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Abstract: The distribution of forest biomass in a river basin usually has obvious spatial heterogeneity
in relation to the locations of the upper and lower reaches of the basin. In the subtropical region
of China, a large amount of forest biomass, comprising diverse forest types, plays an important
role in maintaining the balance of the regional carbon cycle. However, accurately estimating forest
ecosystem aboveground biomass density (AGB) and mapping its spatial variability at a scale of
river basin remains a great challenge. In this study, we attempted to map the current AGB in the
Xiangjiang River Basin in central southern China. Three approaches, including a multivariate linear
regression (MLR) model, a logistic regression (LR) model, and an improved k-nearest neighbors
(kNN) algorithm, were compared to generate accurate estimates and their spatial distribution of forest
ecosystem AGB in the basin. Forest inventory data from 782 field plots across the basin and remote
sensing images from Landsat 5 in the same period were combined. A stepwise regression method
was utilized to select significant spectral variables and a leave-one-out cross-validation (LOOCV)
technique was employed to compare their predictions and assess the methods. Results demonstrated
the high spatial heterogeneity in the distribution of AGB across the basin. Moreover, the improved
kNN algorithm with 10 nearest neighbors showed stronger ability of spatial interpolation than other
two models, and provided greater potential of accurately generating population and spatially explicit
predictions of forest ecosystem AGB in the complicated basin.

Keywords: multivariate linear regression; logistic regression; improved kNN algorithm;
leave-one-out cross-validation; spatial distribution; Xiangjiang River Basin

1. Introduction

Forest biomass is one of the important variables for the quantitative study of structures and
functions of forest ecosystems [1]. In the context of the Kyoto Protocol, forest biomass density is one

Remote Sens. 2017, 9, 241; doi:10.3390/rs9030241 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2017, 9, 241 2 of 23

the key parameters for evaluating the potential of forest carbon sinks and studying global climate
change in terms of offsetting greenhouse gas emissions [2]. However, accurately estimating and
mapping forest ecosystem biomass density at large scales such as regionally, nationally and globally,
is very challenging for the study of forest carbon sinks [3].

Traditional techniques based on field measurements are accurate, but time-consuming,
labor-intensive and destructive to forest ecosystems [4,5]. In fact, the methods work for small scales
only. Huxley [6] mathematically proposed an idea of using relative growth rates of biomass components
that was then widely utilized by researchers to estimate biomass values of tree components (stem,
branch and leaves) [7–13]. Subsequent approaches, such as the method proposed in Intergovernmental
Panel on Climate Change (IPCC) [14], that is, using biomass conversion or expansion factors [15,16],
were proposed to estimate forest ecosystem biomass density at large scales. However, these models
proved to be poor in transferability [17]. Remote sensing technology has been widely applied for
mapping forest ecosystem biomass density for regions, countries, and even the whole world due to
its characteristics of rapidly, dynamically and repeatedly acquiring images of large areas [3,18–20].
The data used for remote sensing based prediction of forest ecosystem biomass include optical
images [21,22], radar images [23,24], and LiDAR data [25–28]. However, optical remote sensing has
serious obstacles such as cloud cover and saturation of reflectance due to high biomass and complexity
of multi-layer forests [29–32]. A universal and accurate estimation model for forest ecosystem biomass
has not been found [33].

There are three kinds of methods for forest ecosystem biomass estimation using remote sensing
based empirical models (including parametric and non-parametric models), process models and
simulation algorithms [33,34]. Wang et al. [34,35] proposed image-aided co-simulation algorithms
in which spatial correlations of interest variables are taken into account. Both process models and
simulation algorithms are advanced, but complicated and computation intensive, and thus difficult to
use for generating spatially explicit estimates of forest ecosystem biomass density at large scales [34,35].
Moreover, the empirical models have been most widely used, but their prediction ability is often strictly
limited by the data used. In addition, the regression models require normal distribution of variables
and sometimes produce negative values [34,35]. Wang et al. [36] proposed a classification method
for hierarchical multinomial logistic regression of hyperspectral images to improve the accuracy of
regression modeling. In contrast, non-parametric empirical models are often more effective in mapping
forest ecosystem biomass density due to the use of more flexible algorithms, no assumptions to be
made about the forms of the data and distributions of variables, and no necessary inputs of complex
parameters. These methods include k-nearest neighbors (kNN) method [24,37,38], artificial neural
network (ANN) [39,40], random forest [41–44], support vector machine (SVM) [45,46], and maximum
entropy [47–49]. Among the non-parametric models, kNN has become popular in recent years mainly
due to its ability of spatial interpolation for complicated forest ecosystems in terms of topographic
features and forest canopy structures [37,38,50,51].

