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Abstract: Species distributions are changing with various rates and directions in response to recent
global warming. The velocity of sea surface temperature (SST) has been used to predict species
migration and persistence as an expectation of how species track their thermal niches; however,
several studies have found that evidence for species shifts has deviated from the velocity of SST.
This study investigated whether estimation of the velocity of shifts in phytoplankton size structure
using remote sensing data could contribute to better prediction of species shifts. A chlorophyll-a
(Chla) size distribution (CSD) model was developed by quantifying the relationships between the
size structure of the phytoplankton community and the spectral features of the phytoplankton
absorption coefficient (aph(λ)), based on the principal component analysis approach. Model validation
demonstrated that the exponent of CSD (hereafter, CSD slope), which can describe the synoptic size
structure of a phytoplankton community, was derived successfully with a relative root mean square
error of 18.5%. The median velocity of CSD slope across the ocean was 485.2 km·decade−1, broadly
similar to Chla (531.5 km·decade−1). These values were twice the velocity of SST, and the directions of
shifts in CSD slope and Chla were quite different from that of SST. Because Chla is generally covariant
with the size structure of a phytoplankton community, we believe that spatiotemporal changes in
Chla can explain the variations of phytoplankton size structure. Obvious differences in both rate and
direction of shifts were found between the phytoplankton size structure and SST, implying that shifts
of phytoplankton size structure could be a powerful tool for assessing the distributional shifts of
marine species. Our results will contribute to generate global and regional maps of expected species
shifts in response to environmental forcing.
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1. Introduction

Global warming has brought dramatic changes to the marine environment [1]. Physical and
chemical variations have strong effects on the behavior of marine species [2], and responses of species
to changing environmental conditions are manifest at the population level as shifts in distribution [3].
Empirical and theoretical studies have suggested that while species tend to migrate toward higher
latitudes [4,5], up to 60% of species have not responded as expected, and that shifts in species
distributions have shown various rates and directions [6].

Improved understanding of how species shift their distributions is crucial for effective
conservation under conditions of climate change [7]. Climate velocity is derived as the ratio of
the long-term temperature trend to the two-dimensional spatial gradient in temperature, and it enables
predictions regarding species migration and persistence as an expectation of how species track the
location of their thermal niches [8]. In marine ecosystem research, climate velocity is calculated from sea
surface temperature (SST); hence, we refer here to climate velocity in terms of SST. Some recent studies
have exposed a complex mosaic of velocity of SST, suggesting non-uniform shifts in the global oceans
with a wide range of rates and directions that deviate from simple poleward migration [9]. Therefore,
the velocity of SST is expected to describe observed species shifts [10,11]; however, unexpected shifts
that are inconsistent with predictions generated by the velocity of SST have been reported for some
species and in certain regions [12,13].

Phytoplankton plays numerous roles in marine ecosystems and biogeochemical processes.
Consequently, information on the spatiotemporal pattern of the community composition and size
structure is necessary to understand the ecological and biogeochemical functions [14]. One of the most
important functions of phytoplankton is to determine the energy transfer efficiency, which depends
strongly on its size structure [15], and the size composition of a phytoplankton community is expected
to affect species distribution through changes in the food web structure [16]. These facts suggest that
the size structure of the phytoplankton community is one of the most crucial factors affecting species
distribution; hence, in addition to temperature, monitoring phytoplankton size structure is also likely
to contribute to better predictions of species shifts. Although the velocity of SST has been used widely
as a new index for describing expectations regarding species shifts [12,13], the velocity of shifts in
phytoplankton size structures has not been reported yet. Therefore, we hypothesized that the velocity
of shifts in phytoplankton size structures could contribute to the improvement of our understanding
of species shifts that deviate from the warming perspective.

In the last decade, various methods have been developed for global estimation of
phytoplankton size structure using satellite remote sensing based on optical properties such as the
phytoplankton absorption coefficient (aph(λ)) and the particle backscattering coefficient (bbp(λ)) [17–19].
Kostadinov et al. [17] proposed a novel method to estimate phytoplankton size structure based on
the particle size distribution (PSD) using the slope of bbp(λ). As phytoplankton is the main particle
component in the pelagic ocean [20], PSD can in turn be related to the phytoplankton size distribution.
The principal advantage of this approach is the arbitrariness of the arrangement of the size range,
where other methods generally adopt a fixed target group or size class. However, bbp(λ) is affected
not only by phytoplankton but also by non-algal particles (NAPs) [21]. To overcome this problem,
Roy et al. [19] reconstructed the PSD model using a chlorophyll-a (Chla)-specific absorption coefficient
(aph

*(λ)) at the wavelength of 676 nm. They successfully estimated the phytoplankton size structure;
however, the retrieval of inherent optical properties (IOPs) at longer wavelengths (such as 676 nm)
is quite difficult because of the strong absorption by the water itself [22]. Some recent studies have
demonstrated the utility of the principal component analysis (PCA) approach in deriving information
on phytoplankton community structure [23–25]. For example, Wang et al. [25] developed a method to
estimate phytoplankton size structure using the spectral features of normalized aph(λ) captured by PCA.
This method relies on the fact that the oscillation of loading factors can reveal the major factors driving
aph(λ) and its applicability. Thus, we believe that a PCA approach based on PSD could constitute a
powerful tool for the global estimation of the synoptic size structure of the phytoplankton community.
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In this study, we aimed to clarify the similarities and differences between the changes in
phytoplankton size structure and SST. To achieve this objective, we developed a model for retrieving
phytoplankton size structure by quantifying the phytoplankton size distribution using spectral features
of aph(λ). Then, the developed model was applied to satellite remote sensing data to estimate the
phytoplankton size distribution. Furthermore, climate velocities derived from spatiotemporal changes
in phytoplankton size distribution and SST were compared with regard to their contribution to better
prediction of species distributional shifts occurring now and in the future.

2. Materials and Methods

2.1. In Situ Data

The dataset used in this study was obtained from a wide area following 23 cruises over a
16-year period (Figure 1, Table 1). At each station, size fractionated Chla (Chlasize), light absorption
coefficient, and spectral radiation were measured, the detailed procedures of which are described below.
Note that the spectral radiation was not observed at some stations. Seawater samples were collected
from the sea surface (0 m) using a clean plastic bucket. Seventy percent of in situ data were used for
model development and the remainder was reserved for model validation.

