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Abstract: Due to the advances in hyperspectral sensor technology, hyperspectral images have
gained great attention in precision agriculture. In practical applications, vegetation classification
is usually required to be conducted first and then the vegetation of interest is discriminated
from the others. This study proposes an integrated scheme (SpeSpaVS_ClassPair_ScatterMatrix)
for vegetation classification by simultaneously exploiting image spectral and spatial information
to improve vegetation classification accuracy. In the scheme, spectral features are selected by
the proposed scatter-matrix-based feature selection method (ClassPair_ScatterMatrix). In this
method, the scatter-matrix-based class separability measure is calculated for each pair of classes
and then averaged as final selection criterion to alleviate the problem of mutual redundancy among
the selected features, based on the conventional scatter-matrix-based class separability measure
(AllClass_ScatterMatrix). The feature subset search is performed by the sequential floating forward
search method. Considering the high spectral similarity among different green vegetation types,
Gabor features are extracted from the top two principal components to provide complementary
spatial features for spectral features. The spectral features and Gabor features are stacked into
a feature vector and then the ClassPair_ScatterMatrix method is used on the formed vector
to overcome the over-dimensionality problem and select discriminative features for vegetation
classification. The final features are fed into support vector machine classifier for classification.
To verify whether the ClassPair_ScatterMatrix method could well avoid selecting mutually redundant
features, the mean square correlation coefficients were calculated for the ClassPair_ScatterMatrix
method and AllClass_ScatterMatrix method. The experiments were conducted on a widely used
agricultural hyperspectral image. The experimental results showed that (1) the The proposed
ClassPair_ScatterMatrix method could better alleviate the problem of selecting mutually redundant
features, compared to the AllClass_ScatterMatrix method; (2) compared with the representative
mutual information-based feature selection methods, the scatter-matrix-based feature selection
methods generally achieved higher classification accuracies, and the ClassPair_ScatterMatrix method
especially, produced the highest classification accuracies with respect to both data sets (87.2% and
90.1%); and (3) the proposed integrated scheme produced higher classification accuracy, compared
with the decision fusion of spectral and spatial features and the methods only involving spectral

Remote Sens. 2017, 9, 261; doi:10.3390/rs9030261 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2017, 9, 261 2 of 16

features or spatial features. The comparative experiments demonstrate the effectiveness of the
proposed scheme.

Keywords: hyperspectral image; vegetation classification; feature selection; scatter-matrix-based
class separability; Gabor features

1. Introduction

Recently, hyperspectral remotely-sensed image has gained popularity in precision agriculture
applications. Compared to multispectral images, e.g., Landsat TM and Moderate Resolution Imaging
Spectroradiometer (MODIS) images, hyperspectral images have higher spectral resolution and provide
a more contiguous spectrum [1]. Thus, hyperspectral images are expected to have good capability in
quantifying the biophysical and biochemical attributes of vegetation, which can reflect crop growth
status and guide site-specific agricultural management [2–5]. In practical applications, the first step
required is to discriminate the crop of interest from the other objects and determine its planting area.
Usually, it is easy to distinguish vegetated areas from other surface types by setting a threshold of
normalized difference vegetation index (NDVI) [6,7]. As to the discrimination of different vegetation
types using hyperspectral images, this is a typical hyperspectral image classification problem. With the
increase in the number of spectral bands, theoretical and practical problems may arise, and traditional
techniques that are applied on multispectral images are no longer applicable for processing of
hyperspectral images. A well-known problem in hyperspectral image classification is the curse
of dimensionality, which shows that the supervised classification accuracy actually decreases as the
number of features increases after a few features when keeping the number of training samples
constant [8]. It is also worth mentioning that only a small number of these numerous features are really
informative for the classification problem at hand [9]. Therefore, feature selection and feature extraction
are widely used to reduce the dimensionality of features before hyperspectral image classification [10].
Feature extraction aims to project the data into a new feature space with lower dimension than before
through a mathematical transformation [11]. These methods can well eliminate the correlations among
features. However, the new features generated by these methods are often not interpretable with
physical meanings. Feature selection falls into two categories which are the filter approach and wrapper
approach. Due to its independence from the classifier, the filter approach is widely used in computer
vision and pattern recognition, and aims at selecting a feature subset from the original feature set
according to a selection criterion and the feature subset search algorithm [10]. Compared to feature
extraction methods, feature selection methods can retain well the physical nature of features and thus
the features selected have good interpretability [10,12]. However, the correlations between features are
often unavoidable in feature selection methods and how to select the features with fewer correlations
and better class separability is a key issue in constructing new feature selection criteria. Although
either feature extraction or feature selection methods have their own advantages and disadvantages,
we restrict our algorithm to supervised filter feature selection in this paper.

