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Abstract: In recent years, hundreds of Earth observation satellites have been launched to collect
massive amounts of remote sensing images. However, the considerable cost and time to process the
significant amount of data have become the greatest obstacle between data and knowledge. In order
to accelerate the transformation from remote sensing images to urban thematic maps, a strategy to
map the bare land automatically from Landsat imagery was developed and assessed in this study.
First, a normalized difference bare land index (NBLI) was presented to maximally differentiate bare
land from other land types in Wuhan City, China. Then, an unsupervised classifier was employed
to extract the bare land from the NBLI image without training samples or self-assigned thresholds.
Experimental results showed good performance on overall accuracy (92%), kappa coefficient (0.84),
area ratio (1.1321), and match rate (83.96%), respectively. Results in multiple years disclosed that bare
lands in the study site gradually moved from inner loops to the outer loops since 2007, in two main
directions. This study demonstrated that the proposed method was an accurate and reliable option
to extract the bare land, which led to a promising approach to mapping urban land use/land cover
(LULC) automatically with simple indices.
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1. Introduction

In this study, bare land indicates land not covered by vegetation, water, buildings, or roads, on
the Earth’s surface. It is one of the most important and typical land covers all over the world. For a city
under rapid development, the spatial-temporal change of the bare land is commonly recognized as the
indicator of humans’ endeavors to rebuild or expand a city [1,2]. In Chinese megacities, numerous
bare land pieces emerged along with urbanization processes, which cast irreversible impacts on the
urban environment, such as air pollution and soil loss.

In recent decades, most researchers have been inclined to map urban land use and land cover
(LULC) with supervised classification methods [3,4]. However, selecting samples interactively needs
a considerable amount of time, labor, and expert knowledge [5]. This becomes even worse when
mapping urban LULC in multiple years, as training samples have to be collected for each year. For
this reason, a classifier designed for one time use often cannot be directly implemented at a different
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time [6,7]. Consequently, it is difficult to analyze LULC changes routinely in a large number of
time series.

A remote sensing index is a simple and effective way to highlight a specific land cover. For
example, vegetation indices such as the normalized difference vegetation index (NDVI) [8] and
enhanced vegetation index (EVI) [9] have been developed to detect vegetation greenness, and
water indices such as the normalized difference water index (NDWI) [10] and the modified NDWI
(MNDWI) [11] have been used to extract water properties in many applications. To extract specific
land cover from an index image, a suitable threshold is critical because it has significant affects the
mapping accuracy [12].

However, it is difficult to visually differentiate bare land and the built-up areas in one image
due to their high complexity and similarity of spectral response patterns, especially in a mixture of
pixels with heterogeneous objects [13–15]. For example, in the normalized difference built-up index
(NDBI) [13], index-based built-up index (IBI) [16], and urban index (UI) [17] images, the difference
between the bare land and built-up areas is limited. Therefore, these indices result in high uncertainties
when assigning the threshold to identify bare land.

Recently, several indices have been presented to better distinguish the bare land, including
the normalized difference bareness index (NDBaI) [1] and enhanced built-up and bareness index
(EBBI) [18]. However, both indices have to specify the threshold interactively to extract the bare land.
It is commonly believed that assigning a suitable threshold value is difficult [19–21]. A high threshold
value often causes underestimation of bare land, while a low value results in overestimation. Repetitive
experiments and comparisons are always needed to define a suitable threshold.

This study aimed to find a strategy to map the bare land automatically from Landsat imagery
without training samples or self-defined thresholds. First, a novel bare land index was developed to
distinguish the bare land from all other classes. Then an unsupervised classifier was adopted to map
it with default settings. Results were assessed with ground truth samples. With this strategy, then,
the spatial-temporal change of the bare land from 2007 to 2013 were mapped and analyzed. Finally,
potential applications and prospects of the proposed strategy were discussed.