Although various methods have been developed and used for mapping biomass density of forest
ecosystems using different remote sensing data, there have been few reports that indicate which
method can lead to most accurate population estimates and their spatial distributions at watershed
scales [52]. The aim of this study was to demonstrate a novel and cost-effective mapping method
of above-ground biomass (AGB) for forest ecosystems in the Xiangjiang River basin based on a
combination of existing forest inventory sample plot data and free Landsat images. This was achieved
by improving k-nearest neighbors (kNN) algorithm using correlations between spectral variables and
forest ecosystem AGB to calculate weighted spectral distances of unknown pixels to each sample
plot. This method was called correlation-weighted kNN (CW-kNN) and its results with different k
nearest neighbors were compared with those from a widely used multivariate linear regression (MLR)
model, a logistic regression (LR) model, and a general kNN algorithm (g-kNN) using a leave-one-out
cross-validation (LOOCV) technique. It has to be pointed out that, in this study, the abbreviation AGB
actually implied aboveground biomass density of forest ecosystems.
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2. Materials and Methods

2.1. Study Area

The Xiangjiang River is the largest tributary of the Dongting Lake river system in the Yangtze
River Basin. The Xiangjiang River Basin is located mainly in Hunan Province (110◦31′–114◦15′E,
24◦31′–29◦52′N), China (Figure 1). The basin has complicated topographic features, and is surrounded
by mountains and hills in the eastern, southern, and western parts of the basin and dominated by flat
terrains in the central and northern parts. The basin has a humid mid-subtropical monsoon climate
with distinct seasonality [53,54]. The mean annual temperature is approximately 17.5 ◦C with a mean
annual precipitation of 1400 mm. The annual precipitation distribution is uneven with rainfall mainly
in spring and summer. The annual average evaporation is about 1200 mm, with a frost-free period of
270–311 days. The main soil types include red soil, paddy soil, purple soil, yellow soil, lime (rock) soil,
and yellow brown soil [55]. The typical vegetation in the basin is subtropical evergreen broad-leaved
forests with a forest cover percentage of 54.4%. The basin has been subject to population increase and
anthropogenic disturbances and it is necessary to know the spatial distribution and variability of the
forest ecosystem AGB, and its dynamic change and trend in the basin.
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Figure 1. The study area: (a) the Xiangjiang River Basin in cyan with the river in blue; and (b) the basin
location in China marked in red.

2.2. Data Sets

2.2.1. Forest Inventory Data

The forest inventory database of the Xiangjiang River Basin was obtained and provided
information on the area size, spatial distribution and condition of forests. The information consists of
detailed coordinates, canopy cover percentage, average shrub height and cover percentage, vegetation
height, herbaceous cover percentage, stand types, dominant tree species, average diameter at breast
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height, average stand height, number of non-timber forest trees, number of trees surrounding villages,
houses, roads, and water bodies, number of bamboo trees, and number of miscellaneous bamboo
stalks. The plot-level data were collected from a total of 782 fixed or permanent plots across the Basin
in the summer of 2009, with a sampling interval of 4 km × 8 km and a square plot area of 0.067 ha
(25.82 m × 25.82 m).

By using the regression models reported by Li et al. [56], plot-level biomass was estimated
according to tree species groups, and the biomass of non-timber forests was estimated with average
ground diameters. The biomass of shrubs and herbs was obtained by using the models proposed
by Fan et al. [57] and estimating biomass of individual plants with regression equations based on
height of shrubs and herbs. The total biomass of shrubs and herbs was obtained by summing the
values of individual plant biomass and converting the values per unit. The values of biomass for
the sample plots of mixed coniferous forests, mixed broad-leaved forests, and mixed coniferous
and broad-leaved forests, were estimated by using tree species biomass and corresponding mixed
percentage. The average AGB for all forest inventory field plots was 64.53 Mg/ha with a standard
deviation of 46.80 Mg/ha and a confidence interval of 61.25 Mg/ha to 67.81 Mg/ha at a significant level
of 0.05. The spatial distribution of the AGB estimates for the forest inventory sampled plots is shown
in Figure 2. Relatively, the plot AGB biomass had larger values in northeastern, eastern, southern and
southwestern mountainous and hilly areas, and smaller values in the central and northern flat areas.
In this study, the plot AGB values were used as reference data.
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Figure 2. Spatial distribution of sampling plots and corresponding plot AGB values across the
Xiangjiang River Basin.

2.2.2. Remote Sensing Data

The remote sensing images used in this study were obtained from Landsat 5 Thematic Mapper
(TM) because the Landsat 5 data completely covered the study area and the acquired images were
consistent with the field plot data collected in the summer of 2009. The images had six bands consisting
of bands 1–5 and band 7 at a spatial resolution of 30 m. Seven adjacent and cloud-free images from
the summer of 2009 were selected with path 123 and rows 40–43 and path 124 and rows 41–43. The
images were susceptible to interference and distortion due to the sensor response characteristics and
atmospheric absorption and scattering as well as other random factors. The images were enhanced by
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radiometric, atmospheric and geometric correction, as well as ortho rectification and then mosaicked.
The pixel digital numbers of the images were first converted to the values of radiance at the sensor’s
aperture and further to the values at-satellite reflectance using the parameters of Landsat 5 and solar
zenith angles. The spectral values at-satellite reflectance were then converted to the reflectance values
at ground surface. Moreover, the effects of slope, aspect and shade on the images were eliminated by
conducting a topographic correction using Minnaert model. Finally, all the images were geo-referenced
to the Universal Transverse Mercator (UTM) projection and coordinate system using a first-order affine
transformation and a root mean square error (RMSE) of less than one pixel was yielded. Figure 3
shows a false color composite image by combining Landsat TM band 3, band 5 and band 4 as blue,
green and red, respectively.
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2.3. Methods