Table 1. Cruises information and number of data obtained during each cruises.

Cruise Period Cruise Vessel Names
Number of Data

Water Sample Spectral Radiation

22 November–12 December 2000 JARE-42 JMSDF Shirase 19 6
16–25 February 2002 JARE-43 JMSDF Shirase 10 9

25 January–9 February 2003 UM0203 T/S Umitaka-maru 15 14
22 February–6 March 2003 JARE-44 R/V Tangaroa 9 6

1–21 January 2005 UM0405 T/S Umitaka-maru 16 11
5–22 January 2006 UM0506 T/S Umitaka-maru 10 7

25 July–14 August 2007 OS180 T/S Oshoro-maru 20 20
27 December 2007–12 February 2008 UM0708 T/S Umitaka-maru 21 15

13–25 January 2009 UM0809 T/S Umitaka-maru 9 7
18 August–18 September 2009 KH-09-4 R/V Hakuho-maru 16 16
11 September–10 October 2009 MR09-03 R/V Mirai 12 12

3 June–7 July 2010 OS216 T/S Oshoro-maru 21 17
4 September–13 October 2010 MR10-05 R/V Mirai 28 28

9–11 May 2011 KT-11-07 R/V Tansei-maru 8 7
8 June–7 July 2011 OS229 T/S Oshoro-maru 25 24

17–18 June 2012 US260 T/S Ushio-maru 8 7
6–8 August 2012 US263 T/S Ushio-maru 10 8

13 September–2 October 2012 MR12-E03 R/V Mirai 12 12
23 June–17 July 2013 OS255 T/S Oshoro-maru 26 24

31 August–4 October 2013 MR13-06 R/V Mirai 32 32
10–12 October 2013 ARAON-EJS Icebreaker ARAON 9 7

8–30 June 2014 Mu14 R/V Multanovski 16 16
8–23 March 2015 KH-15-1 R/V Hakuho-maru 12 12Remote Sens. 2017, 9, 222  4 of 21 

 

 
Figure 1. Location of the sampling stations where in situ data obtained for this study through 22 
cruises over the period 2000–2015. 
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We used various filters (Table 2) to obtain Chlasize during each cruise. Seawater samples (n = 
364) were filtered onto polycarbonate membrane or nylon mesh filters (20, 10, 5, and 2 μm pore size) 
and GF/F filters (Whatman, ca. 0.7 μm pore size) under low vacuum pressure (<0.013 MPa). After 
filtration, the filter was immediately soaked in N,N-dimethylformamide, and pigments were 
extracted for 24 h in the dark at −20 °C [26]. Chla concentrations were determined by the fluorescence 
acidification technique [27] during JARE-42, JARE-43, UM0203, 44Tangaroa and UM0405 and the 
non-acidification technique [28] during other cruises using a 10-AU fluorometer (Turner Designs 
Inc., San Jose, CA, USA). 

Table 2. Summary of pore size of filters that were used to obtain Chlasize during each cruises. 

Cruise IDs 20 μm 10 μm 5 μm 2 μm GF/F
JARE-42 × × × × 
JARE-43 × × × × 
UM0203 × × × × 
JARE-44 × × × × 
UM0405 × × × 
UM0506 × × × 
OS180 × × × 

UM0708 × × × 
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MR09-03 × × × × 

OS216 × × × × 
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KH-15-1 × × × 

Figure 1. Location of the sampling stations where in situ data obtained for this study through 23 cruises
over the period 2000–2015.
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2.1.1. Size Fractionated Chla Concentration

We used various filters (Table 2) to obtain Chlasize during each cruise. Seawater samples
(n = 364) were filtered onto polycarbonate membrane or nylon mesh filters (20, 10, 5, and 2 µm pore
size) and GF/F filters (Whatman, ca. 0.7 µm pore size) under low vacuum pressure (<0.013 MPa). After
filtration, the filter was immediately soaked in N,N-dimethylformamide, and pigments were extracted
for 24 h in the dark at −20 ◦C [26]. Chla concentrations were determined by the fluorescence
acidification technique [27] during JARE-42, JARE-43, UM0203, 44Tangaroa and UM0405 and the
non-acidification technique [28] during other cruises using a 10-AU fluorometer (Turner Designs Inc.,
San Jose, CA, USA).

Table 2. Summary of pore size of filters that were used to obtain Chlasize during each cruises.

Cruise 20 µm 10 µm 5 µm 2 µm GF/F

JARE-42 × × × ×
JARE-43 × × × ×
UM0203 × × × ×
JARE-44 × × × ×
UM0405 × × ×
UM0506 × × ×
OS180 × × ×

UM0708 × × ×
UM0809 × × ×
KH-09-4 × × ×
MR09-03 × × × ×

OS216 × × × ×
MR10-05 × × × ×
KT-11-07 × × × ×

OS229 × × × ×
US260 × × ×
US263 × × ×

MR12-E03 × × × × ×
OS255 × × ×

MR13-06 × × × ×
ARAON-EJS × × ×

Mu14 × × ×
KH-15-1 × × ×

2.1.2. Absorption Coefficient of Phytoplankton

To measure phytoplankton absorption spectra, particles in water samples were collected onto
a GF/F filter. The optical density (OD) of particles on the filter was measured immediately after
sampling using a MPS-2400 or a MPS-2450 spectrophotometer (Shimadzu, Japan) at wavelengths
of 350–750 nm, and the absorption coefficient of the total suspended particles (ap(λ)) was determined
from the OD according to the quantitative filter technique [29]. The OD of the NAPs was then measured
after soaking in methanol [30] or sodium hypochlorite [31], and the absorption coefficient of the NAPs
(ad(λ)) was quantified as well as ap(λ). Finally, aph(λ) was obtained by subtracting ad(λ) from ap(λ).