2. Materials

2.1. Study Site

The study is conducted in Wuhan City, the capital of Hubei province and the largest megacity
in Central China (Figure 1a,b). Wuhan is located at 29◦58′–31◦22′N and 113◦41′–115◦05′E, and
occupies a land area of 8494.41 square kilometers (3279.71 sq mi). Wuhan is known as the “Chicago of
China” [22,23] due to its critical role in inland transportation. The city’s climate is humid subtropical,
with plentiful rainfall and distinctive seasons. The mean temperature has the lowest 3.7 ◦C in January,
and the highest 28.7 ◦C in July. Annual precipitation totals 1315 millimeters (51.8 in), mainly from May
to July [24]. Most of the city has flat terrain decorated with hills and a great number of water bodies.

As one of the largest developing city in China, Wuhan is undergoing the most dramatic expansion
in its history. Since 2007, the city has more than 5000 construction fields each year, and many of them
last more than one year [25]. On one hand, the rapid expansion brings great benefits to citizens, such
as job opportunities, convenient transportation, beautiful views and modern residence environments.
On the other hand, it induces serious air pollution (i.e., smog), water pollution, and soil loss to the
city [26,27].

In the city, the built-up lands are generally located within the 2nd loops, and areas under
development are often distributed beyond the 3rd loop (Figure 1c).
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Figure 1. The study site. (a) Hubei province in China; (b) Wuhan city in Hubei Province; and (c) the 
basic map of Wuhan city.  

2.2. Datasets 

Landsat time-series images covering the Wuhan City (Path: 123, Row: 39) since 2007 were 
collected with special consideration for cloud, phenology and dryness of ground. As shown in  
Table 1, images in green season of 2007, 2009, 2011, and 2013 are used in this study. Landsat thermal 
infrared (TIR) bands were rescaled to 30 m prior to building an index image.  

Table 1. Landsat images used in this research. 

Captured Date Scene ID Sensor Bands Spatial Resolution (m) Cloud Amount (%)
31 July 2007 LT51230392007212BJC01 TM 7 30 0.01 

6 September 2009 LT51230392009249BJC00 TM 7 30 0.06 
8 June 2011 LT51230392011159BKT00 TM 7 30 0 

16 August 2013 LC81230392013228LGN00 OLI&TIRS 11 30 13.88 

A sample of Landsat TM image on 31 July 2007 is shown in Figure 2. Many large pieces of bare 
lands distribute (in light yellow tone) around built-up areas and lakes, illustrating the ongoing urban 
expansion. Atmospheric correction was implemented by the FLAASH model in ENVI 5.1 (provided 
by Harris Corporation in Melbourne, FL, USA) with the Landsat sensor response functions, metadata 
of the Landsat images, and meteorological data at the Wuhan station. The FLAASH model could 
effectively correct wavelengths in the visible through near-infrared and shortwave infrared regions 
incorporating the MODTRAN radiation transfer code. The digital numbers of the Landsat image 
were converted to apparent surface reflectance through this process. 

The basic map, climate and environment data of the city were collected from Wuhan Municipal 
Environmental Protection Bureau. The related social, commercial and transportation data came from 
Wuhan Statistical Yearbook.  

Validation points came from an independent set of very high resolution (VHR) imagery covering 
the study site, including IKONOS scenes in 2007 and 2013, Worldview scenes in 2009 and Quick bird 
scenes in 2011. Two hundreds of samples for the bare land and “the other” land types, respectively, 
were randomly interpreted from VHR images. These samples were used the confusion matrix to 
assess the mapping accuracy.  

Figure 1. The study site. (a) Hubei province in China; (b) Wuhan city in Hubei Province; and (c) the
basic map of Wuhan city.

2.2. Datasets

Landsat time-series images covering the Wuhan City (Path: 123, Row: 39) since 2007 were
collected with special consideration for cloud, phenology and dryness of ground. As shown in Table 1,
images in green season of 2007, 2009, 2011, and 2013 are used in this study. Landsat thermal infrared
(TIR) bands were rescaled to 30 m prior to building an index image.

Table 1. Landsat images used in this research.

