space Ratio (GSR)

Resampling

Clusters

Segmentation &
Classification

Aggregation

(II) GSR estimation(I) Vegetation extraction

Figure 4. Flowchart of the proposed method for estimating GSR from mobile scanning data.

4.1. Vegetation Extraction

The extraction of vegetation is based on volumetric pixel (voxel)-based analysis to reduce
computational time. Voxels is a cuboid volumetric element, and it is an effective approach to process
huge amount of point clouds by assigning point clouds to voxels [20]. The flowchart of vegetation
extraction is shown in Figure 5. Local and contextual features are used to classify point clouds. Local
features are calculated using a set of points in each voxel. A planar surface is fitted to the points to
calculate a normal vector and express the 3D distribution characteristics using principal component
analysis (PCA). The contextual features are derived from the horizontality of the normal vectors and
the connectivity of the neighboring voxels. The extraction process is repeated twice with voxels of
different sizes. The sizes are set according to the length of leaves. In the first screening, the majority of
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vegetation points are extracted but sparse vegetation points are not classified. Therefore, the second
screening, with a larger voxel size, extracts the remaining vegetation points.Remote Sens. 2017, 9, 215  6 of 16 
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respectively. σij denotes voxel size for the j-th processing in the i-th loop.

4.1.1. Vertical Planar Surface Exclusion

In urban areas, building walls and roofs account for the majority of non-vegetation objects;
their distribution characteristics are planar rather than scattered. After applying PCA to each voxel,
the root mean square error (RMSE) is calculated between points in the voxel and the estimated planar
surface. If the RMSE is within a designated threshold and the horizontal component of the normal is
within another designated threshold, the voxel is regarded as non-vegetation and is excluded from the
subsequent process.

4.1.2. Voxel Classification by 3D Distribution Characteristics

PCA can capture the distribution features of point clouds contained in voxels and clusters.
A set of 3D points, pi with i = 1, . . . , N, is used to compute three eigenvectors, l1, l2 and l3, and three
eigenvalues, λ1, λ2 and λ3, with λ1 ≥ λ2 ≥ λ3 ≥ 0. Normalized eigenvalues c1, c2 and c3 are calculated
by the sum of all eigenvalues, as shown in Equation (2):

ci =
λi

3
∑

i=1
λi

(i = 1, 2, 3). (2)

If c1 is much larger than the other two, the point cloud has a 1D point distribution. If c3 is much
smaller than the other two, the points have a 2D distribution. If all three have similar values, the point
cloud has a scattered (3D) distribution.
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Voxels are divided into three groups according to their distribution characteristics computed with
points in each voxel. Vegetation tends to have 3D distribution characteristics, hence we used the slope
(ratio) as described in Equation (3) to distinguish vegetation from non-vegetation:

a =
c3

c2
=

λ3

λ2
. (3)

According to slope a, vegetation candidate voxels are classified into three groups (Figure 6):
G1 is a vegetation group, G2 is composed of ambiguous voxels (vegetation with trimmed surfaces
and façades tends to be this group), and G3 is the non-vegetation group. Slope aij shows a threshold
between two groups: a11 and a12 are used in the first loop, and a21 and a22 are used in the second loop.
Voxels classified to G2 are re-classified into G1 or G3 in the process discussed in Section 4.1.3.

After the three-group classification, we reduce the false-positive voxels that are misclassified into
G1. We examine an index that represents the homogeneity of vegetation voxels. The index is defined
as Equation (4):

homogeneity =
NG1

Nall
. (4)

where NG1 denotes the number of voxels classified into group G1, and NALL denotes the sum of G1, G2

and G3. When the index is below the designated threshold, the voxel is labeled as G2.
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4.1.3. Voxel Classification by Continuity

Vegetation extraction with slope a alone is not stable because local features are sensitive to noise.
Therefore, we improve classification accuracy using both local and contextual features. First, voxels
are classified into three groups with the local feature as described in Section 4.1.2, and then voxels in
G2 are re-classified according to their contextual features. Group G2 contains both vegetation voxels,
such as vegetation with trimmed surfaces, and non-vegetation voxels, such as window frames and
ridges of roofs. As shown in Figure 7, G2 voxels are gathered together by regarding neighboring voxels
as one cluster. Each cluster is classified into G1 or G3. This operation can be explained by

continuity =
NG1

NG1 + NG3

. (5)

where NG1 corresponds to the number of G1 voxels and NG3 represents the number of G3 voxels
surrounding a target cluster. Continuity is defined as the proportion of NG1 to the sum of NG1 and
NG3. If continuity is greater than or equal to a designated threshold, the target voxel is classified as G1;
otherwise, it is classified as G3.

