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Abstract: Supported by the rapid economic development in the last few decades, China has become
the largest energy consumer in the world. Alongside this, the effect of the anthropogenic heat released
from energy consumption is increasingly apparent. We quantified the daytime and nighttime surface
urban heat island intensity (SUHII) for the 32 major cities in mainland China, using MODIS land
surface temperature data from 2008 to 2012, and estimated the energy consumption intensity (ECI)
based on the correlation between energy consumption and the sum of nighttime lights. On this basis,
the impact of energy consumption on the surface urban heat island in China’s 32 major cities was
analyzed, by directly examining the relationship between SUHII and the urban-suburban difference
in ECI. The results show that energy consumption has a significantly positive correlation with the
nighttime SUHII, but no correlation with the daytime SUHII. It indicates that the cities with a larger
urban-suburban difference in ECI have a far greater impact on SUHII during the nighttime. Therefore,
the statistical analysis of the historical observation data in this study provides evidence for a long-held
hypothesis that the anthropogenic heat released from energy consumption is an important contributor
to the urban thermal environment.

Keywords: energy consumption; surface urban heat island; nighttime light; land surface temperature;
daytime; nighttime

1. Introduction

With the advance of global urbanization, an increasing consumption of natural resources and
energy in the past 100 years has reached unprecedented levels in the human history. Although urban
areas are a relatively small fraction of the total surface of the Earth, urban expansion has coincided
with global environmental degradation, e.g., habitat loss and ecosystem change [1]. In addition, the
process of urbanization is linked to the changes in land surface properties, for example, heat storage,
soil moisture, and albedo. The urban heat island (UHI) induced by urbanization has been verified
in many big cities around the world [2]. The magnitude of UHI is particularly enhanced in China,
which has experienced a rapid urbanization during the last three decades [3,4]. The UHI effect can
have impacts on weather and climate [5], increase the energy usage in comparatively hot regions,
and impair nearby water quality [6] and the health of urban residents [7,8]. Furthermore, it increases
subsurface temperatures and alters the groundwater system both chemically and microbiologically,
via geochemical and geobiological reactions under the city [9].
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It has been acknowledged in previous studies that urbanization has significant impacts on the
climate [10–13]. Of all the factors associated with the urban environment, the anthropogenic heat
released from energy consumption is an important contributor to the local thermal environment [14].
Zhang et al. (2013) [15] pointed out that, although energy consumption is sparsely distributed over
the surface of the Earth and is only ~0.3% of the total energy transported to the extra-tropics via
atmospheric and oceanic circulations, this anthropogenic heat could disturb the normal pattern of
the circulations and cause a significant effect on the surface temperature at local, regional, and even
global scales.

Cities are usually the most concentrated areas with regards to energy consumption. With the
development of urbanization, people ceaselessly migrate to cities, resulting in a continuous increase in
the energy consumption within cities. Several modeling studies have shown that the effects of human
activity related to energy consumption play a significant role in the formation of UHI. By comparing
simulations with and without anthropogenic heat conditions, Ichinose et al. (1999) [16] showed that
the maximum temperature difference for sites near large releases of anthropogenic heat was around
1.5 ◦C. Similarly, Fan and Sailor (2005) [17] found that there was a rise of 2–3 ◦C, caused by the release
of anthropogenic heat to the nighttime UHI, during the winter months in Philadelphia. Narumi et al.
(2009) [18] found that anthropogenic heat contributed to a rise of 0.4 ◦C and 1.1 ◦C during the daytime
and nighttime, respectively, in the inner-city district of the Japanese megacity (Keihanshin district).

Accurate and detailed energy consumption data are a prerequisite for examining the impacts of
anthropogenic heat on UHI. Several studies have constructed the annual or diurnal spatial variability
of anthropogenic heat flux, by summing up the different sources of heat emissions, e.g., buildings,
transportation, and human metabolism [18,19]. However, these annual and diurnal changes in the
energy consumption data are sometimes not collected in many countries and regions. In China,
the statistical data on the energy consumption for each municipality or province are open access and
can be obtained from the China Energy Statistical Yearbook. However, the data on intra-provincial or
inner-city spatial variability of energy consumption are still not available. As a result, less attention
has been paid to the effect of energy consumption on climate, when compared to the studies about the
impacts of land-use change on the climate [14,18].