2.3.1. Extraction and Selection of Spectral Variables

In this study, a total of 105 spectral variables were extracted, including normalized difference
vegetation index (NDVI), infrared index II, spectral vegetation index (SVI), four soil-adjusted vegetation
indices (SAVIl, l = 0.1, 0.25, 0.3 and 0.5), modified soil-adjusted vegetation index (MSAVI), modified
normalized difference vegetation index (MNDVI), difference vegetation index (DVI), transformed
vegetation index (TVI), reduced simple ratio (RSR), atmospherically resistant vegetation index (ARVI),
visible atmospherically resistant index (VARI), enhanced vegetation index (EVI), thirty-two-band
ratio indices and sixty-three-band ratio indices. The spectral variables were selected to capture the
characteristics and canopy structures of complicated forest ecosystems and to reduce the effects of
slope and aspects [58]. The remote sensing variables as the independent variables of models might
be significantly correlated with each other and the correlations would lead to the duplication of
information and interfere the performance of the models. Thus, the spectral variables were first
screened using significant coefficients of their correlations with the dependent variable—the plot
AGB from the forest inventory database (FID) at the significance level of 0.05. A stepwise regression
method with a variance inflation factor (VIF) ≥10 was utilized to diagnose the possible interference
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of the correlations among the spectral variables; that is, multicollinearity. The used VIF value was
determined based on a rule of thumb, literature and examination of data [59,60].

2.3.2. Multivariate Linear Regression (MLR) and Logistic Regression (LR) Model

In this study, both multivariate linear regression (MLR) model and logistic regression (LR) model
were used to account for the relationship of forest ecosystem AGB with the spectral variables selected
by stepwise regression analysis [61,62]. MLR is the most widely used method, but many studies
have shown that the MLR has several shortcomings such as leading to negative and extremely large
estimates. In this study, it was employed mainly for the purpose of comparison. LR is a method mainly
used for analysis of binary dependent variables and probability prediction in which the predictions
range from zero to one [63,64]. LR model can be expressed in its simplest form as proposed by Atkinson
and Massari [63], and Devkota et al. [65]. In order to use the LR model to account for the relationship
of the selected spectral variables with forest ecosystem AGB, range normalization of the biomass
density data was implemented [60]. In the present study, the biomass data were transformed into
a dimensionless quantity using the method of range normalization [59], which was in accordance
with the dependent variable being probability distribution of the logistic model. The LR model was
selected and compared with the MLR model, on one hand, to test whether the relationships of the
forest ecosystem AGB with spectral variables were linear or non-linear, and on the other hand, to
validate if the LR model performed better because of its non-linearity and positive estimates to be
created than the MLR model in prediction of the forest ecosystem AGB.

2.3.3. kNN Algorithms

k-nearest neighbors (kNN) is one of non-parametric statistical methods and can be used
to simultaneously estimate multiple forest ecosystem variables using the same underlying field
dataset [37,38,66,67]. In this study, the estimation was conducted in a spectral space based on a spectral
distance-weighted algorithm in which the estimate of AGB of pixel p was calculated [37,38,50,67] from
Equation (1):

∧
AGBp =

k

∑
j=1

wpj AGBj (1)

where k was the number of plots closest to pixel p in the spectral space, AGBj was the AGB value
for the jth plot, and wpj was the weight for the jth nearest plot of pixel p. The plot weights wpj were
calculated from Equation (2):

wpj =
1

dpj

[
k

∑
j=1

1
dpj

]−1

(2)

The spectral distance metric between pixel p and the pixel corresponding to the jth plot, dpj, was
calculated from Equations (3) and (4):

dpj =

√
m

∑
l=1

vl(xpl − xjl)
2 (3)

vl =
|rl |

m
∑

l=1
|rl |

(4)

where dpj was the spectral distance between pixel p and the pixel corresponding to the jth plot, l was
the lth remote sensing variable, m was the number of remote sensing variables, xpl was the value of
remote sensing variable l for pixel p, xjl was the value of remote sensing variable l for pixel j, vl was
the weight for remote sensing variable l on spectral distance, and rl was the correlation coefficient
between remote sensing variable l and the AGB of the plot.
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In this study, the kNN method was selected mainly because several studies have proven
that it is appropriate for estimating and mapping forest ecosystem AGB at a large scale because
of its non-parametric characteristics, that is, normal distributions of interest variables are not
required [24,37,38,50,67]. Moreover, the kNN was improved by using the correlations between the
spectral variables and plot AGB to calculate a weighted spectral distance of each unknown pixel to
each sample plot. The improved kNN was called correlation-weighted kNN (CW-kNN). Compared
with the general kNN algorithm (g-kNN) without the correlation-based weighting, CW-kNN takes
into account the importance of spectral variables for mapping forest ecosystem AGB and provides the
potential to more accurately account for the difference between one unknown pixel and one sample
plot in the spectral space and thus in canopy structure and biomass density of forest ecosystems. In this
study, both g-kNN and CW-kNN with four k values (3, 5, 7 and 10 nearest plots) were compared
for mapping forest ecosystem AGB. Based on previous studies, using more than 10 neighbors did
not produce a greater estimation accuracy [37,38,50,67,68] and, therefore, the maximum k value of
10 was selected.