Captured Date Scene ID Sensor Bands Spatial Resolution
(m)

Cloud Amount
(%)

31 July 2007 LT51230392007212BJC01 TM 7 30 0.01
6 September 2009 LT51230392009249BJC00 TM 7 30 0.06

8 June 2011 LT51230392011159BKT00 TM 7 30 0
16 August 2013 LC81230392013228LGN00 OLI&TIRS 11 30 13.88

A sample of Landsat TM image on 31 July 2007 is shown in Figure 2. Many large pieces of bare
lands distribute (in light yellow tone) around built-up areas and lakes, illustrating the ongoing urban
expansion. Atmospheric correction was implemented by the FLAASH model in ENVI 5.1 (provided
by Harris Corporation in Melbourne, FL, USA) with the Landsat sensor response functions, metadata
of the Landsat images, and meteorological data at the Wuhan station. The FLAASH model could
effectively correct wavelengths in the visible through near-infrared and shortwave infrared regions
incorporating the MODTRAN radiation transfer code. The digital numbers of the Landsat image were
converted to apparent surface reflectance through this process.
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Figure 2. The TM sample on 31 July 2007. The right panel shows the partial detail. 

3. Methods 

3.1. The Normalized Difference Bare Land Index 

In this study, land covers within the city were simply divided into five typical classes, i.e., the 
built up, bare land, water, forest, and agriculture. Here, agriculture is actually the mixture of 
cropland, grassland, and other vegetation land except the forest. As a city in the Jianghan Plain, 
cropland is the main land cover in the city. Two hundreds samples for each class were selected 
manually to depict the spectral profiles. 

As shown in Figure 3, the difference between the bare land and all others is apparent at the 
SWIR1 band (band 5 in TM) and red band (band 3 in TM). Especially, the SWIR1 band exhibits a high 
level of contrast to the water, which makes it widely used in bare land mapping [1,18]. However, 
digital numbers (DN) of agriculture are the closest to the bare land at SWIR1. Considering that 
agriculture is actually the mixture of several land cover types, its variation range could be large. Thus, 
the overlap between the bare land and agriculture may exist at SWIR.  

 
Figure 3. Spectral profiles of five classes in the study site. All values are stretched into [0, 255]. 

The built-up and bare land show similar tendencies from the band 4 (NIR) to band 5 (SWIR1), 
which are different from all others. Some indices utilize this feature to highlight the built-up areas 
[16,17], where the bare land is not considered as a standalone land cover type.  

The red band (band 3 in TM) also reveals high contrast between the bare land and others with 
its much higher DN values. Meanwhile, it is clear that all classes have similar DN values at TIR band 

Figure 2. The TM sample on 31 July 2007. The right panel shows the partial detail.

The basic map, climate and environment data of the city were collected from Wuhan Municipal
Environmental Protection Bureau. The related social, commercial and transportation data came from
Wuhan Statistical Yearbook.

Validation points came from an independent set of very high resolution (VHR) imagery covering
the study site, including IKONOS scenes in 2007 and 2013, Worldview scenes in 2009 and Quick bird
scenes in 2011. Two hundreds of samples for the bare land and “the other” land types, respectively,
were randomly interpreted from VHR images. These samples were used the confusion matrix to assess
the mapping accuracy.

3. Methods

3.1. The Normalized Difference Bare Land Index

In this study, land covers within the city were simply divided into five typical classes, i.e., the
built up, bare land, water, forest, and agriculture. Here, agriculture is actually the mixture of cropland,
grassland, and other vegetation land except the forest. As a city in the Jianghan Plain, cropland is the
main land cover in the city. Two hundreds samples for each class were selected manually to depict the
spectral profiles.

As shown in Figure 3, the difference between the bare land and all others is apparent at the SWIR1
band (band 5 in TM) and red band (band 3 in TM). Especially, the SWIR1 band exhibits a high level
of contrast to the water, which makes it widely used in bare land mapping [1,18]. However, digital
numbers (DN) of agriculture are the closest to the bare land at SWIR1. Considering that agriculture is
actually the mixture of several land cover types, its variation range could be large. Thus, the overlap
between the bare land and agriculture may exist at SWIR.