2.1.3. Retrieval of IOPs from In Situ Spectral Radiation Data

In situ spectral distributions of the underwater radiation (n = 317) were acquired using a SMPR
(Satlantic Inc., Halifax, NS, Canada), a HyperPro (Satlantic Inc., Halifax, NS, Canada) or a PRR-800/810
(Biospherical Instruments Inc., San Diego, CA, USA). The HyperPro measures underwater downward
spectral irradiance (Ed(λ, z)) and upward spectral radiance (Lu(λ, z)) at 136 wavelengths between 350
and 800 nm. The SPMR and PRR-800/810 measures those radiations at 13 and 17 wavelengths between
400 and 705 nm and between 380 and 765 nm, respectively. These measurements were acquired at the
same time as above-water measurements of downward spectral irradiance (Eds(λ)) were taken using a
sensor mounted on the ship deck.
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Remote sensing reflectance (Rrs(λ)) was calculated as the ratio of the water-leaving radiance
(Lw(λ)) to Eds(λ):

Rrs(λ) = Lw(λ)/Eds(λ) (1)

The Lw(λ) was obtained from Lu(λ, z) just beneath the water surface (Lu(λ, 0−), which was
determined as the fitting coefficient of near-surface Lu(λ, z) and the water-air interface propagation
factor of 0.544 [32] as follows:

Lw(λ) = 0.544 × Lu(λ, 0−) (2)

Lu(λ, z) = Lu(λ, 0−)× exp[−Ku × z] (3)

where z and Ku(λ) are the depth and diffuse attenuation coefficient of upward radiance, respectively.
Then, Rrs(λ) was resampled at 10 MODIS bands (412, 443, 469, 488, 531, 547, 555, 645, 667, and 678 nm)
from the original wavelength of the spectroradiometers using spline interpolation [25]. To estimate
aph(λ) from in situ Rrs(λ), the latest version of the quasi-analytical algorithm version 6 (QAA-v6) [33]
was applied to the observed Rrs(λ).

2.2. Satellite Remote Sensing Data

MODIS-Aqua Level-3 standard mapped daily images of OC3M Chla and Rrs(λ) at 10 MODIS
bands were downloaded from the Goddard Space Flight Center/National Aeronautics and Space
Administration for 2003–2015. The temporal and spatial resolutions of these satellite data were daily
and 9 km, respectively. The aph(λ) at the MODIS bands were derived from Rrs(λ) data using the
QAA-v6. Daily Advanced Very High Resolution Radiometer Pathfinder Version 5.2 SST data with
4-km spatial resolution were obtained for 2003–2015 from the USA National Oceanographic Data
Center/National Oceanic and Atmospheric Administration and the Group for High Resolution Sea
Surface Temperature. The Pathfinder Version 5.2 data are an updated version of the Pathfinder Version
5.0 and 5.1 collections described in Casey et al. [34]. These satellite data were resampled on a 1◦ × 1◦

grid and composited as monthly averages to minimize local and transient variabilities.

2.3. Model Description

Assuming that the PSD follows the Junge-type [35] power law size distribution [36], the number
of particles per unit volume (N) of seawater normalized by the size bin diameter (D), N(D), can be
expressed as follows:

N(D) = N0(D/D0)
−ξ (4)

where ξ is the Junge slope of the PSD, and D0 is a reference diameter at which N0 = N(D0). Therefore,
the total number of particles in a given size range can be derived by integrating Equation (4) from the
minimum diameter (Dmin) to the maximum diameter (Dmax); thus, enabling the PSD to be partitioned
into distinct classes described by

N =

Dmax∫
Dmin

N0(D/D0)
−ξ dD (5)

Given that the Chla is particulate, and thus the Chla size distribution (CSD) also follows the
Junge-type power law distribution, the total Chla (Chlatotal) and Chlasize in a given size range from D1

to D2 can be expressed using Equations (6) and (7) as follows:

Chlatotal =

Dmax∫
Dmin

Chla0(D/D0)
−ηdD (6)

Chlasize =

D2∫
D1

Chla0(D/D0)
−ηdD (7)
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where Chla0 is the reference Chla at D0 (here, 0.7 µm), and η is the exponent of the Chla size spectrum
(hereafter, CSD slope). Larger magnitudes of the CSD slope indicate a large proportion of smaller
phytoplankton, whereas smaller magnitudes suggest predominance of larger phytoplankton. In this
study, we assumed Dmin and Dmax as the pore size of GF/F filter (i.e., nominal 0.7 µm) and 200 µm [37],
respectively. The CSD slope is derived as the slope of the linear regression in log-space between the
inverse log-transformed median diameters from log-transformed D1 to D2 and Chlasize normalized by
the size bin width.

Note that the Chla fraction of an arbitrarily defined size range (Fsize) can be derived using the
CSD slope as follows:

Fsize = 100 × Chlasize

Chlatotal
= 100 ×

∫ D2
D1

Chla0(D/D0)
−ηdD∫ 200

0.7 Chla0(D/D0)
−ηdD

= 100 ×
D1−η

2 − D1−η
1

2001−η − 0.71−η
(8)

where the constants Chla0 and D0 no longer exist in Equation (8), such that only the CSD slope and
diameter range are required for estimating each fraction of the phytoplankton size classes.

2.4. Quantification of CSD Slope Using Phytoplankton Absorption Spectra

To quantify the CSD slope using the spectral shape of aph(λ), we applied PCA to the normalized
aph(λ), according to the method of Wang et al. [25]. In brief, the normalized aph(λ) (astd

ph (λ)) was derived
from the wavelength mean and standard deviation of aph(λ) at 10 MODIS bands. The formula for
astd

ph (λ) is shown below:

astd
ph (λ) =

[
aph(λ)− mean

(
aph(λ)

)]
/std

(
aph(λ)

)
(9)

where mean(aph(λ)) and std(aph(λ)) are the wavelength mean and standard deviation of aph(λ),
respectively. Then, PCA was applied to astd

ph (λ) to capture the spectral features of the phytoplankton

absorption properties. The input values for the PCA comprised a matrix (m × N) constituted of astd
ph (λ),

where m and N are the numbers of the wavelengths and samples, respectively. The resulting principal
component (PC) scores were assumed to correlate with the CSD slope; hence, the CSD slope was
quantified as a logistic-type regression model using the i-th PC score (Si) and regression coefficients
between the CSD slope and PC scores (β0 and βi) as follows:

η =

[
β0 + exp

k

∑
i=1

βiSi

]−1

(10)

where k is the number of PCs. Here, Si can also be expressed as follows:

Si =
m

∑
j=1

wi,jastd
ph
(
λj
)

(11)

where wi,j and astd
ph (λj) are the loading factors for the i-th PC and astd

ph (λ) value at wavelength
j, respectively. Therefore, we obtained an equation by replacing Si in Equation (10) with
Equation (11):

η =

[
β0 + exp

m

∑
j=1

Cjastd
ph
(
λj
)]−1

(12)

Cj =
k

∑
i=1

βiwi,j (13)

Finally, the CSD slope is derived from Equation (12) using the model parameters of β0 and Cj.
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To avoid unrealistic values of the CSD slope, we defined the upper and lower limits of the CSD
slope as 3.0 and 0.0, respectively. These limits mostly corresponded to 90% of pico- and microplankton
dominance to total Chla.