2.3.4. Leave-One-Out Cross-Validation (LOOCV) and Model Evaluation

The LOOCV technique [69] was applied to evaluate the accuracies of three kinds of methods
and corresponding AGB maps. The LOOCV followed the algorithm as reported by Ji et al. [70]: one
single plot was withheld as a validation sample and the remaining plots were used to train the models.
This step was repeated until each plot was used once as a validation sample. The AGB values of all
field plots were then compared with their estimates using the “leave-one-out” training samples. The
LOOCV technique has the advantage of providing an unbiased estimation of the prediction error [71].

Moreover, in this study four indices including the coefficient of determination (R2), RMSE, the

mean and variance values (
∧
µmap,Varmap) of prediction maps, were employed to quantify the errors and

to clarify which method performed most accurately in terms of plot and pixel levels. The uncertainty

was quantified at the 95% confidence interval.
∧
µmap and Varmap were calculated using model-assisted

regression estimators [51] from Equations (5) and (6):

∧
µmap =

1
N

N

∑
j=1

∧
AGBj −

1
n

n

∑
i=1

εi (5)

Varmap =
1

n(n− p)

n

∑
i=1

ε2
i (6)

where
∧
µmap was the mean value of the predicted results at the pixel level in the study area, that is,

a AGB map; N was the total number of pixels in the study area; n was the total number of sample plots

used for the predictions;
∧

AGBj was the predicted value of each pixel; εi was the residual between the
referenced and predicted value from the same plot i; Varmap was the variance of the predicted results
for the study area; and p was the number of variables used for modeling, including constant variables.

3. Results

3.1. Independent Variables of Models

A total of 82 spectral variables were significantly correlated with the plot AGB and the absolute
values of the correlation coefficients ranged from 0.211 to 0.706. The coefficients of correlation for the
five most correlated spectral variables were −0.706, −0.698, 0.697, 0.683, and 0.681, corresponding
to SR314: band 3/(band 1 + band 4); SR324: band 3/(band 2 + band 4); MNDVI: ((band 4 −
band 3)/(band 4 + band 3))(1− (band 5− band 5min)/(band 5max − band 5min)); SR436: band 4/(band 3
+ band 7); and NDVI: (band 4 − band 3)/(band 4 + band 3), respectively. It was found that many of
the spectral variables were highly correlated with each other. In this study, the stepwise regression
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analysis with a VIF value of 10 eliminated most of the correlated spectral variables and led to five
spectral variables selected, including NDVI; SR23: band 2/band 3; SR415: band 4/(band 1 + band 5);
SR546: band 5/(band 4 + band 7); and SR625: band 7/(band 2 + band 5) with the correlation coefficients
of 0.618, 0.389, 0.646, −0.282, and −0.401, respectively. This implied that the stepwise regression
analysis successfully excluded the spectral variables that contained similar information. For example,
except for NDVI, other four most significant spectral variables were not selected because of their high
correlations with NDVI. The five selected spectral variables were used as the independent variables
in the multivariate linear regression model, logistic regression model, and kNN algorithms with plot
AGB as the dependent variable.

3.2. Multivariate Linear Regression (MLR) Modeling

The five selected remote sensing variables were used as independent variables to fit a MLR model
to the AGB data from the forest inventory dataset as follows:

AGB = 189.625 + 312.217NDVI − 38.934SR23 − 85.718SR415 − 136.343SR546 − 194.794SR625 (7)

Based on the results of validation, there was a strong correlation between the plot predicted and
referenced biomass density values (Figure 4a). The predicted average biomass density of the sample

plots by the MLR method was almost the same as the average FID biomass. The mean
∧
µmap of the AGB

map for the basin was slightly underestimated compared to the average biomass density value of the
sample plots (Table 1). The underestimation mainly took place for the plots with AGB values greater
than 100 Mg/ha and smaller 20 Mg/ha (Figure 4a). The distribution of the residuals as estimates of
the error variance was in the shape of a horn (Figure 5a).

Table 1. The accuracy assessments of forest aboveground biomass density (AGB) estimates from a
multivariate linear regression (MLR) model, a logistic regression (LR) model, and k-nearest neighbors
(kNN) algorithms in the basin based on the leave-one-out cross-validation (LOOCV). The mean AGB
means the average estimates for the forest inventory sample plots; and R2 and RMSE are the coefficient
of determination and root mean square error between the estimated and referenced values of the

sample plots, respectively.
∧
µmap and Varmap are the mean estimate and its variance of a forest AGB

map using model-assisted regression estimators from the MLR and LR models, and both the g-kNN
without correlation based weighting and the CW-kNN with correlation based weighting.

Approach Mean AGB
(Mg/ha) R2 RMSE

(Mg/ha)

∧
µmap

(Mg/ha)
Varmap
(Mg/ha)

FID 64.53 — — — —
MLR 64.51 0.54 31.55 60.31 1.30
LR 64.52 0.52 32.43 59.11 1.35

g-kNN

k = 3 64.46 0.48 34.78 60.24 1.56
k = 5 64.01 0.51 32.90 59.74 1.39
k = 7 63.90 0.53 32.14 59.55 1.33

k = 10 63.84 0.54 31.87 59.32 1.31

CW-kNN

k = 3 63.94 0.48 34.66 59.74 1.55
k = 5 64.07 0.51 32.95 59.88 1.40
k = 7 63.98 0.53 32.36 59.69 1.35

k = 10 63.88 0.54 31.93 59.47 1.31
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Figure 4. Predicted vs. observed (that is, referenced) AGB of sample plots using: (a) the multivariate
linear regression (MLR); (b) the logistic regression (LR); (c) g-kNN with k = 10 nearest neighbors; and
(d) CW-kNN with k = 10 nearest neighbors.