The construction of feature selection criterion is a critical component in filter feature selection
method. At present, commonly used feature selection criteria are mutual information (MI)-based
criteria and class separability-based criteria. Selection criteria based on MI theory have the
advantages in terms of distribution-free, nonlinear and low computational load for multiclass
cases [13]. The minimal-redundancy-maximal-relevance (mRMR) [14], joint mutual information
(JMI) [15], conditional mutual information maximization (CMIM) [16] and double input symmetrical
relevance (DISR) [17] are representative MI-based feature selection methods. The main goal of class
separability-based feature selection methods is to maximize the separability described as divergence
and its variations or distance measures such as spectral angle mapper, Jeffries–Matusita (JM) distance,
Bhattacharyya distance, and scatter-matrix-based measures [18]. An overview of various feature
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mining approaches and techniques is given in [10], which include both feature extraction and feature
selection using either wrapper approach or filter approach. Among these class separability measures,
the scatter-matrix-based class separability measure is often favored and chosen as a selection criterion
in feature selection due to its simplicity and robustness [19]. The scatter-matrix-based class separability
measure is constructed by using two of three scatter matrices which are within-class scatter matrix,
between-class scatter matrix and total scatter matrix [18]. Traditionally, these scatter matrices are
calculated from the perspective of all classes. However, direct optimization of this measure tends
to select a set of discriminative but mutually redundant features [20]. To alleviate this problem,
this study tries to calculate the scatter-matrix-based class separability value for each pair of classes
and then take the average of all the pairwise class separability value as the final selection criterion.
Feature selection is performed by maximizing the criterion using sequential floating forward search
(SFFS) [21]. Moreover, a comparative analysis of MI-based feature selection methods and class
separability measure-based feature selection methods is also conducted from an experimental point of
view for vegetation classification. To our knowledge, there has been no work to date that has compared
their capabilities for vegetation classification.

It is well acknowledged that there exist great spectral similarities among different green vegetation
types. Although hyperspectral images allow a better discrimination among similar ground objects than
traditional multispectral sensors, the ability for discriminating different vegetation types is limited only
based on spectral features. There are many studies that have reported that properly combining multiple
features always results in good classification performance [22–25]. Therefore, this study proposes
an integrated scheme for vegetation classification by simultaneously exploiting image spectral and
spatial information to improve vegetation classification accuracy. The spectral features are selected
by the proposed scatter-matrix-based feature selection method. Gabor features [26] are extracted to
provide spatial features. The selected spectral features and Gabor spatial features are stacked and then
the proposed feature selection method is conducted on the stacked feature vector to form the final
feature vector for classification. In order to explore the proper method in combination of spectral and
spatial features for vegetation classification, decision-level fusion of spectral and spatial features is also
investigated and compared with the proposed integrated scheme in the study. The rest of this paper is
organized as follows. In Section 2, we provide the proposed integrated scheme in details, including the
description of the proposed scatter-matrix-based feature selection method, Gabor feature extraction
and the combination method of spectral and spatial features. Section 3 reports the experimental results
on a widely used agricultural hyperspectral image. The discussion and conclusions are given in
Sections 4 and 5, respectively.