2.5. Evaluation of Estimate Accuracy

The relative root mean square error (RRMSE) was adopted when we validated the agreement
of two values, such as the measured and estimated CSD slope. The RRMSEs were computed as
relative values to provide equal weights to all samples and then expressed as percentages [38,39],
as described by

RRMSE(%) = 100 ×

√√√√ 1
N

N

∑
i=1

(
Measi − Modi

Measi

)2
(14)

where Measi and Modi are the i-th measured and modeled values, respectively.

2.6. Velocities of the Shift in Oceanographic Parameters

Velocities of the CSD slope, Chla, and SST were derived following the method of Burrows et al. [9].
The velocity along angle θ (Vθ), with 0◦ as North and 180◦ as South, was calculated on a 1◦ grid by
dividing the temporal trend over the period 2003–2012 by the spatial gradient as follows:

Vθ =
Temporal trend
Spatial gradient

(15)

The long-term temporal trend was calculated as the slope of the linear regression between
monthly anomalies and time. Note that the temporal trend was employed as an absolute value
when we determined the velocity using Equation (15) to clarify the local speed of shifting contours.
The spatial gradient was derived as the vector sum of the North–South and West–East spatial gradients
of 3 × 3 neighborhoods, with the associated vector angle given by the direction of the gradient,
as described by

Spatial gradient = SNS cos θ + SEW sin θ (16)

where SNS is the North–South spatial gradient and SEW is the East–West spatial gradient.
The North–South spatial gradient was calculated as the difference in the temporal average for each
northern and southern adjacent pair divided by the distance between them. The West–East spatial
gradient was calculated similarly for each western and eastern adjacent pair divided by the distance
between the cells in each pair.

3. Results

3.1. Retrieval of the CSD Slope from In Situ Chlasize

Various filters were used to obtain Chlasize (Table 2). In general, phytoplankton is partitioned
into three size classes: picoplankton (0.7–2.0 µm), nanoplankton (2.0–20.0 µm) and microplankton
(>20.0 µm). However, we have not used filters for dividing phytoplankton into the size classes during
some cruises (e.g., UM0405, OS180 and KH-0904). This fact forces us to employ specific combinations
of filters used for obtaining Chlasize, resulting in only a part of our dataset can be used together. Thus,
our dataset could not be used in its entirety with typical methods such as Brewin et al. [40] and
Devred et al. [41] that need to fix the size range of each phytoplankton size class. In contrast, it is
possible to derive the CSD slope from any combination of Chlasize; hence, we succeeded in developing
a CSD model using the entire dataset.

To verify the robustness of the CSD slope values determined by various combinations of filters,
the CSD slopes derived from different combination of Chlasize were compared. For this comparison,
the data obtained during the MR12-E03 cruise were employed because filters with various pore sizes
were used during this cruise. Figure 2 shows the relationships between the CSD slope values derived
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from three typical Chlasize (0.7–2.0, 2.0–20.0, and >20.0 µm) and different combination of Chlasize.
The resulting RRMSEs were 4.9% and 4.0%, and therefore we concluded that the differences in the
CSD slope among the combinations of filters were negligible.

Remote Sens. 2017, 9, x FOR PEER REVIEW  8 of 23 

 

during some cruises (e.g., UM0405, OS180 and KH-0904). This fact forces us to employ specific 
combinations of filters used for obtaining Chlasize, resulting in only a part of our dataset can be used 
together. Thus, our dataset could not be used in its entirety with typical methods such as Brewin et 
al. [40] and Devred et al. [41] that need to fix the size range of each phytoplankton size class. In 
contrast, it is possible to derive the CSD slope from any combination of Chlasize; hence, we succeeded 
in developing a CSD model using the entire dataset.  

To verify the robustness of the CSD slope values determined by various combinations of filters, 
the CSD slopes derived from different combination of Chlasize were compared. For this comparison, 
the data obtained during the MR12-E03 cruise were employed because filters with various pore sizes 
were used during this cruise. Figure 2 shows the relationships between the CSD slope values 
derived from three typical Chlasize (0.7–2.0, 2.0–20.0, and >20.0 μm) and different combination of 
Chlasize. The resulting RRMSEs were 4.9% and 4.0%, and therefore we concluded that the differences 
in the CSD slope among the combinations of filters were negligible. 

 
Figure 2. The comparison of CSD slope derived from three typical Chlasize which were divided by the 
filters of 0.7, 2.0 and 20 μm pore size, and two different combinations of Chlasize: (a) Chlasize divided 
by the filters of 0.7, 2.0 and 10 μm pore size; and (b) 0.7, 5.0 and 20 μm pore size. Solid and dashed 
lined represent the 1:1 agreements and regression lines, respectively. 

3.2. Empirical Development of the CSD Model 

The method described in Section 2.3 was applied to our dataset for developing the CSD model. 
The in situ CSD slope ranged from 0.417 to 2.427. Note that smaller CSD slope values indicate 
phytoplankton assemblages with larger sizes, and vice versa. Figure 3 shows the relationship 
between the CSD slope and spectral shape of (λ). It is clear that there are remarkable differences 
in (λ) accompanying the variation of CSD slope. For instance, smaller CSD slope values show 
remarkably higher values of (λ) between 400 and 430 nm than do larger values of the CSD slope. 
In addition, (λ) values associated with smaller CSD slope values are higher than those of larger 
CSD slope values between 660 and 690 nm. These differences in (λ) were mainly due to a 
coupling of the packaging effect and pigment composition, which is strongly affected by 
phytoplankton cell size and species composition [25]. Overall, the results were generally consistent 
with Ciotti et al. [42] and Wang et al. [25]. 