After vegetation extraction with a local feature and continuity, G1 still contains noisy voxels
located on windows and ridges of roofs. These voxels can be regarded as noise because they appear
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sparsely and constitute small clusters. However, other vegetation voxels exist that are connected with
other vegetation voxels; for this reason, vegetation voxels tend to form larger clusters. We focused on
this contextual feature to eliminate noisy voxels using the number of voxels. In the process, G1 voxels
are divided into clusters by referring to the connectivity of voxels. If there are fewer voxels in a cluster
than the designated threshold, the cluster is regarded as noise.

Moreover, we consider the distribution characteristic of points in a whole cluster. In some cases,
noisy voxels form larger clusters that can be eliminated using c1 and c3 computed from points in a
whole cluster. This is because these clusters are mainly on façades with rough surfaces or on ridges of
roofs. If c1 is greater than a threshold or c3 is smaller than another threshold, the cluster is regarded
as a noise cluster. In this process, clusters formed with another threshold are classified as vegetation
without referring to c1 and c3 in order to reduce the computational cost. The thresholds given here are
set through experiments with sample data.
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4.2. Green Space Ratio Estimation

The methodology for calculating GSR using the classified point clouds is now explained.
A point cloud generated by resampling LiDAR data with voxels is classified into two classes using
the methodology explained in Section 4.1.3. A point cloud is divided into several parts on the x-y
plane because the whole dataset needed to estimate GSR is too large to process simultaneously. After
classifying every point cloud, the point cloud is labeled. If at least one point is labeled as vegetation
in an overlapped area, the target point is also labeled as vegetation. The labeled point cloud is then
stored in voxels, each of which is classified based on points that it contains as expressed by

rv =
Nv

Nall
, (6)

where Nv and Nall represent the number of vegetation points and the number of all points in a voxel,
respectively. If Nall is not larger than a threshold, the voxel is labeled as no object. In the case that rv is
less than another threshold, the voxel is classed as non-vegetation, or else as vegetation. In the voxel
space, a viewpoint of a person is given and the GSR from it is calculated as explained in Section 3.

5. Results

We conducted experiments using the data explained in Section 2. We set parameter values
required for the proposed method through experiments with sample data as follows. In vegetation
extraction, the normal for labeling vertical planar surfaces was defined to have a zenith angle from
85◦ to 95◦. Two sizes of a voxel in the first loop, σ11 and σ12, were set to 0.5 m and 1.0 m, respectively.
In the second loop, σ21 and σ22 were set to 1.0 m and 2.0 m, respectively. The vegetation extraction
was repeated with different thresholds. In the first loop, a11 and a12 were used as thresholds related
to slope a. In the second loop, a21 and a22 were used. We set the thresholds through the experiment
with samples as follows: a11 = 0.02, a12 = 0.1, a21 = 0.06, and a22 = 0.2. The threshold for homogeneity
and continuity was set to 0.55. Neighboring was defined as a 5 × 5 × 5 voxel space. In noise removal,
the number of voxels for a cluster to be labeled as noise was 50 in the first loop and 10 in the second
loop. Moreover, if c1 was greater than 0.6 or c3 was smaller than 0.05, the cluster was regarded as a
noise cluster.



Remote Sens. 2017, 9, 215 9 of 16

In GSR estimation, the size of a voxel was set to 0.5 m. As for dividing a point cloud into
sub-regions, the grid size was 20 m and the overlap length between two adjoining grids was 3 m.
The voxel size for storing labeled point clouds was set to 0.5 m. The threshold of Nall for labeling
a voxel as no object was set to 2, and the threshold of rv for labeling as non-vegetation, or else as
vegetation, was set to 0.5. In estimating the GSR, the height h of a person was set to 1.5 m.