The percentages of the sample plot AGB values and the corresponding estimates falling in the
biomass density intervals for the AGB map from the MLR are listed in Table 2. Compared to those of
the sample plot AGB values, there were much smaller percentages of estimates falling in the biomass
density intervals less than 20 Mg/ha and larger than 100 Mg/ha, indicating the underestimations
happened in the intervals. The percentages of estimates falling in the biomass density intervals of
20–40 Mg/ha, 40–60 Mg/ha, 60–80 Mg/ha, and 80–100 Mg/ha were much greater than those of the
sample plot AGB values, impling that overestimations took place in the intervals. In addition, the
percentage for the biomass density interval less than 0 Mg/ha showed that the MLR method generated
negative predictions at many places.

Table 2. Statistical percentages of forest aboveground biomass density (AGB) estimates falling in the
biomass intervals for forest ecosystem AGB maps using MLR, LR, g-kNN, and CW-kNN modeling.
The reference AGB was obtained from a forest inventory dataset (FID column).

Interval
FID MLR LR

g-kNN CW-kNN

(Mg/ha) k = 3 k = 5 k = 7 k = 10 k = 3 k = 5 k = 7 k = 10

<0 0.00 5.79 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0~1 3.60 0.00 0.01 1.00 0.92 0.93 0.89 1.00 0.91 0.92 0.89
1~20 22.60 7.33 15.62 23.50 22.16 21.90 22.47 23.81 22.29 22.08 22.69

20~40 4.80 14.47 19.35 7.71 9.93 10.49 10.10 7.35 9.90 10.42 9.80
40~60 14.80 18.17 16.19 12.37 9.57 7.88 7.05 12.02 9.03 7.40 6.50
60~80 18.50 25.50 19.02 20.77 21.30 21.42 21.18 20.98 21.18 21.17 21.38
80~100 13.70 23.64 17.30 20.74 25.22 28.03 30.91 21.10 25.81 28.74 31.43
100~120 10.20 4.99 10.09 9.75 8.61 8.06 6.72 9.58 8.69 8.08 6.65
120~140 6.00 0.11 2.28 2.94 1.90 1.04 0.62 2.95 1.81 0.99 0.60
140~220 5.80 0.03 0.15 1.21 0.39 0.25 0.07 1.20 0.39 0.21 0.05
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3.3. Logistic Regression (LR) Modeling

The LR method led to following AGB estimation model:

AGB = 217.603
e(4.1681+10.9561NDVI−1.3100SR23−3.9319SR415−5.5985SR546−5.9164SR625)

1 + e(4.1681+10.9561NDVI−1.3100SR23−3.9319SR415−5.5985SR546−5.9164SR625)
(8)

The validation results showed that the coefficient of determination R2 between the predictions
and the plot biomass density values was statistically significant at the level of 0.05 (Table 1 and
Figure 4b). The mean AGB prediction at the plot level was close to the sample plot average, but the

mean
∧
µmap of the AGB map for the basin was smaller (Table 1). Compared with those from the MLR

model (Figure 5a), the residuals of predictions from the LR model were distributed more evenly and
randomly (Figure 5b). The LR model also led to underestimations for the plots with biomass density
values smaller than 20 Mg/ha and larger than 120 Mg/ha (Figures 4b and 5b), but the underestimations
were slightly improved compared to those from the MLR model (Figures 4a and 5a).

Unlike the MLR model, the LR method did not lead to negative predictions of biomass density
(Table 2). Compared to those of the sample plot AGB values, there were smaller percentages of
estimates falling in the biomass density intervals less than 20 Mg/ha and larger than 120 Mg/ha. This
indicated that the LR method resulted in underestimations in the intervals, but the underestimations
were improved compared to those by the MLR method. Moreover, the percentages of estimates falling
in the biomass density intervals of 40–60 Mg/ha, 60–80 Mg/ha, and 80–100 Mg/ha were slightly larger
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than those of the sample plot AGB values, implying that overestimations took place in the intervals,
but were not very serious. The great overestimations happened mainly in the interval of 20–40 Mg/ha.

3.4. kNN Modeling

The mean predictions of kNN methods derived AGB for the FID-plots had a small range, but all
fell in the confidence interval of the sample plot data (Table 1). For both kNN methods, the coefficient
of determination R2 between the plot predicted and referenced biomass density values increased
gradually with the increasing number of k-nearest neighbors (Table 1 and Figure A1). Moreover, the
larger the k value, the smaller the values of RMSE. For the same k values, the values of RMSE by
CW-kNN were similar to those by g-kNN. Compared to those from the MLR and LR models, the RMSE
values from both g-kNN and CW-kNN were slightly larger when k = 3 and 5 nearest neighbors and
did not significantly differ when k = 7 and 10 nearest neighbors (Table 1 and Figure 4). The predicted
∧
µmap of the AGB maps from the kNN methods slightly fluctuated and the corresponding variance
Varmap slightly decreased with the increasing values of k (Table 1). The map mean estimates were
smaller than that of the sample plot data and fell out of the confidence interval, but very close to the
lower bound, implying slight underestimations.