Figure 2. The comparison of CSD slope derived from three typical Chlasize which were divided by the
filters of 0.7, 2.0 and 20 µm pore size, and two different combinations of Chlasize: (a) Chlasize divided
by the filters of 0.7, 2.0 and 10 µm pore size; and (b) 0.7, 5.0 and 20 µm pore size. Solid and dashed
lined represent the 1:1 agreements and regression lines, respectively.

3.2. Empirical Development of the CSD Model

The method described in Section 2.3 was applied to our dataset for developing the CSD model.
The in situ CSD slope ranged from 0.417 to 2.427. Note that smaller CSD slope values indicate
phytoplankton assemblages with larger sizes, and vice versa. Figure 3 shows the relationship between
the CSD slope and spectral shape of astd

ph (λ). It is clear that there are remarkable differences in astd
ph (λ)

accompanying the variation of CSD slope. For instance, smaller CSD slope values show remarkably
higher values of astd

ph (λ) between 400 and 430 nm than do larger values of the CSD slope. In addition,

astd
ph (λ) values associated with smaller CSD slope values are higher than those of larger CSD slope

values between 660 and 690 nm. These differences in astd
ph (λ) were mainly due to a coupling of the

packaging effect and pigment composition, which is strongly affected by phytoplankton cell size and
species composition [25]. Overall, the results were generally consistent with Ciotti et al. [42] and
Wang et al. [25].

To capture the spectral differences in astd
ph (λ), PCA was conducted using astd

ph (λ) between 400 and
700 nm with 1-nm resolution. The first four PC modes explained >94.2% of the total variance in
astd

ph (λ) and the first mode captured 52.1%. The spectral shape of the first mode indicates negative
loading factor between 400 and 430, and 660 and 690 nm and positive loading factor between 430 and
550 nm (Figure 4a). The second mode explained 23.2% of the total variance and the spectrum shows
an obvious negative peak between 660 and 690 nm (Figure 4b). The third mode explained 12.3% of the
total variance in astd

ph (λ). This mode shows a monotonous decrease from 400 to 430 nm, followed by an
increase above 500 nm (Figure 4c). The fourth mode explained only 3.5% of the total variance; several
positive and negative peaks are evident in the spectral shape (Figure 4d).
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These spectral features derived from PCA can be interpreted as signatures of changes in astd
ph (λ).

However, ocean color sensors restrict us to using only specific numbers of wavelengths for PCA
because of the limitation of available observation bands. Although additional wavelengths are better
for a PCA approach, previous studies have reported that reduced wavelength information has little
influence on model performance [23,25]. Initially, we attempted to conduct PCA for astd

ph (λ) resampled
at 10 MODIS bands between 400 and 700 nm; however, the estimation accuracy of the QAA-v6 became
quite poor at longer wavelengths such as 645, 667, and 678 nm with huge RRMSE values of 67.2%,
77.9%, and 58.1%, respectively (Table 3). Therefore, only aph(λ) at the seven shorter wavelengths of
412, 443, 469, 488, 531, 547, and 555 nm were used for developing our CSD model.
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Table 3. Summary of performances of the QAA-v6 at 10 MODIS bands. R2 and RRMSE were calculated
in log10 space using full dataset (n = 317) after omitting minus values.

Wavelength (nm)

412 443 469 488 531 547 555 645 667 678

Number of minus value 31 31 36 28 78 77 86 14 44 83
R2 0.68 0.71 0.59 0.61 0.57 0.62 0.57 0.00 0.01 0.01
RRMSE (%) 20.3 19.0 19.7 21.2 20.5 15.8 15.4 67.2 77.9 58.1

The first four PC scores derived from astd
ph (λ) at the seven wavelengths and the CSD slope were

used to fit the logistic-type function, following which the model parameters β0 and Cj were determined.
Comparison of the CSD slopes derived from in situ Chlasize and in situ aph(λ) shows good agreement
(RRMSE: 17.4%); however, data scattering for higher CSD slope values is apparent (Figure 5a).
This might be because one combination of regression coefficients cannot capture the entire relationship
between the phytoplankton size structure and the spectral shape of aph(λ). When focusing on the
average astd

ph (λ) at the MODIS bands, the astd
ph (λ) at 412 nm was higher than at 469 nm for smaller

CSD slopes, and vice versa. These spectral features were also found in previous studies, and
they were attributed to differences in pigment composition related to phytoplankton cell size [42].
For such practical considerations, we divided the dataset for model development into two, according
to the relationship between astd

ph (λ) at 412 and 469 nm, and then determined the model parameters for
each dataset. Thus, the CSD model is defined as summarized in Table 4. The resulting relationship
between in situ and modeled CSD slopes shows better agreement (Figure 5b), for which the RRMSE
was reduced significantly to 13.2%. Note that sampling locations of these two dataset were randomly
distributed in latitude and longitude, suggesting geographic bias seemed negligible. We also tried to
quantify CSD slope based on previous methods described in Kostadinov et al. [17], Brewin et al. [40],
and Fujiwara et al. [18], for which the resulting RRMSEs were 31.6%, 31.7%, and 31.8%, respectively.
These results suggest that the PCA approach is superior to other methods in the quantification of
CSD slope.

Remote Sens. 2017, 9, x FOR PEER REVIEW  11 of 23 

 

 
Figure 5. Comparison between in situ and modeled CSD slope using the CSD slope: (a) before; and 
(b) after involving a condition branch. Solid line represents regression line, black and gray dashed 
lines indicate the 1:1 agreement and ±0.25 ranges, respectively. 