To show the performance of vegetation extraction, Figures 8 and 9 demonstrate the improvement
of extracting vegetation based on a multi-spatial-scale approach and the effect of the voxel sizes set for
the experiments. Figures 8b and 9b are the results obtained by applying the optimal parameter values.
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Figure 8. Improvement of extracting vegetation based on a multi-spatial-scale approach: (a) colored
point cloud; (b) vegetation extracted with σ11 = 0.5 m, σ12 = 1.0 m, σ21 = 1.0 m and σ22 = 2.0 m;
and (c) vegetation extracted with σ11 = 1.0 m, σ12 = 2.0 m, σ21 = 2.0 m and σ22 = 4.0 m.
(b,c) Red and green denote vegetation extracted in the first and second loop, respectively, and blue
denotes non-vegetation.
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Figure 9. (a–c) Improvement of extracting vegetation based on a multi-spatial-scale approach.
See Figure 8 for a description of each panel.

We conducted accuracy assessments for vegetation extraction and GSR estimation. The former
were assessed by F-measure, as shown in Equation (7):

F − measure = 2 · precision · recall
precision + recall

precision = TP/(TP + FP)
recall = TP/(TP + FN)

(7)
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where, TP, TN, FP and FN denote true positive, true negative, false positive and false negative,
respectively. The results are given in Table 1. Figure 10 shows points of the four labels in two cases:
using original point clouds and using voxels. Assessment using the original points may be biased
because far fewer points were observed around vegetation. Therefore, we assessed the results by
aggregating the labels of points into those of voxels.
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Figure 10. Accuracy assessment of vegetation extraction: (a) colored point cloud; (b) verified result for
original point cloud; and (c) verified result for 0.2 m voxel. (b,c) Green, blue, pink and yellow denote
true positive (TP), true negative (TN), false positive (FP) and false negative (FN), respectively.
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Table 1. Accuracy assessment of GSR estimation.

Original Point Cloud 0.2 m Voxel

Number of samples 1,993,253 29,043
True Positive (TP) 371,629 9154

True Negative (TN) 1,392,444 16,036
False Positive (FP) 94,644 1132

False Negative (FN) 134,536 2721
Precision 0.80 0.89

Recall 0.73 0.77
F-measure 0.76 0.83

Figures 11 and 12 show comparisons of the ground truth and the occlusion map obtained by
applying the proposed method. Figure 13 illustrates the comparison of the actual GSR and the
estimated GSR. Finally, the RMSE of GSR estimation was found to be 4.1% for 18 points.
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Figure 11. Comparison of ground truth and occlusion map at P8 (shown in Figure 1): (a) ground 
truth obtained from the images taken by a camera with a fisheye lens; (b) vegetation manually 
extracted from (a); and (c) occlusion map generated using the proposed method. (b,c) Green denotes 
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Figure 11. Comparison of ground truth and occlusion map at P8 (shown in Figure 1): (a) ground truth
obtained from the images taken by a camera with a fisheye lens; (b) vegetation manually extracted from
(a); and (c) occlusion map generated using the proposed method. (b,c) Green denotes vegetation.
(c) Blue and white denote non-vegetation and others, respectively. (b) Actual GSR = 17.0%.
(c) Estimated GSR = 20.2%.
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6. Discussion

First, we discuss the accuracy of the extracted vegetation and estimated GSR. In vegetation
extraction, Figure 10b shows that the leaves of trees were well extracted, whereas the low box-shaped
hedge was not extracted, shown as false negative (FN) in yellow. Figures 11 and 12 show the actual
view and the occlusion map at P8 and P11, respectively. In the occlusion map, green, blue and white
areas represent vegetation, non-vegetation and no-object areas, respectively. The vegetation area
drawn in the occlusion map of Figure 12c corresponds approximately to the area colored in green in
the actual view of Figure 12b, whereas that of Figure 11c overestimated the vegetation compared to
Figure 11b. As a result, the accuracy of the GSR estimated by the proposed method—an RMSE of
4.1%—was found to be acceptable (Figure 13) considering that the proposed method is designed to
rapidly estimate GSR in wide areas.