Similar to the LR method, the kNN algorithms did not result in negative estimates (Table 2). For
both g-kNN and CW-kNN algorithms, the percentages of the map estimates falling in the biomass
density intervals of 1–20 Mg/ha, 40–60 Mg/ha and 60–80 Mg/ha were very close to those of the sample
plot AGB values. Compared to those of the sample plot AGB values, there were smaller percentages
of the estimates in the biomass density intervals larger than 100 Mg/ha, while greater percentage
existed in the interval of 80–100 Mg/ha. However, overall both g-kNN and CW-kNN algorithms
greatly improved the underestimations and overestimations of AGB for the intervals compared to the
MLR and LR models. Both g-kNN and CW-kNN algorithms led to similar characteristics of plot and
pixel estimates.

The distributions of residuals looked horn-shaped for both kNN methods and for all k values
(Figure A2). With an increase of k values, the residual distribution tended to be random, that is, the
residuals fluctuating around the line of zero except for one plot with an extremely residual (Figure A2).
Compared to those from the MLR and LR models, both g-kNN and CW-kNN algorithms improved
the distributions of residuals (Figure 5).

3.5. Spatial Distribution of AGB

In Figure 6a,b, the spatial distributions of predicted AGB values for the basin by the MLR and
LR models looked different from those by both g-kNN and CW-kNN algorithms with k = 10 nearest
neighbors in Figure 6c,d, although the locations of the areas where large and small estimates existed
were similar. The greater biomass estimates were distributed mainly in the northeastern and the upper
reaches of the Xiangjiang River Basin, including the eastern, southern and southwestern parts. The
smaller biomass estimates were allocated in the middle and lower reaches, that is, central, northwestern
and northern parts of the basin. Among the methods, the LR model led to the highest spatial variability
of predicted AGB values, especially in the northeast parts (Figure 6b), and then the MLR model
(Figure 6a). Both g-kNN and CW-kNN algorithms with k = 10 resulted in similar spatial distributions
of the estimates (Figure 6c,d) with lower spatial variability than that from the regression models. For
the kNN algorithms, slightly higher spatial variability of the predicted values was derived by using
smaller k values (Figure A3). In addition, the MLR model resulted in negative predictions in the
middle and lower reaches (central, northwestern and northern parts) of the basin.
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with k = 10; and (d) the CW-kNN with k = 10.

4. Discussion

4.1. Rationality of Spectral Variable Selection

Although Landsat TM images have been widely employed for AGB estimation of forest
ecosystems [4,52,72–78], extracting and selecting spectral variables to accurately derive spatial
distribution of AGB is still challenging mainly due to the saturation of spectral reflectance and
the presence of mixed pixels [4,58,79]. The image data and spectral bands from different sensors
have their own characteristics in reflecting land surfaces [4]. Some vegetation indices such as simple
ratios of spectral bands and NDVI obtained from Landsat data have been demonstrated to be useful
predictors of biomass density in forest ecosystems [80–82]. However, not all vegetation indices are
significantly correlated with AGB of forest ecosystems [4]. In this work, the independent variables
that contributed to significantly improving the statistical fit of models to data and reducing the sum of
squared errors were first selected from a total of 82 Landsat TM image derived spectral variables that
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were significantly correlated with plot AGB. The spectral variables were utilized in all three kinds of
methods and thus the differences among the estimates should be attributed to the properties of the
algorithms. The selected spectral variables matching the ground survey of the sample plots in time
were site-specific and could not be generalized for the use of other years or areas.

4.2. Comparison of Different Methods for Biomass Estimation

The selection of appropriate spatial extrapolation methods plays a central role in mapping
biomass density of forest ecosystems [3,4,43]. In this work, three kinds of spatial modeling approaches,
including MLR model, LR model, and kNN algorithms with and without spectral variable-AGB
correlation based weighting (CW-kNN and g-kNN), were compared to yield the spatial estimates of
AGB in the study area. The results showed that the smallest RMSE was obtained by the MLR, then
the g-kNN and CW-kNN algorithms with k = 10. However, the differences of RMSE values were not
significant. Moreover, the MLR resulted in negative estimates at many places (5.79% of the pixels). The
distributions of the residuals and the scatter graph of predicted vs. referenced AGB values from the
MLR showed a “horn” shape and underestimations existing for the sample plots and areas that had
the AGB values smaller than 20 Mg/ha and larger than 100 Mg/ha. These implied that the relationship
of the selected spectral variables with the forest ecosystem AGB was not linear [76]. We tested and
verified the nonlinear relationships of the five selected spectral variables with forest ecosystem AGB.
The distributions of the residuals and the underestimations were improved slightly by the non-linear
LR model and greatly by the non-parametric methods CW-kNN and g-kNN with k = 10.