3.3. Validation of the CSD Model 

The performance of the CSD model was examined by comparing measured CSD slope values 
determined from in situ Chlasize and modeled CSD slope values estimated from in situ Rrs(λ). The 
resulting RRMSE between the measured and modeled CSD slope values was 18.5% (Figure 6). As 
the CSD model relies on the spectrum shape of aph(λ), the accuracy of the modeled CSD slope values 
depends strongly on the robustness of the IOP algorithms. Therefore, the performance of the CSD 
model will be improved when IOP algorithms that are more robust are developed. However, the 
CSD model successfully retrieved the CSD slope within ±0.25 ranges for 75 out of 106 (70.8%) 
validated data. Thus, we considered that the CSD model performed with sufficient accuracy for 
assessing the CSD slope; hence, it could be used to derive global estimations of phytoplankton size 
structure.  

 
Figure 6. Comparison of in situ CSD slope determined from in situ Chlasize and modeled CSD slope 
derived from estimated (λ) through QAA-v6 using in situ PRR data. Solid line represents 

Figure 5. Comparison between in situ and modeled CSD slope using the CSD slope: (a) before;
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3.3. Validation of the CSD Model

The performance of the CSD model was examined by comparing measured CSD slope values
determined from in situ Chlasize and modeled CSD slope values estimated from in situ Rrs(λ).
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The resulting RRMSE between the measured and modeled CSD slope values was 18.5% (Figure 6).
As the CSD model relies on the spectrum shape of aph(λ), the accuracy of the modeled CSD slope
values depends strongly on the robustness of the IOP algorithms. Therefore, the performance of the
CSD model will be improved when IOP algorithms that are more robust are developed. However, the
CSD model successfully retrieved the CSD slope within ±0.25 ranges for 75 out of 106 (70.8%) validated
data. Thus, we considered that the CSD model performed with sufficient accuracy for assessing the
CSD slope; hence, it could be used to derive global estimations of phytoplankton size structure.

Remote Sens. 2017, 9, x FOR PEER REVIEW  11 of 23 

 

 
Figure 5. Comparison between in situ and modeled CSD slope using the CSD slope: (a) before; and 
(b) after involving a condition branch. Solid line represents regression line, black and gray dashed 
lines indicate the 1:1 agreement and ±0.25 ranges, respectively. 

3.3. Validation of the CSD Model 

The performance of the CSD model was examined by comparing measured CSD slope values 
determined from in situ Chlasize and modeled CSD slope values estimated from in situ Rrs(λ). The 
resulting RRMSE between the measured and modeled CSD slope values was 18.5% (Figure 6). As 
the CSD model relies on the spectrum shape of aph(λ), the accuracy of the modeled CSD slope values 
depends strongly on the robustness of the IOP algorithms. Therefore, the performance of the CSD 
model will be improved when IOP algorithms that are more robust are developed. However, the 
CSD model successfully retrieved the CSD slope within ±0.25 ranges for 75 out of 106 (70.8%) 
validated data. Thus, we considered that the CSD model performed with sufficient accuracy for 
assessing the CSD slope; hence, it could be used to derive global estimations of phytoplankton size 
structure.  

 
Figure 6. Comparison of in situ CSD slope determined from in situ Chlasize and modeled CSD slope 
derived from estimated (λ) through QAA-v6 using in situ PRR data. Solid line represents 

Figure 6. Comparison of in situ CSD slope determined from in situ Chlasize and modeled CSD slope
derived from estimated astd

ph (λ) through QAA-v6 using in situ PRR data. Solid line represents regression
line, and black and gray dashed lines indicate the 1:1 agreement and ±0.25 ranges, respectively.

Table 4. Model parameters (β0 and Cj in Equation (12)) for CSD slope estimation.

Model Parameters

β0 C1 C2 C3 C4 C5 C6 C7

aph(412) ≥ aph(469) −0.221 0.324 0.021 −0.780 0.243 1.714 −0.190 −1.308
aph(412) < aph(469) −0.314 0.245 0.026 −0.693 0.209 1.813 −0.191 −1.311

3.4. Global Distribution of CSD Slope and Chla

Figure 7 shows the average CSD slope and Chla values during the period from January 2003 to
December 2015. It can be seen that smaller CSD slope values are present in coastal upwelling regions
such as in the areas of the Benguela and Humboldt currents, whereas larger CSD slope values are
found in oligotrophic regions, especially the equatorial regions. In general, these global patterns of
CSD slope exhibit an inverse relationship with Chla, suggesting areas of high and low productivity are
associated with the relative dominance of larger and smaller phytoplankton assemblages, respectively.
However, smaller CSD slope values are also evident in areas of low productivity, such as subtropical
gyres. This is because the total absorption coefficient was close to that of pure seawater and the
estimated IOPs include large errors, resulting in huge uncertainties regarding the performance of the
CSD model.
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Figure 7. Global distribution of: (a) CSD slope; and (b) Chla over 2003–2015. Cross-hatching shows
areas of climatological aph(443) = 0.01, where the CSD slope values contain uncertainties because of the
low estimation accuracy of the QAA-derived aph(λ).

3.5. Velocities of Shift in CSD Slope and Chla

The temporal trend of CSD slope values was derived as a simple linear regression slope of the
monthly anomaly of CSD slope against time (Figure 8a). Overall, 20.1% of the global oceans had
significant increases or decreases (p < 0.05) during 2003–2015. An increasing trend in CSD slope,
indicating a change toward a smaller phytoplankton community, was found for 57.4% of these regions.
A significant increasing or decreasing trend in Chla was found in 54.8% of the global oceans for
2003–2015 (Figure 9a), with 63.6% of these regions exhibiting a decreasing trend. The spatial gradient
of CSD slope was relatively large along coastal regions and subtropical gyres result from dynamic
changes in CSD slope with modest spatial displacements (Figure 8b). This global pattern of spatial
gradient was consistent with that of Chla (Figure 9b). However, it should be noted that the large
estimation error of CSD slope was substantial in areas of low productivity. As a clear temporal trend in
Chla was found in these regions, the biogeochemical and ecological processes within these regions are
likely to have experienced climate forcing. Therefore, accurate estimation of the phytoplankton size
structure would contribute to improved understanding of the changes in these processes by providing
information that is more detailed than provided by the spatiotemporal variability of Chla.