Population density is a useful proxy for depicting the geographic distribution of human
activities [20]. However, its use in China is limited due to the coarse temporal resolution
(once-in-a-decade census). The remotely sensed nighttime light imaging data derived from the Defense
Meteorological Satellite Program’s Operational Linescan System (DMSP/OLS) for calendar years, have
been archived since 1992. The DMSP/OLS nighttime light data have been widely used to analyze the
process of urban expansion [21,22], and to map CO2 emissions from fossil fuel combustion [23] and
electrical power consumption [24]. In addition, Coscime et al. (2013) [25] identified a good correlation
between the intensity of nighttime light and non-renewable energy consumption. Overall, nighttime
light not only reflects the intensity of human activity on large scales, but also has a finer temporal
resolution. Thus, nighttime light is considered a suitable indicator for constructing consecutive energy
consumption maps.

Various studies have documented the magnitude and spatial pattern of UHI intensity for
different regions around the world [2–4,26]. The nighttime light contrast between urban and
suburban areas is used as a proxy for anthropogenic heat emissions, in order to indirectly study
its linkage with UHI intensity [2,26]. However, until now, few studies have directly discussed the
relationship between energy consumption and UHI, based on statistical analysis of the historical
observation data [14]. The purpose of this study is to explore the impact of energy consumption
on the surface urban heat island in China’s 32 major cities. We use version 5 of the Moderate
Resolution Imaging Spectroradiometer (MODIS) Land Surface Temperature (LST) data during the
period 2008–2012, to evaluate the average intensity of the surface urban heat island over each city.
In the meantime, DMSP/OLS nighttime light images are used to distribute the statistical energy
consumption data and extract the energy consumption difference between urban and suburban areas.
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On this basis, the correlation between energy consumption and surface urban heat island intensity,
is then directly analyzed.

The rest of the paper is organized as follows. Section 2 describes the data used in this study.
The methodologies employed to evaluate surface urban heat land intensity and to map the statistical
energy consumption data, are showed in Section 3. The results and discussion are presented in
Section 4, and are followed by the conclusions in Section 5.

2. Materials

A land cover/use map of China in 2010, with a spatial resolution of 30 m, which was generated
through visual interpretations of the Landsat TM/ETM+ images [27], was utilized to extract the extent
of urban areas within the study area. This dataset was provided by the Data Center for Resources
and Environmental Sciences, Chinese Academy of Sciences (RESDC). It contained six land use types,
i.e., artificial surfaces, cultivated land, forest, grassland, water bodies, and unused land. The type of
artificial surface, which consisted of the impervious surfaces of cities, towns, and industrial and traffic
lands, was used to define the extent of urban areas in this study.

The land surface temperature (LST) was obtained from Aqua MODIS 8-days composite products
(version 5) with a spatial resolution of 1 km (MYD11A2), from 2008 to 2012. The LST data included
temperature observations made during the daytime (~13:30) and nighttime (~01:30). The retrieval
of LST data was refined by correcting for the noise resulting from topographic differences, cloud
contamination, and zenith angle changes [28]. Compared with in-situ values of LST measurements,
the bias of MODIS V5 LST was less than 1 ◦C in most cases and the root of the mean squares of
differences was less than 0.7 ◦C [29].

DMSP/OLS nighttime light images (version 4) from 2008 to 2012 were obtained from the National
Oceanic and Atmospheric Administration (NOAA) of the National Geophysical Data Center (NGDC).
The data were cloud-free composites made using all of the available archived DMSP/OLS smooth
resolution data for calendar years [30]. These stable light products contained the lights from cities,
towns, and other sites with persistent lighting. The DN values of the stable lights ranged from 1 to
63 in each image, while ephemeral lights and background noise had been identified and replaced
with values of zero. The products were produced in 30 arc-second geographic grids, whose size was
approximately 1 km2 at the equator.