In addition, for the sample plots and areas with AGB values smaller than 20 Mg/ha, the
underestimations could be caused by the impacts of spectral reflectance from soils and bare lands
within young forest stands on the values of the selected spectral variables. On the other hand, the
underestimations for the sample plots and areas with AGB values larger than 100 Mg/ha for the MLR
model or 120 Mg/ha for the LR model were also due to reflectance saturation of multi-layer canopy
and high biomass forest stands [79]. More importantly, this was mainly because both regression models
were global methods that modeled and used global trends of AGB to generate estimates of local areas
or pixels and in contrast, both CW-kNN and g-kNN were local methods that modeled and utilized
local variability of AGB to create the estimates and thus improved the underestimations.

It had to be pointed out that both g-kNN and CW-kNN algorithms led to a great residual for one
sample plot located in a shadow slope close to the south border of the basin with elevation of 1120 m
and covered by a high dense and mixed forest of deciduous trees and shrub. This suggested that,
although a topographic correction was conducted in this study, the effects of shadows still existed. If a
more advanced method for topographic correction can be developed, the accuracy of AGB estimation
can be further increased. In addition, in this study the kNN algorithms were investigated only using
k values not larger than 10, mainly because based on previous reports using a k value larger than
10 would often smooth the spatial distribution of AGB estimates and not increase the accuracy of
estimation [37,38,50,67,68].

4.3. Spatial Distribution of AGB in the Xiangjiang River Basin

Compared with those from the MLR and kNN algorithms, the spatial distribution of AGB
estimates using the LR model had the higher spatial variability, especially in the northeast part of the
basin (Figure 6b), because of its non-linear characteristics. However, all the predicted maps (Figure 6)
were characterized by larger estimates of AGB distributed in the northeastern parts of the basin and
the upper reaches (eastern, southern and southwestern parts) and smaller predictions of AGB allocated
in the middle reaches (central areas) and the lower reaches (northwestern and northern parts). The
spatial characteristics and patterns of AGB estimates were consistent with those of the sample plot
biomass density values and reasonable because the northeastern (Liuyang of Changsha and Liling
of Zhuzhou), eastern (Youxian and Chalin county of Zhuzhou), southern (Yongzhou) and southwest
(Guilin of Guangxi) parts of the basin were mountainous and hilly areas and dominated by various



Remote Sens. 2017, 9, 241 14 of 23

high dense forests, and the central (Hengyang), northwestern (Xiangtan) and northern (Changsha)
parts were flat areas and dominated by cities and villages.

The spatial patterns of AGB predictions were supported by the results of the report from
Jiao et al. [83,84], i.e., the estimates of AGB were relatively greater in the areas of Yongzhou and
Chengzhou (the upper reaches of the basin) and smaller in the areas of Hengyang and Xiangtan
cities (the middle and lower reaches of the basin). The similar spatial patterns of carbon storage
for Cunninghamia lanceolata were characterized by Huang and Tong [85]. The AGB values of
Pinus massoniana forests tended to decrease from the southwestern and southern parts to the northern
parts of Hunan Province [86]. Xiangtan City had the lowest forest cover percentage and AGB value,
followed by Hengyang City due to the implementation of the Hunan Agricultural Development
Strategy in the mid-1990s, resulting in a decrease in the forested land in the areas of the basin [87,88].
However, in recent years net primary production (NPP) has been increasing in the middle and
downstream reaches of the basin due to the programs of the “returning farmland to forests” and
“forest protection”, based on the data of four forest inventories from 1983 to 2009 with the area of
broad-leaved forests increased by four times [87,88].

4.4. Comparison with Previous Biomass Estimations

The average AGB estimates of the sample plots for the forest ecosystems in the Xiangjiang River
Basin in 2009 varied from 63.84 Mg/ha to 64.52 Mg/ha, very close to the referenced value (64.53 Mg/ha)
of the plots measured in the same year. The corresponding average estimates of the obtained maps
ranged from 59.32 Mg/ha to 60.31 Mg/ha, slightly underestimated compared to the referenced value.
Based on previous studies [83,89], the average AGB estimates of vegetation ecosystems (including
forests, shrubs and grasslands) in the subtropical regions of China had a great range of 31.76 Mg/ha to
74.78 Mg/ha. In Hunan province, the forest average AGB values obtained from the sample plots of
the 4th and 8th national forest inventories in 1990 and 2009 respectively were 31.76 Mg/ha [83] and
27.56 Mg/ha. For the Xiangjiang River Basin, the forest average AGB values obtained from the sample
plots of national forest inventories in 1999, 2004 and 2009 respectively were 32.55 Mg/ha, 19.5 Mg/ha
and 47.25 Mg/ha. This implied that the AGB values of forests in the Xiangjiang River Basin were larger
than those of the whole Hunan in the same years mainly because the upper reaches of the Xiangjiang
River was dominated by various protected forests. However, the value of 47.25 Mg/ha in 2009 did not
include biomass of shrubs and grass within the forests. This study dealt with the forest ecosystems of
the Xiangjiang River Basin consisting of forests, and shrubs and grass within the forests and thus, the
obtained average AGB estimates in this study were greater than that of the forests from the sample
plots of the 8th national forest inventory in 2009. The forest AGB of the Xiangjiang River Basin varied
greatly over time from 1999 to 2004 and 2009, which was mainly caused by Human activities including
city sprawling and urbanization, returning farmland to forests and forest protection.