The built-up and bare land show similar tendencies from the band 4 (NIR) to band 5 (SWIR1),
which are different from all others. Some indices utilize this feature to highlight the built-up
areas [16,17], where the bare land is not considered as a standalone land cover type.

The red band (band 3 in TM) also reveals high contrast between the bare land and others with its
much higher DN values. Meanwhile, it is clear that all classes have similar DN values at TIR band
(Band 6 in TM). Thus, the difference between the two bands could help distinguish the bare land from
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other classes. In order to restrict the value range, we developed a normalized difference bare land
index (NBLI) as the following formula:

NBLI = (Red− TIR)/(Red + TIR) (1)

When dealing with Landsat 8 image, band 4 (red) and band 10 (TIR) can be utilized to build
the NBLI.
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3.2. Comparison with Related Indices

To verify the performance of our proposed index, experiments on other urban-related indices were
carried out in a comparison analysis, including the normalized difference built-up index (NDBI) [13],
Urban Index (UI) [17], index-based built-up index (ibi) [16], normalized difference bare land index
(NDBaI) [1], and enhanced built-up and bare land index (EBBI) [18]. All of these indices have been
developed to map urban environments. The NDBI used TM4 and TM5 and was applied in extracting
urban areas of Nanjing City, China [13]. The UI used Landsat TM band 7 and band 4, exploiting an
inverse relationship between the brightness of urban areas in the near infrared (0.76–0.90 µm) and
mid-infrared (2.08–2.35 µm) spectral regions [17]. The IBI made use of three indices, including the
MNDWI, NDBI, and the soil-adjusted vegetation index (SAVI) [19]. The subtraction of the SAVI band
and the MNDWI band from the NDBI band results in positive values for built-up land pixels only.
The NDBaI distinguished the bare land with Landsat band 5 (SWIR1) and band 6 (TIR) [1]. The EBBI
mapped the built-up and bare land at the same time, with the band NIR, SWIR1, and TIR (Landsat
ETM+ bands 4, 5, and 6) [18].

The formulas of these related indices are as below:

IBI =
2SWIR1/(SWIR1 + NIR)− [NIR/(NIR + Red) + Green/(Green + SWIR1)]
2SWIR1/(SWIR1 + NIR) + [NIR/(NIR + Red) + Green/(Green + SWIR1)]

(2)

NDBI = (SWIR1−NIR)/(SWIR1−NIR) (3)

UI = (SWIR2−NIR)/(SWIR2 + NIR) (4)

NDBaI = (SWIR1− TIR)/(SWIR1 + TIR) (5)

EBBI = (SWIR1−NIR)/
(

10
√

SWIR1 + TIR
)

(6)

In order to test their abilities to distinguish the bare land from other classes, samples of typical
land covers were selected from these index images, and then statistics of the land covers in different
index images were presented (Figure 4).



Remote Sens. 2017, 9, 249 6 of 15

Remote Sens. 2017, 9, 249 5 of 14 

 

(Band 6 in TM). Thus, the difference between the two bands could help distinguish the bare land 
from other classes. In order to restrict the value range, we developed a normalized difference bare 
land index (NBLI) as the following formula:  NBLI = (Red − TIR)/(Red + TIR) (1) 

When dealing with Landsat 8 image, band 4 (red) and band 10 (TIR) can be utilized to build the 
NBLI.  