The total energy consumption of each province in mainland China from 2008 to 2012, except for the
Taiwan and Tibet provinces, were obtained from the China Energy Statistical Yearbook [31]. The total
energy consumption of 25 cities (Guiyang, Hefei, Datong, Taiyuan, Yangquan, Changzhi, Jincheng,
Shuozhou, Yuncheng, Xinzhou, Linfen, Jingmen, Shiyan, YiChang, Xiamen, Ningde, Guangzhou,
Shenzhen, Huizhou, Dongguan, Beijing, Shanghai, Tianjin, Chongqing, and Liuzhou) from 2008 to
2012 were obtained from the Statistical Yearbook of each city. The total energy consumption included
the utilization of coal, oil, natural gas, and electricity in different sectors or industries. They were all
converted into the ton of standard coal equivalent (tce) and aggregated as a total number for each
province or city.

3. Methods

China has undergone a very rapid economic and urban development following the reform
and open-gate policy [32–34]. Statistical data indicates that the energy consumption in China has
dramatically increased from 602.75 million tce in 1980, to 3617.32 million tce in 2012 [31]. The influence
of human activities on the climate can be expected, especially in the fast-growing cities during the end
of this period. Hence, this study focuses on a total of 32 cities, of which 31 are either municipalities
or provincial capitals in mainland China, and the last is a special city, Shenzhen, which is one of the
fastest growing cities in the world (Figure 1). First, we mapped the statistical energy consumption
data based on the spatial distribution of DMSP/OLS nighttime lights. Meanwhile, we estimated the
surface urban heat island intensity (SUHII) for each city, based on the surface temperature. We then
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directly investigated the difference in energy consumption per unit area between urban and suburban
areas, and its linkage with SUHII. The scheme of evaluating SUHII and mapping statistical energy
consumption data is presented as follows.
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Figure 1. Locations of the 32 major cities in mainland China, with the background map indicating the
DMSP/OLS nighttime light imagery of 2010. All of the sites are municipalities or provincial capitals in
mainland China, except for Shenzhen, which is one of the fastest growing cities in the world.

3.1. Evaluating Surface Urban Heat Island Intensity

The SUHII was defined as the LST difference between urban and surrounding suburban areas.
Similar to Zhou et al. (2014) [26], urban and suburban areas were delineated for each city, as follows:

(1) The proportion of artificial surface areas in each MODIS LST pixel was calculated using a 1 km ×
1 km moving window, based on the 30 m land cover/use map of China in 2010.

(2) A 50% threshold of the proportion of artificial surface areas was used as a criterion to extract
the high-intensity built-up polygons. In order to include the scattered and most adjacent
high-intensity built-up patches in the urban class, a 2 km aggregation distance was used to
aggregate these polygons. As a result, the land within the urban border was delineated as an
urban area.

(3) The suburban area was defined as all of the nonurban pixels within the buffer zone around the
urban area, which covered the same area of urban extend (excluding water pixels) (Figure 2).

According to the procedures mentioned above, the borders of urban and suburban areas were
generated for the 32 major cities in mainland China, respectively. We assumed that the urban and
suburban areas generated from the land cover/use map in 2010 could represent those in the period
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from 2008 to 2012. As the urban areas of the 32 cities were different, buffer distances should be changed
to obtain the same area of urban extend (excluding water pixels) for suburban areas. As a result,
the buffer distances used for the 32 cities varied from 1.18 to 8.08 km. The annual mean daytime
and nighttime SUHII were then calculated from MODIS LST data for the period 2008–2012, for each
individual city.
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Figure 2. The delineation of urban and suburban areas, an example of Beijing. (a) Land cover/use map
in 2010 with a spatial resolution of 30 m; (b) the annual mean daytime land surface temperature (LST)
(◦C); and (c) the annual mean nighttime LST (◦C) in 2010. The black lines stand for the border of the
urban area, and the regions outside the black line but within the red line represent the suburban area
that covers the same area of the urban extend (excluding water pixels).