It appeared that the velocities of CSD slope and Chla depended strongly on their spatial gradients
rather than on their temporal trends because the velocities showed clear inverse distributions with
the spatial gradients. When the rates of temporal change and spatial gradient of the CSD slope were
combined, the resulting median velocity of the CSD slope across the ocean was 485.2 km·decade−1

(Figure 8c). This value is largely consistent with that of 531.5 km·decade−1 for Chla (Figure 9c).
These velocities are equivalent to the observed distribution shift of the phytoplankton community
(469.9 ± 115.3 km·decade−1) reported by Poloczanska et al. [12]. The directions of shifts both in CSD
slope (Figure 8d) and in Chla (Figure 9d) show a mosaic distribution, suggesting that spatiotemporal
variations of CSD slope and Chla are non-uniform across the oceans. As species response to climate
forcing is specific to the regional scale [6], a complex mosaic of the spatiotemporal variations of CSD
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slope and Chla has the potential for providing assessments of shifts in species distributions that are
more accurate.Remote Sens. 2017, 9, x FOR PEER REVIEW  14 of 23 
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Figure 8. Global distribution of: (a) temporal trend; (b) spatial gradient; (c) velocity; and (d) direction
of CSD slope. White shows the area with non-significant (p > 0.05) temporal trend for the period
2003–2015. Cross-hatching shows areas of climatological aph(443) = 0.01, where the CSD slope values
contain uncertainties because of the low estimation accuracy of the QAA-derived aph(λ).



Remote Sens. 2017, 9, 222 14 of 22

Remote Sens. 2017, 9, x FOR PEER REVIEW  15 of 23 

 

 
 
 
 

Figure 9. Global distribution of: (a) temporal trend; (b) spatial gradient; (c) velocity; and (d) direction 
of Chla. White shows the area with non-significant (p > 0.05) temporal trend for the period 2003–2015. 

3.6. Comparison of Velocities Derived from CSD Slope and Chla with That of SST 

The SST shows significant temporal change in 34.9% of the global oceans, of which regions of 
warming and cooling account for 78.4% and 21.6%, respectively (Figure 10a). The global median 
velocity of SST was 292.8 km·decade−1 and this is approximately half that of the CSD slope and Chla 
(Figure 10c), suggesting a modest movement of the isotherms compared with the shifts in CSD slope 
and Chla. Note that the velocity of SST in this study was more than 10 times that reported in 
Burrows et al. [9] (21.7 km·decade−1). This discrepancy was caused by differences in methods; i.e., 

Figure 9. Global distribution of: (a) temporal trend; (b) spatial gradient; (c) velocity; and (d) direction
of Chla. White shows the area with non-significant (p > 0.05) temporal trend for the period 2003–2015.

3.6. Comparison of Velocities Derived from CSD Slope and Chla with That of SST

The SST shows significant temporal change in 34.9% of the global oceans, of which regions of
warming and cooling account for 78.4% and 21.6%, respectively (Figure 10a). The global median
velocity of SST was 292.8 km·decade−1 and this is approximately half that of the CSD slope and
Chla (Figure 10c), suggesting a modest movement of the isotherms compared with the shifts in CSD
slope and Chla. Note that the velocity of SST in this study was more than 10 times that reported in
Burrows et al. [9] (21.7 km·decade−1). This discrepancy was caused by differences in methods; i.e., this
study used only statistically significant trends (p < 0.05), and non-significant trends that result in low
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velocities were excluded. In fact, the median velocity of SST in this study was 35.3 km·decade−1 when
both significant and non-significant trends were included.
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Although the direction of shift in SST also shows a complex pattern, which clearly differs from a
simple poleward migration (Figure 9d), there are clear regional differences in the directions of velocities
among the CSD slope, Chla, and SST (Figure 11). For instance, the directions of shifts in CSD slope and
Chla are largely consistent (Figure 11a), whereas the direction of shift in SST deviates from those of
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CSD slope (Figure 11b) and Chla (Figure 11c). The direction of shift in SST shows a patchy pattern
in which some areas are comparable and others dissimilar to those of both CSD slope and Chla, and
specific patterns were not found in this study. Thus, the rates and directions of shifts in CSD slope and
Chla could explain the variations in species distribution that deviate from that of SST [12,13].
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Figure 11. Distribution patterns of differences in direction of velocity between: (a) CSD slope and Chla;
(b) CSD slope and SST; and (c) Chla and SST. White and gray areas show the area with non-significant
(p > 0.05) trend in both and either of two velocities, respectively. Cross-hatching shows areas of
climatological aph(443) = 0.01, where the CSD slope values contain uncertainties because of the low
estimation accuracy of the QAA-derived aph(λ).

4. Discussion

Satellite-based estimation of spatiotemporal variation in phytoplankton size structure can
contribute to better understanding of the biogeochemical and ecological responses to recent climate
forcing [14]. In this study, we developed a CSD model based on empirical relationships between the
size distribution of Chla and the spectral shape of aph(λ). This method enabled us to derive with
sufficient accuracy the synoptic size structure of the phytoplankton community using satellite remote
sensing, based on our dataset obtained from a wide area of the North Pacific, Southern Ocean and
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Western Arctic oceans (Figure 1), despite approximately one third the samples being obtained from
the optically complex waters of the Western Arctic Ocean [43,44]. We should note that the global
distribution of CSD slope includes uncertainties in clear waters due to the estimation error in aph(λ)
by QAA. Although other IOP algorithms for aph(λ) estimation such as the Garver–Siegel–Maritorena
model [45] and the Constrained Liner Matrix model [46] might perform well, even in the clearest
waters, the fixed shape estimation of aph(λ) is not applicable to our CSD model. Because the model
relies strongly on the estimated spectrum of aph(λ), which is derived from the water-leaving radiance
through an IOP algorithm [25], the performance of the CSD model, especially in clear waters, will be
improved when IOP algorithms that are more robust are developed.