3.2. Comparison with Related Indices 

To verify the performance of our proposed index, experiments on other urban-related indices 
were carried out in a comparison analysis, including the normalized difference built-up index (NDBI) 
[13], Urban Index (UI) [17], index-based built-up index (ibi) [16], normalized difference bare land 
index (NDBaI) [1], and enhanced built-up and bare land index (EBBI) [18]. All of these indices have 
been developed to map urban environments. The NDBI used TM4 and TM5 and was applied in 
extracting urban areas of Nanjing City, China [13]. The UI used Landsat TM band 7 and band 4, 
exploiting an inverse relationship between the brightness of urban areas in the near infrared (0.76–
0.90 µm) and mid-infrared (2.08–2.35 µm) spectral regions [17]. The IBI made use of three indices, 
including the MNDWI, NDBI, and the soil-adjusted vegetation index (SAVI) [19]. The subtraction of 
the SAVI band and the MNDWI band from the NDBI band results in positive values for built-up land 
pixels only. The NDBaI distinguished the bare land with Landsat band 5 (SWIR1) and band 6 (TIR) 
[1]. The EBBI mapped the built-up and bare land at the same time, with the band NIR, SWIR1, and 
TIR (Landsat ETM+ bands 4, 5, and 6) [18].  

The formulas of these related indices are as below:  IBI = 2SWIR1 (SWIR1 + NIR)⁄ − [NIR (NIR + Red)⁄ + Green/(Green + SWIR1)]2SWIR1 (SWIR1 + NIR)⁄ + [NIR (NIR + Red)⁄ + Green (Green + SWIR1)⁄ ] (2) NDBI = (SWIR1 − NIR)/(SWIR1 − NIR) (3) UI = (SWIR2 − NIR)/(SWIR2 + NIR) (4) NDBaI = (SWIR1 − TIR)/(SWIR1 + TIR) (5) EBBI = (SWIR1 − NIR)/(10√SWIR1 + TIR) (6) 

In order to test their abilities to distinguish the bare land from other classes, samples of typical 
land covers were selected from these index images, and then statistics of the land covers in different 
index images were presented (Figure 4). 

 
Figure 4. Statistics of typical land covers in different index images. Here, the marks indicate the mean 
value of a class, and the bar represents its standard deviation. All values are stretched into [0, 255]. 
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In Figure 4, the mean values of the bare land in all index images are close to 255, showing that
all indices are able to fairly highlight the bare land. However, in the first three index images, i.e., IBI,
NDBI, and UI, both statistics (i.e., the mean and standard deviation) of the bare land are very close
to those of the built-up. For the NDBaI, the distance between the agriculture and the bare land is
not far enough for separating them clearly. They actually overlap at 95% confidence interval (two
times the standard deviation). For the EBBI, the distance between the bare land and built-up areas
increases slightly, however, the overlap between them is still serious. The NBLI proposed in this study
maximally separates the bare land from others, which makes it easier to specify the threshold for
extracting bare land from a Landsat image. It is also noticed in Figure 4 that the distributions of bare
land and water may slightly overlap at a 95% confidence interval. To reduce the potential classification
errors, water bodies have to be removed before extracting the bare land.

3.3. Mapping the Bare Land Automatically with NBLI

Traditionally, assigning the threshold for extracting a specified land cover often costs considerable
time and labor sources. The apparently different values of NBLI in Figure 4 trigger our motivation to
test if it is possible to assign the threshold automatically. In order to test the possibility, a common
unsupervised classifier, the k-means function embedded in ENVI 5.1 with default settings, is employed
to assign the threshold for extracting the bare land from the index image. The flowchart of the proposed
method is shown in Figure 5 and discussed below.

After testing several typical water indices with the method similar to that in Section 3.2, the
MNDWI is selected to distinguish the water body. Then, the unsupervised classifier, k-means is
employed to specify the threshold for extracting the water body automatically.

The extracted water bodies serve as a mask layer to remove water bodies in the NBLI index
image. Then, the k-means classifier is implemented to divide the index image into several classes.
As demonstrated in Figure 4, pixels with the highest values are automatically classified as the bare
land, and all others are combined into “the other” class.
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3.4. Accuracy Assessment

Two quantitative methods are employed to assess the accuracies of the classification. First,
the traditional confusion (error) matrix is employed with the validation sample samples. The
overall accuracy is calculated as the ratio between the sum of the samples along the diagonal to
the total number of validation samples. The Kappa coefficient of agreement is also derived from the
confusion matrix.