3.2. Mapping Statistical Energy Consumption Data

Anthropogenic heat released from energy consumption is generated by human activities. Most
studies have estimated the spatial distribution of energy consumption using the inventory-based
approach, which can be further divided into bottom-up and top-down approaches. With the bottom-up
inventory approach, the seasonal and diurnal variability of anthropogenic heat flux are estimated,
based on the aggregate of detailed energy consumption data, e.g., flows of vehicles, and the number of
buildings and people in each grid point [16,19]. However, this approach places very high demands
on the statistical energy consumption data. Collecting such detailed energy consumption data is
a formidable task in many countries and regions. With the top-down inventory approach, the
energy consumption data from energy statistics on a province-level scale or a larger spatial scale
are downscaled to smaller scales, based on a finer spatial indicator, for example, population density,
land use data, gross domestic product (GDP) data, and nighttime light data [14,20,25]. In China, the
statistical energy consumption data on the province-level scale can be obtained from the China Energy
Statistical Yearbook. Since the remotely sensed nighttime light imaging data is a suitable indicator of
energy consumption maps in consecutive calendar years, we can construct the spatial distribution of
an energy consumption map by combining the statistical energy consumption with the nighttime light
data. We use the top-down inventory approach to map the statistical energy consumption data, based
on the nighttime light data in this study.

Because DMSP/OLS nighttime light data were produced by different satellites and OLS sensors
which had no on-board calibration, we could not directly use the multi-year nighttime light to map
the statistical energy consumption, due to the lack of continuity and comparability [35,36]. We first
preprocessed the nighttime light data, according to the methodology developed by Liu et al. (2012) [37].
Then, a linear regression analysis was conducted to identify the relationship between the total energy
consumption on the provincial scale, and the sum of nighttime lights within each corresponding
province. The linear regression model is presented as follows:
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EC = β1 + β2·NTL, (1)

where EC and NTL are the statistical energy consumption and the sum of nighttime lights within
each province, respectively, and β1 and β2 are different regression coefficients. Figure 3 shows the
relationship between energy consumption and the sum of nighttime lights on the provincial scale, for
each year over the period of 2008–2012. R2, which represents the goodness of the fit, varies from 0.74
to 0.81 for the linear regression models in different years. These significant correlations indicate that
energy consumption has a similar variability or range in the spatial relationship with nighttime lights.
To verify that the statistical energy consumption data at the provincial level could be downscaled,
based on the nighttime light images through these linear regression models, we used the statistical
energy consumption data from 25 cities to assess the reliability of the models. Figure 4 presents a
scatterplot of the actual statistical energy consumption at the city level and the corresponding energy
consumption estimated by the models over the period of 2008–2012. As a whole, the estimated
consumption values were close to those from the actual statistical data at the city level, during different
years. In order to further evaluate the performance of the model for mapping the spatial distribution
of energy consumption, we applied the mean relative error (MRE) and root mean-squared error
(RMSE) to assess the difference between the estimated consumption and the actual statistical data.
The calculations of these metrics are expressed as follows:

MRE =
1
n ∑ n

i=1

∣∣∣∣∣ ˆECi − ECi
ECi

∣∣∣∣∣, (2)

RMSE =

√
1
n ∑ n

i=1

( ˆECi − ECi
)2 (3)

where n is the total number of pairs of data, and ECi and ˆECi are the actual statistical energy
consumption data and its corresponding estimation at the city level during the period of 2008–2012,
respectively.

According to the calculations of the metrics above, the values of the MRE were 0.33, 0.32, 0.30, 0.26,
and 0.30 for the linear regression models from 2008 to 2012, respectively, while the values of the RMSE
were 1031.1 × 104, 657.8 × 104, 1112.7 × 104, 866.8 × 104, and 987.9 × 104 tce. In fact, the statistical
standards of energy consumption at the city level were still varied within different provinces in
China. Considering that the accuracy of the statistical energy consumption data would also affect
the assessment of the model, we think that the estimation biases were acceptable, while using the
regression relationship to downscale the energy consumption. We assumed that the similar variability
or range existing in the spatial relationship between energy consumption and nighttime lights enabled
us to represent its spatial variability within a province. In other words, the models established by the
statistical energy consumption and nighttime lights will be used to estimate energy consumption on a
smaller scale. Therefore, energy consumption within a certain region can be estimated by the sum of
nighttime lights within its corresponding region, based on the linear regression models.