4.5. Uncertainty Analysis of Forest Biomass

The estimates of AGB for the forest ecosystems of the Xiangjiang River basin are associated with
uncertainties. The uncertainties may come from the images used and measurement errors of field
observations for the tree variables involved in allometric equations, including tree height and diameter
at breast height (DBH) [4,90–92]. In the present work, five remote sensing variables were selected and
they were all significantly correlated with the sample plot AGB at the significance level of 0.01. Using
the same five remote sensing variables three kinds of approaches were employed to produce the AGB
estimates. The estimates of the sample plots from the methods were similar to the FID-based AGB
values, suggesting that the five spectral variables contributed to statistically significantly improving
the fit of the models to the data and reducing the sum of square errors. In this study, the forest
inventory dataset collected in 2009 served as a reference, and allowed us to test and compare the
remote sensing based methods. The dataset contained sampling and measurement errors of tree height
and DBH that led to uncertainty of AGB estimates for the forest ecosystems of the Xiangjiang River
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basin. However, this study did not analyze the effects of sampling and measurement errors on the
accuracy of estimation because of lacking the corresponding information of the tree variables.

Moreover, the coefficients of allometric equations are site-specific [8] and not generalized.
Applying the allometric equations to other study areas will cause uncertainties of forest ecosystem
AGB estimates [11,93–95]. In this study, several allometric equations were used to estimate the values
of AGB of trees by species; however, the uncertainty from the used allometric equations was unknown.
In addition, Tang et al. [54] demonstrated that selecting spatial extrapolation methods is also vital
for estimation and mapping of forest ecosystem AGB. In this study, three kinds of methods were
compared using the same dataset and spectral variables. Based on the average estimates of the AGB
maps at the pixel level, both CW-kNN and g-kNN had more robust ability of spatial extrapolation
than the MLR and LR models.

5. Conclusions

The objective of this study was to develop a novel and cost-effective mapping method of forest
ecosystem AGB for the Xiangjiang River Basin by combining an existing forest inventory database
and free Landsat images and by improving kNN algorithm and comparing it with other three spatial
extrapolation methods. It was found that: (1) spectral variables NDVI, SR23, SR415, SR546, and SR625

had significant contributions to improving the models’ fit to the data and reducing the residuals of
predictions; (2) all the spatial extrapolation methods led to reasonable and similar spatial patterns of
forest ecosystem AGB estimates, but different spatial variability, and both the original g-kNN and the
improved CW-kNN with 10 nearest plots resulted in slightly smaller RMSE than the LR model; (3) there
was no significant difference between the g-kNN and the improved CW-kNN in terms of estimation
accuracy at both plot and pixel levels; (4) compared to the MLR and LR models, both the g-kNN
and CW-kNN algorithms improved the distributions of residuals of predictions and showed stronger
ability of spatial interpolation; and (5) although the MLR model created the smallest RMSE, it led to
negative estimates and was not appropriate for mapping the biomass of the forest ecosystems. Thus,
this study suggested that the CW-kNN or g-kNN algorithm provided greater potential for generating
accurate plot level estimates and spatially explicit predictions of AGB for the forest ecosystems in the
complicated basin by combining free Landsat TM images and existing plot data, and can be applied to
other areas at similar scales.
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Abbreviations

The following abbreviations are used in this manuscript:

AGB aboveground biomass density
kNN the k-nearest neighbors algorithm
LOOCV Leave-one-out cross-validation
LR Logistic regression model
MLR Multivariate linear regression model
NDVI normalized difference vegetation index
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SVI spectral vegetation index
MSAVI modified soil-adjusted vegetation index
MNDVI modified normalized difference vegetation index
DVI difference vegetation index
TVI transformed vegetation index
RSR reduced simple ratio
ARVI atmospherically resistant vegetation index
VARI visible atmospherically resistant index
EVI enhanced vegetation index
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Figure A1. Predicted vs. observed (that is, referenced) AGB of sample plots using g-kNN with k 
value: (a) 3; (b) 5; (c) 7; and (d) 10; and CW-kNN with k value: (e) 3; (f) 5; (g) 7; and (h) 10. Figure A1. Predicted vs. observed (that is, referenced) AGB of sample plots using g-kNN with k value:

(a) 3; (b) 5; (c) 7; and (d) 10; and CW-kNN with k value: (e) 3; (f) 5; (g) 7; and (h) 10.
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Figure A2. Distributions of residuals for predictions of sample plot AGB using g-kNN algorithm with k 
values: (a) 3; (b) 5; (c) 7; and (d) 10; and CW-kNN algorithm with k values: (e) 3; (f) 5; (g) 7; and (h) 10. 

Figure A2. Distributions of residuals for predictions of sample plot AGB using g-kNN algorithm with
k values: (a) 3; (b) 5; (c) 7; and (d) 10; and CW-kNN algorithm with k values: (e) 3; (f) 5; (g) 7; and
(h) 10.
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Figure A3. Spatial distributions, that is, maps of above-ground biomass density (AGB) predictions for
the basin by using general k nearest neighbors (g-kNN) algorithm with numbers of nearest neighbors:
(a) k = 3; (b) k = 5; (c) k = 7; and (d) k = 10; and spectral variable-AGB correlation-weighted kNN
(CW-kNN) algorithm with numbers of nearest neighbors: (e) k = 3; (f) k = 5; (g) k = 7; and (h) k = 10.
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