Secondly, a traditional supervised classification was implemented with the validation samples
in the support vector machine (SVM) classifier. Two indicators are developed to investigate the
differences between the automatic mapping result and the supervised classification result, i.e., the area
ratio (Ra) and match rate (Rm). Their formulas are shown below:

Ra = Ba/Br (7)

Rm = (Ba ∩ Br)/BrorRm = (Ba ∩ Br)/Ba (8)

where Ba indicates the bare land in the automatic mapping result, and Br represents the bare land in
the supervised classification result.

4. Results

4.1. Index Images

All indices applied in this study, including the IBI, NDBI, UI, NDBaI, EBBI, and NBLI, are extracted
from the TM scenes. Figure 6 demonstrates their visual differences in Wuhan City on 31 July 2007.

In the first three images (Figure 6a–c), the bare lands are confused with built up areas. In the
NDBaI image (Figure 6d), the difference between the bare land and built-up areas becomes larger.
However, the difference between the bare land and agriculture is very small. In the EBBI image
(Figure 6e), the difference between the bare land and built-up areas is also not large enough to reach
satisfactory classification. In the NBLI image (Figure 6f), the difference between the bare land and all
others (except some water bodies) is so clear that the bare land can be interpreted easily. The unique
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problem is that some water bodies with large amount of suspended soil may have similar value with
the bare land, such as the Yangzi River. In this case, it is necessary to remove the water body before
mapping the bare land.
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4.2. Mapping the Bare Land

As the difference between the bare land and built-up is small in the IBI, NDBI, and UI images,
the unsupervised classifier cannot produce meaningful results from these images. Thus, just the
NDBaI, EBBI, and NBLI images were compared for extracting the bare land with the k-means classifier.
Additionally, with the samples interpreted from VHR images, a supervised classification were carried
out with a support vector machine (SVM). The results are shown in Figure 7 and Table 2.

Large areas of agriculture land are classified as bare lands in the NDBaI result (Figure 7a). The
misclassification between the agriculture and bare land is high. In the EBBI result (Figure 7b), many
built up areas (within the inner loops) are misclassified as bare lands. In the final NBLI result (Figure 7c),
the distribution of bare lands is very similar to the supervised classification result in Figure 7f. These
results in Figure 7 clearly illustrates that the bare land extracted from the NBLI image is the best result,
when using an unsupervised classifier to specify the threshold.
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Table 2. Accuracy assessment.

Overall
Acc. (%)

Kappa
Coefficient

Prod. Acc. (%) User Acc. (%) Comparison with the Reference

Bare Other Bare Other Area Ratio Match Rate (%)

NDBaI 85.45 71.00 76.00 94.90 93.71 79.81 3.77 74.65
EBBI 90.55 81.00 82.40 98.60 98.33 84.85 1.85 82.84
NBLI 92.00 84.00 84.20 99.80 99.76 86.33 1.13 83.96
SVM 96.75 93.50 94.00 99.50 99.47 94.31 - -

Additionally, Figure 7d shows some water bodies, such as the Yangzi River, are misclassified as
bare lands in the original NBLI result when water bodies are not removed. Thus, it is necessary to
remove them from the NBLI image. Figure 7e presents water bodies extracted from the MNDWI image
with the unsupervised k-means classifier. The distribution matches the visual interpretation very well,
and the overall accuracy in the confusion matrix achieves 95%. This guarantees the accuracy level of
the final result extracted from the water-masked NBLI image.

In Table 2, the NBLI result has the best overall accuracy, kappa coefficient, producer’s accuracy,
and user’s accuracy. Especially, the area ratio of NBLI result is much lower than that of other indices,
meaning that many fewer pixels of other classes are classified as the bare land in the result. With the
first formula in Equation (8), the match rate reaches a good match, especially for the NBLI (83.96%).
When using the second formula in Equation (8), the values become 19.78% (NDBaI), 44.73% (EBBI),
and 74.30% (NBLI), respectively. These differences among the three methods become much higher,
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mainly due to great differences in area ratio. From all accuracy measures in the confusion matrix in
Table 2, the NBLI result has the highest performance among the three indices.