Using the borders of urban and suburban areas over the 32 major cities in mainland China,
we calculated the sum of nighttime lights within each area and then translated it into energy
consumption based on the linear models during the period of 2008–2012. Similar to SUHII, the
energy consumption intensity (ECI) (energy consumption per unit area) contrast between urban
and suburban areas was individually extracted for each city. Because the temporal resolution of
the statistical energy consumption data was once a year in China, it was still hard to separate the
energy consumption during the daytime from that during the nighttime, using the top-down inventory
approach. We assumed that the change in the energy consumption was uniform during the day
and night.
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4. Results

The spatial distribution of the annual mean daytime and nighttime SUHII, averaged over the
period of 2008–2012 for the 32 major cities in mainland China, is showed in Figure 5. The annual mean
daytime SUHII varied from −0.24 ◦C in Lhasa to 2.68 ◦C in Fuzhou, and was positive over most cities
(94%). The cities with a more intense daytime SUHII were mainly located in Northeast, East, and
South China. The annual mean nighttime SUHII varied from 0.28 ◦C in Nanjing to 2.27 ◦C in Harbin.
In contrast to the spatial pattern of the daytime SUHII, the cities located in Northern China experienced
a more intense nighttime SUHII than those in the South. To further explore the relationship between
the daytime and nighttime SUHII, Figure 5c shows that there was a weak correlation between the
annual mean daytime and nighttime SUHII across the 32 major cities in mainland China (R = −0.26,
p = 0.15).
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Figure 5. The spatial distribution of annual mean (a) daytime surface urban heat island intensity
(SUHII) and (b) nighttime SUHII averaged over the period of 2008–2012 for the 32 major cities in
mainland China; and (c) the scatterplot of daytime SUHII versus nighttime SUHII. R represents the
correlation coefficient value, and p represents the degree of the significant correlation. (BJ: Beijing; FZ:
Fuzhou; HB: Harbin; LS: Lhasa; NJ: Nanjing; SJZ: Shijiazhuang; TY: Taiyuan).

The values of the annual mean ECI, averaged over the period of 2008–2012 for the 32 major cities
in urban areas, varied from 1.75 × 104 tce/km2 in Beijing to 50.89 × 104 tce/km2 in Lhasa, while they
varied from 1.28 × 104 tce/km2 in Beijing to 50.70 × 104 tce/km2 in Lhasa in their corresponding
suburban areas. As a whole, the values for the annual mean ECI in urban areas were consistently
larger than those in the suburban areas of each city. In the meantime, the maximum difference in
the annual mean ECI between urban and suburban areas was found in Beijing (0.46 × 104 tce/km2),
followed by Shijiazhuang (0.43 × 104 tce/km2) and Taiyuan (0.38 × 104 tce/km2). Additionally, the
spatial distribution of the urban-suburban difference in the annual mean ECI (∆ECI), averaged over
the period of 2008–2012 for the 32 major cities in mainland China, is shown in Figure 6a. Similar to the
nighttime SUHII, the cities located in Northern China experienced a more intense ∆ECI than those in
the South.

In order to explore the relationship between energy consumption and the surface urban heat
island, Figure 6 shows the scatterplots of ∆ECI values versus the annual mean daytime and nighttime
SUHII, respectively. There was no correlation between the 4ECI and daytime SUHII (R = −0.05,
p = 0.77). In contrast, ∆ECI had a strongly positive correlation, which was significant at the 99%
confidence level (R = 0.53, p < 0.01), with the nighttime SUHII.
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5. Discussion