Compared with existing models, our CSD model has several advantages. First, this model is
applicable to both coastal and open waters. Although some models [47,48] use the spectral features of
Rrs(λ), which are affected strongly by non-algal components [20] and hence restricted to application in
open waters, our CSD model has been developed using aph(λ), which is separated from the absorption
by colored dissolved organic matter and NAPs [22]. Second, the CSD model can avoid the estimation
errors of aph(λ) because our method requires aph(λ) at shorter wavelengths (i.e., between 412 and
555 mm), while the model proposed by Roy et al. [19] depends on the accuracy of the aph(676)
estimation, which generally contains significant error because of strong absorption by pure
seawater [22]. Third, the use of the spectral shape of aph(λ) enables us to reduce the influence
of non-algal components, whereas the bbp(λ)-based approach [17] can be affected not only by
phytoplankton but also by all other suspended particles [21]. In addition, the fraction of user-defined
phytoplankton size classes can be derived with the CSD model according to Equation (8), while
most other models can retrieve only predefined size classes. Furthermore, the CSD model has been
developed using Chlasize, which was determined by size-fractionated filtration. Although diagnostic
pigment analysis (DPA) is frequently applied to classify phytoplankton size classes based on the
photosynthetic pigment composition [19,25,39,40,49], Brewin et al. [50] reported that the DPA method
had significant uncertainties. Therefore, we believe that the size-fractionated filtration-based method
could be useful for obtaining phytoplankton size structures that are more accurate. Finally, the
CSD model can represent the synoptic size structure of the phytoplankton community with one
component, and hence the CSD slope is easily applicable to ocean biogeochemical models for retrieving
phytoplankton size structures, which provide a useful index of the trophic status of the water mass,
efficiency of the biological pump, and productivity of the marine ecosystem.

It has been well documented that the relationship between the size structure and abundance of
the phytoplankton community shows strong covariance [39,40,49]; i.e., the fractional contribution
of microplankton to Chla increases monotonically with increasing Chla, and vice versa. Indeed,
the regional distribution of CSD slope showed a clear inverse pattern to that of Chla. Additionally,
our demonstration of the temporal trend in Chla showed regional patterns of increase and decrease for
the period 2003–2015, as reported in previous studies [51,52], and the distribution of CSD slope was
generally the inverse. These results suggest that Chla and phytoplankton size structure are strongly
covariant, and hence we consider that Chla could become an index of phytoplankton size structure.
However, the regions where CSD slope and Chla showed statistically significant trends were quite
limited. This is because the statistically significant regions of CSD slope were scarce in comparison
with Chla. For instance, Chla showed significant increases or decreases in large parts of oligotrophic
regions, where valid CSD slopes could not be retrieved because of the low estimation accuracy of the
QAA-derived aph(λ). Therefore, a robust aph(λ) estimation in clear waters is an urgent requirement for
the CSD model, as are other IOP-based approaches, for improved understanding of ecological and
biogeochemical changes in these regions.

Species distributional shifts have been reported for a variety of organisms such as mollusks,
fish, birds, and mammals [3,53], and their shifts have often been linked to temperature increases as
expectations include simple poleward distribution shifts [54,55]. However, in terms of a warming
perspective, unexpected equatorward and shallower migrations have been observed [56,57]; thus, the
complex mosaic of local velocity of SST (Figure 10c,d) is believed to represent a powerful tool for
evaluating the variability in species distribution [9]. Recent studies have applied the velocity of SST
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to the expectation of species range shifts [12,13]. They found that some distributional shifts could be
explained clearly by the velocity of SST, whereas others showed independent changes, attributable to
the different sensitivities and strategies of marine organisms [11]. VanDerWal et al. [10] reported that
the expectation of shifts in species distributions driven by temperature alone is likely to underestimate
the actual shifts. Moreover, Sunday et al. [58] revealed that the velocity of SST explained some of the
variation in the range of shifts; however, including species traits more than doubled the explained
variation. These facts suggest that adopting an approach that is more practical than the velocity of SST
is required for better prediction of species shifts.

Trophic transfer efficiency describes the efficiency with which energy is transferred from one
trophic level to the next [15] and it might control species distribution through changes in the food
web structure [16]. As the size structure of the phytoplankton community can have considerable
effect in determining trophic transfer efficiency [15], the spatiotemporal variations of CSD slope
and Chla are considered as important factors that could potentially cause species distribution shifts.
In this study, both the rates and directions of the velocities of CSD slope and Chla showed clear
regional differences with those of SST. These findings imply that the velocities of CSD slope and Chla
could constitute powerful tools for predicting species distribution shifts that deviate from isothermal
movement. Furthermore, an approach that combines the velocity of phytoplankton size structure with
SST might contribute to predictions of species distribution shifts that are more accurate than existing
approaches, which consider only variations in species thermal niches.

Numerous time series are currently being stored with the aim of monitoring the effects of climate
change. Although species responses to climate change have been extremely variable across ocean
regions and taxonomic groups [12,59], understanding the pattern of variation and identifying where
and when species will respond to climate forcing is essential if we are to manage proactively changes
in fisheries resources and to meet conservation goals [58]. In consequence, as large proportions of
species within marine ecosystems undergo distributional shifts [60], the provision of a cost-effective
and relatively rapid integrated assessment of such shifts will be required [61]. Therefore, techniques for
assessing species distribution shifts are currently garnering considerable attention [62,63]. In addition
to the challenges involved in predicting species shifts, large gaps remain in our knowledge of species
responses to climate change. This study provides compelling evidence regarding the potential for using
phytoplankton size structure in assessing the persistence and migration of species distributions, which
could contribute to the generation of global and regional maps of the expected rates and directions of
species shifts that have improved accuracy.

5. Conclusions

This study proposed a CSD model to derive the synoptic size structure of the phytoplankton
community using satellite remote sensing data. The CSD model is based on the relationship between
phytoplankton size structure and its spectral absorption properties. The validation results showed that
the CSD model performed with sufficient accuracy. Although satellite-derived CSD slope contains
uncertainties, especially in clear waters, the CSD model has been demonstrated as a powerful tool for
monitoring marine ecosystems through the synoptic size structure of the phytoplankton community.
Recent evident deviations from uniform species shifts appear related to various environmental drivers,
suggesting that a multifaceted approach, rather than using the velocity of SST, is probably required to
assess species migration and persistence properly. Therefore, a new approach combining the velocity of
phytoplankton size structure with other factors, including the velocity of SST, might contribute toward
producing predictions of species distribution shifts with improved accuracy. Overall, our results could
help generate global and regional maps of the expected rates and directions of species shifts.
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