Generally, all indicators show the NBLI result has much better performance, and could meet the
requirements of most application. Therefore, mapping the bare land from the NBLI image with the
automatic strategy, as proposed in this study, is feasible and reliable.

4.3. Mapping the Spatial-Temporal Change of the Bare Land

Since 2007, the Wuhan city has been under-going dramatic development and urban expansion.
For analyzing the spatial-temporal change of the bare land, the maps of bare land in 2009, 2011, and
2013 were also produced with NBLI. Results are shown in Figure 8, Table 3, and the related accuracy
assessment is shown in Table 4.

Figure 8 illustrates that more and more bare lands have appeared around the outer loop, while
few bare lands has presented within the inner loops since 2007. From another point of view, most bare
lands within inner loops have disappeared, while large bare lands around the outer loop have been
booming. In the southwest, the main development is the national Wuhan Economic Development
Zone dominated with vehicle production industry. In the east, the main development is the national
East Lake High Tech Development Zone, known as the “China’s optic valley”. The two zones are
engines to the city’s development.Remote Sens. 2017, 9, 249 10 of 14 
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Table 3. The distribution of bare lands (km2).

1st Loop * 2nd Loop 3rd Loop Outer Loop New * All *

2007 5.603 22.419 53.136 147.861 – – 311.613
2009 1.226 5.965 20.732 109.363 149.596 239.171
2011 0.978 4.729 15.722 86.235 90.161 153.910
2013 0.721 6.008 16.631 117.438 207.707 261.420

* 1st loop is the inner loop. In the table, the 2nd loop means the region between the 1st loop and the 2nd loop,
and so on. The column “New” means bare lands appear in this year, and the column “All” includes the new
and unchanged.

It is noticed that many bare lands have lasted more than two years. Statistically, 123.0 km2 bare
lands have existed over two years, 41.6 km2 over four years, and 14.7 km2 over six years. Authorities
should pay attention on how to promote the development of these lands, because the long existence of
bare lands may lead to waste of land resource and serious environmental issues.

Table 3 shows that bare lands within the 3rd loop keep decreasing since 2007, implying that lands
available for new development become less and less in this region. On the contrary, areas of bare lands
around the outer loop have remained high in those years.

4.4. Another Example: The Shenzhen City

Shenzhen is a major financial center in southern China, located immediately north of Hong Kong.
Shenzhen was promoted to a city in 1979 and then the China’s first Special Economic Zone (SEZ) in
1980. Since then, Shenzhen was one of the fastest-growing cities in the world. The city is home to the
Shenzhen Stock Exchange, as well as the headquarters of numerous high-tech companies. Shenzhen
ranks 19th in the 2016 edition of the Global Financial Centers Index published by the Z/Yen Group
and Qatar Financial Centre Authority.

Shenzhen is located within the Pearl River Delta, having a warm, monsoon-influenced, humid
subtropical climate. The main land covers in the city includes built up, forest, water and bare land.
The proposed method is implemented with Landsat image on 22 November 2009. Results are shown
in Figure 9 and Table 4.

Figure 9 shows the proposed method could be successfully implemented in a different region.
As there is few agriculture lands and rivers in the city, the differences between the bare land, built up
areas and forest are very clear in the index image. In the final result, it is found there is few great bare
lands within the city. It illustrates the city is almost developed, although it is very young (since 1979).
Oppositely, Wuhan is under great constructions, although its history is very long (since A.D. 233).

Table 4. Accuracy assessment for Wuhan and Shenzhen.