As showed in Figure 5, the spatial pattern of the annual mean daytime SUHII is different from
that of the nighttime SUHII. The weak correlation between the daytime and nighttime SUHII across the
32 major cities in mainland China is consistent with the finding of Peng et al. (2011) [2], who reported
that no correlation between the annual mean daytime and nighttime SUHII was observed for 419 large
global cities. Besides, Peng et al. (2011) [2] found that the urban-suburban differences in vegetation
cover and albedo can explain about 51% and 2% of the between-city variance in the daytime SUHII,
while the urban-suburban differences in vegetation cover, albedo, and nighttime light, explain about
2%, 18%, and 13% of the nighttime SUHII, respectively. Furthermore, Zhou et al. (2014) [26] stated that
the distribution of the daytime SUHII closely correlated with the distribution of vegetation activity and
nighttime lights in summer, and with the climate (temperature and precipitation) in winter, while the
distribution of the nighttime SUHII strongly correlated with that of albedo, nighttime lights, built-up
intensity, and climate, in both seasons. These results suggest that the drivers of the urban heat island
during the daytime are different from those during the nighttime.

Anthropogenic heat flux can be converted into sensible heat flux or other heat flux, and can
indirectly influence the SUHII [38]. Compared with suburban areas, inland cities are usually observed
to be concentrated areas with a large energy consumption. Anthropogenic heat released from energy
consumption is an important contributor to the urban thermal environment. However, the magnitude
of the urban-suburban difference in ECI varies considerably among the cities in mainland China
(Figure 6a). The correlation between energy consumption and SUHII indicates that anthropogenic
heat released from energy consumption has different impacts on the daytime and nighttime SUHII.
The cities with a larger ∆ECI have a far greater impact on SUHII during the nighttime.

Results from previous studies also demonstrate that anthropogenic heat released from energy
consumption have a small impact on the daytime SUHII, but a large impact on the nighttime
SUHII [16–18]. This phenomenon can be explained based on the contrast of surface energy exchange
between urban and suburban areas. The downward net solar radiation flux and anthropogenic
heat flux produced by human activities (building, cooling and heating, transportation, and human
metabolism) are the two major energy sources which affect the evolution of the urban heat island [39].
These two energy sources are converted into sensible heat flux, latent heat flux, and surface heat
storage, according to the surface energy balance on the land surface. During the daytime, net solar
radiation flux is far greater than the heat flux released by anthropogenic sources. Sensible heat flux,
latent heat flux, and surface heat storage, are mainly driven by net solar radiation flux. As a result,
the anthropogenic heat produced by energy consumption has less impact on the daytime SUHII.
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After sunset, without the heat flux from solar radiation, sensible heat flux and latent heat flux are
mainly converted from the sum of surface heat storage during the daytime and anthropogenic heat
released from energy consumption during the nighttime. However, as time goes on, the heat flux from
surface heat storage decreases. The proportion of anthropogenic heat release in the heat flux during
the night, is relatively larger than that during the daytime [18]. As a result, the cities with a larger
urban-suburban difference in ECI tend to experience a more intense SUHII during the nighttime.

Nighttime light was considered as a suitable proxy for anthropogenic heat released from energy
consumption in previous studies [2,26]. However, the use of the urban-suburban difference in ECI
when directly exploring the relationship between energy consumption and SUHII, is to some extent,
different from the indirect use of nighttime light. Nighttime light can indirectly reflect the intensity of
human activities, but the spatial distribution of energy consumption downscaled from energy statistics,
can directly reflect the intensity of the anthropogenic heat released from energy consumption in space.
In other words, compared with nighttime light, energy consumption is a more physically meaningful
proxy for analyzing the impact of energy consumption on SUHII in this study. In order to further
investigate the difference in the correlation with SUHII, between ECI and nighttime light, we extracted
the nighttime light difference between urban and suburban areas and repeated the same correlation
analysis as that for energy consumption. The results show that nighttime light has no correlation with
the daytime SUHII (R = 0.05, p = 0.77), while it had a positive correlation with the nighttime SUHII
(R = 0.39, p = 0.03). However, a much stronger correlation is detected between energy consumption
and the nighttime SUHII, when compared with the correlation between nighttime light and SUHII
(R = 0.53 versus R = 0.39); although both correlations are positive. This indicated that, by directly
examining the correlation between the SUHII and the urban-suburban difference in ECI, we can better
detect the impact of energy consumption on the surface urban heat island.