The multi-spatial-scale extraction of vegetation implemented in the proposed method functions
properly, as shown in Figures 8 and 9. Vegetation has various types of 3D shape and surface roughness,
and thus the optical spatial scale for extracting vegetation depends on such geometrical features.
We take the approach of extracting vegetation using only geometrical information derived from point
clouds, not using color information. This approach focuses on extracting geometrical information that
reflects vegetation properties that differ from those of non-vegetation. Multi-spatial-scale processing
is revealed to be effective for extracting vegetation. However, it falsely extracted as vegetation walls
whose surfaces were not flat (Figure 8b) and branches without leaves. The latter are difficult to extract
because they have similar geometrical features to vegetation, that is, they can be regarded as randomly
sampled objects.

Next, we focus on the advantage of the proposed method for extracting vegetation and estimating
GSR. As explained in Section 1, some existing approaches use point clouds and images to extract
vegetation [15–17]. The image requires light source and the brightness of vegetation of the images
may depend on the species and measurement season. As a result, the performance of extracting
vegetation is not always stable. The proposed approach needs only point clouds and therefore it can
avoid such unstable extraction of vegetation. In addition, mobile LiDAR data are found to be effective
in estimating small vegetation that airborne LiDAR may have difficulty in extracting. In terms of
estimating GSR, the proposed method can estimate it at any point of the study area. Mobile LiDAR
can cover much larger areas than stationary LiDAR. The GSR estimated from mobile LiDAR data can
represent smaller vegetation than that from airborne LiDAR data.

Then, we address the selection of parameter values. The optimal parameter values for vegetation
extraction may be difficult to determine automatically. Therefore, in this research, we repeated manual
tuning by applying them to the training data sets. For example, in a previous study we found that the
optimal voxel sizes for extracting vegetation from terrestrial LiDAR data were 10 cm and 20 cm [16].
However, for mobile LiDAR data, we set them to 0.5 m and 1.0 m. We examined several different
values, but finally these larger values were found to be optimal. Figures 8 and 9 show that different
parameter values for voxel size failed to extract vegetation. The optimal parameter values for mobile
LiDAR data were found to be different from those for terrestrially fixed LiDAR data. Mobile LiDAR
data covers much larger areas than does terrestrial LiDAR data, and accordingly, the range of point
density per area of mobile LiDAR data changes much more than that of terrestrial LiDAR data.

Finally, we discuss the factors that contribute to the error in the GSR estimated by the proposed
method. First, the estimated GSR tends to be an overestimate. Reconstructed objects become bigger
than the actual objects because the voxel-based approach converts point clouds into 0.5 m or 1.0 m
voxels. Second, the vegetation around θ = 90◦ may cause large errors, especially when the point
of interest has tall trees and the occlusion map has some vegetation areas around θ = 90◦. Voxels
around 90◦ and −90◦ contribute more to the GSR estimation than does the actual contribution when
the projection shown in Figures 11c and 12c is used for the occlusion map. This contribution can
be reduced using an equisolid angle projection [21]. Finally, the error in extracting vegetation using
point-cloud classification should be resolved. For example, when there is vegetation on a wall or
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fence, such non-vegetation objects may be falsely extracted as a part of the vegetation. Separating such
non-vegetation objects is one of the most difficult challenges in LiDAR data processing. Improving
vegetation extraction is a key issue for improving GSR estimation.

7. Conclusions

In this paper, we presented a method for estimating GSR in urban areas using only mobile LiDAR
data. The method is composed of vegetation extraction and GSR estimation. Vegetation is extracted
by considering the shape of objects on multiple spatial scales. We applied the method to a residential
area in Kyoto, Japan. The obtained RMSE of approximately 4.1% was found to be acceptable for
rapidly assessing local landscape in a wide area. It was confirmed that mobile LiDAR could extract
vegetation along streets and roads, whereas the estimated GSR tends to be an overestimate because
of the voxel-based approach. The selection of optimal parameter values depends on the study area,
and thus requires manual tuning. However, the proposed method overcame the existing challenge of
the automatic vegetation extraction and contributes to assessment of green space even in a complex
urban area, that will enrich green landscape. Future tasks are automatic selection of optimal parameter
values, and improvement of the accuracy of extracting vegetation points even when there is vegetation
on non-vegetation objects.
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