City Year Overall Acc.
(%)

Kappa
Coefficient

Prod. Acc. (%) User Acc. (%) Comparison with Reference

Bare Other Bare Other Area Ratio Match Rate (%)

Wuhan

2007 92.00 84.00 84.20 99.80 99.76 86.33 1.13 83.96
2009 91.25 82.50 85.00 97.50 97.14 86.67 1.21 83.77
2011 94.00 86.50 87.00 99.50 99.42 88.44 1.15 83.49
2013 92.25 84.50 86.50 98.00 97.74 87.89 1.12 84.34

Shenzhen 2009 93.00 94.50 86.00 99.90 99.87 87.23 1.10 84.12
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Figure 9. An example in Shenzhen City. (a) The Landsat image covering the city on 22 November 2009;
(b) the NBLI image in color; and (c) the extracted bare land in the city.
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5. Discussion

5.1. Characteristics of the Proposed Method

This study proposed a strategy to map the bare land automatically from Landsat imagery with a
simple index. First, a novel index NBLI was presented, which could enhance the difference between the
bare land and other classes dramatically. Then, an unsupervised classifier was employed to extract the
bare land from the NBLI image without training samples. Experiments showed satisfactory mapping
results. The NBLI was found to be superior to other urban-related indices by greatly enlarging the
difference between the bare land and other classes based on their unique spectral characteristics. This
was the trigger to test if it was possible to assign the threshold automatically for bare land extraction.
This study demonstrated that the proposed method could effectively produce accurate maps with
automatic threshold section.

Several issues about NBLI should be addressed for further applications. First of all, NBLI is
sensitive to clouds and aerosols, so atmospheric correction should be performed before calculating the
index. Secondly, the quantitative relationship between NBLI and percentage of soil cover is not clear.
Thirdly, the index is proven useful when dealing with Landsat images in this study. More tests on
other image sources are needed. Last and most importantly, fallow croplands could also be detected as
bare lands, as they have similar characteristics as bare land. Actually, it is very difficult to judge if a
bare land is a fallow agriculture field or construction site. When focusing on urban bare lands, it is
suggested to collect images in the grow seasons, and to analyze those locating within the metropolis
circle of a city, where few fallow agricultural fields exist.

5.2. Potential Applications of the Proposed Method

This study points out a potential approach to mapping typical land covers automatically without
training samples and self-assigned thresholds. It consists of two main steps: (1) finding an index which
is able to highlight the specified land cover very well; and (2) determining the threshold to extract
the class automatically. In this study, water bodies within the city have been extracted with the index
MNDWI and the k-means classifier. Water removal from the index image significantly improves the
accuracy of bare land mapping.

As shown in Figure 4, built-up indices (i.e., IBI, NDBI, and UI) are unable to discriminate the
distribution of the built up versus bare land in a clear manner. However, they could highlight both
from other lands very well, because the built-up and bare land show similar tendency from the band
4 (NIR) to band 5(SWIR1), which is distinctively different from all of the others. This study shows
that the bare land can be extracted accurately with the proposed method. Therefore, the combined
application of our NBLI approach and other built-up indices could effectively extract both bare land
and urban built-upland, which would provide more accurate outputs in urban mapping.

The most promising application of the proposed strategy would be analyzing times-series satellite
images. Mapping the spatial-temporal changes of urban LULC automatically could save considerable
cost and time for processing large data sets. This provides great potential for future applications as
more and more satellite observations have become available all over the globe.

6. Conclusions

For urban development in a city, the bare land should not be ignored or misclassified because its
environmental impacts are often serious. Existing indices are not able to effectively distinguish the
bare land from the built up, due to the high degree of land homogeneity and spectral similarity. In
this paper, a novel method to map the bare land automatically with Landsat images was presented. A
bare soil index NBLI was proposed to dramatically highlight the bare land. Then an unsupervised
classifier was employed to extract it automatically. The result showed very good performance based
on the overall accuracy, kappa coefficient, area ratio, and match rate. For bare land maps of the study
site in multiple years, most bare lands within inner loops disappeared, while large bare lands around
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outer loops were booming in two main directions. Results illustrate that the proposed method is an
accurate and reliable option to map the bare land automatically.

Furthermore, this study points out a promising approach to mapping typical urban LULC
automatically with simple indices, which includes: (1) finding an index which is able to highlight
the specified types; and (2) classifying the index image with an unsupervised classifier. More
experiments and analysis will be implemented in the future to test its feasibility and adoptability in
different environments.
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