As the intensity of energy consumption downscaled from energy statistics is strongly correlated
with SUHII, it can be incorporated into urban climate models to better improve the representation
of anthropogenic heat release. Recently, Chen et al. (2016) [38] incorporated the anthropogenic heat
release data, which were estimated based on energy statistics and multisensory remote-sensing data,
into model simulations, and effectively detected the impact of anthropogenic heat on the urban
environment of Hangzhou City in China. In contrast, Cao et al. (2016) [40] conducted a study based on
satellite observations and a land surface model, to investigate the contributions of each component
(i.e., radiation, efficiency of sensible heat convection, evaporation, heat storage, and anthropogenic
heat release) to the UHI. However, due to the lack of a realistic anthropogenic heat parameterization in
the land surface model, the modeled urban heat island intensity is very different from that derived
from satellite observations. Therefore, to improve the performance of the model for capturing the
urban climate, the inclusion of the energy consumption-based anthropogenic heat source into the
surface energy balance is necessary in model parameterizations.

For the first time, we have analyzed the impact of energy consumption on the surface urban heat
island in China’s 32 major cities, based on the historical observation data. We have discussed the annual
average change of energy consumption and SUHII during the period of 2008–2012. The seasonal
variability of energy consumption was not addressed in this study, due to the lack of seasonal data. As
a matter of fact, both energy consumption and SUHII vary with the season [19,26]. If we assumed that
energy consumption does not change across the seasons, but that SUHII varies with the season, the
urban-suburban difference in ECI had a stronger positive correlation with SUHII during the nighttime
in the summer (June–August) (R = 0.57, p < 0.01), followed by autumn (September–November)
(R = 0.52, p < 0.01), spring (March–May) (R = 0.48, p < 0.01), and winter (December–February)
(R = 0.48, p < 0.01). Hence, the impacts of energy consumption on the surface urban heat island are
likely to be different in different seasons. This seasonality of impact should be addressed in future
research, when the seasonal energy consumption data become available.
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6. Conclusions

In this study, the annual mean daytime and nighttime SUHII, averaged over the period of
2008–2012, were evaluated, based on the MODIS LST data for the 32 major cities in mainland China.
The energy consumption was estimated, based on a relationship between energy consumption and the
sum of nighttime lights. We then investigated the impact of energy consumption on the surface urban
heat island in these cities, by directly exploring the correlation between SUHII and the urban-suburban
difference in ECI. The results suggest that the annual mean daytime SUHII across the 32 major cities in
mainland China has a weak correlation with the nighttime SUHII. However, energy consumption has
a significant impact on the nighttime SUHII, but a limited impact on the daytime SUHII. The more
intense SUHII during the nighttime is found in the cities with a larger urban-suburban difference
in ECI.

In contrast to previous studies [2,26], the urban-suburban difference in the annual mean ECI
is used to directly examine the relationship between energy consumption and SUHII. Additionally,
for the first time, the impact of energy consumption on the surface urban heat island is examined, based
on the analysis of historical observation data. The results in the present study are in good agreement
with those simulated in numerical models [16–18,38]. It is further demonstrated that the anthropogenic
heat released from energy consumption is an important contributor to the urban thermal environment.
However, the energy consumption might be underestimated in city centers, due to the saturation of the
nighttime light in this study. It is believed that the bias of the estimated energy consumption, caused
by the saturation issue, can be reduced with the improvement of relevant algorithms in the future.

During the last three decades, China has experienced rapid urbanization and dramatic economic
growth [41]. Alongside this, energy consumption has continued to grow and has coincided with
environmental degradation in China. Although China’s economic growth is slowing down and has
undergone transformation in recent years, China is still the largest energy consumer in the world.
Results from this study suggest that the impact of the anthropogenic heat released from energy
consumption on the urban climate is apparent and should not be ignored in future research. Therefore,
the effect of energy consumption has to be considered in the development of mitigation strategies
to combat the adverse effect of the surface urban heat island on socioeconomic development and
human wellbeing.
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