2. Methods

2.1. Scatter-Matrix-Based Feature Selection

Class separability, which can be represented by divergence, transformed divergence,
Bhattacharyya distance, JM distance, and scatter-matrix-based measures, is a widely used
concept in feature selection criteria construction. In this study, we mainly focus on the
scatter-matrix-based class separability measure due to its simplicity and rich physical meaning [19].
Conventional scatter-matrix-based class separability measures are constructed by the combination
of two of three scatter matrices which are the within-class scatter matrix (SW), between-class scatter
matrix (SB) and total scatter matrix (ST). Let (x, y) ∈ (Rn × y) represent a sample, where Rn denotes
an n-dimensional feature space and y = {1, 2, . . . , M} is the set of class labels. Ni is the number of
samples in the ith class. Let xij be the jth sample in the ith class, µi be the mean vector for the ith class
and µ be the mean vector for all classes. The three scatter matrices mentioned above are defined as
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SW =
M

∑
i=1

[
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∑
j=1

(
xij − µi

)(
xij − µi

)T
]

, SB =
M
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i=1

Ni(µi − µ)(µi − µ)T

ST =
M

∑
i=1

[
Ni

∑
j=1

(
xij − µ

)(
xij − µ

)T
]
= SW + SB

(1)

In contrast to the conventional calculation of the three scatter matrices, we make our calculations
for each pair of classes first in the study. Thus, the scatter-matrix-based class separability measure for
each pair of classes can be formulated as Equation (2):

Sij = trace
{

SWij
−1(SBij + SWij)

}
(2)

where Sij is the class separability value between class i and class j; and SWij and SBij are the within-class
scatter matrix and between-class scatter matrix for class i and class j, respectively. They can be
formulated as follows:

SWij = PiΣi + PjΣj (3)

SBij = Pi(µi − µ0)(µi − µ0)
T + Pj

(
µj − µ0

)(
µj − µ0

)T
(4)

µ0 = Piµi + Pjµj (5)

where Pi and Pj are prior probabilities of class i and class j, respectively; Σi and Σj are covariance
matrices of class i and class j; µi, µj and µ0 are mean vectors of class i, class j and these two
classes, respectively.

The larger value of Sij means smaller within-class scattering and larger between-class scattering
for class i and class j. It indicates that it is easier to discriminate class i from class j. This measure can
be extended from two classes to M (M > 2) classes by averaging the separability value of each pair of
classes, as seen in Equation (6).

Save = ∑ M
i=1 ∑ M

j>iPiPjSij (6)

It can be observed that the scatter-matrix-based class separability measure used here is different
from the conventional one in which the within-class scatter matrix and between-class scatter matrix
are calculated for all classes at a time, while the proposed one first focuses on each pair of classes and
then averages all pairwise Sij as the final class separability Save. Zhou et al. has proven that directly
optimizing the conventional scatter-matrix-based class separability measure tends to select a set of
discriminative but mutually redundant features and then result in missing other discriminative and
complementary features [20]. Consequently, the further improvement in classification accuracy for
subsequent classification will be hindered. Several studies have pointed out that the feature subset
that can best describe the discriminants may vary for different pairs of classes [27–29]. Therefore,
calculating for each pair, the class separability value might increase the scattering extent of selected
features in the process of maximizing the averaged pairwise class separability value. This is the main
motivation of the proposed feature selection criterion.

An efficient search strategy is critical in a feature selection method since it is a combinatorial
problem to find an optimal feature subset achieving the largest class separability Save under the
predefined number of selected features. In practice, suboptimal search methods such as best
individual N [19], and sequential forward selection (SFS) and its variations are widely used rather than
an exhaustive search which has high computational cost, especially when the number of candidate
features is large. It has been reported that best individual N cannot produce a suitable solution
when there exist high correlations among candidate features which always happens in hyperspectral
imaging [1]. Thus, SFFS, which has been proven to be superior to the SFS method, is chosen to find
suboptimal feature subset in the proposed feature selection method. The SFFS method is characterized
by dynamically changing the number of features inclusion or exclusion at each step that avoids the
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nesting problem. It includes new features by applying the basic SFS method and successively excludes
the worst features in the newly-updated feature set, provided a further improvement can be made on
the previous sets [21].

It is worth mentioning that the proposed feature selection method (hereafter referred to as
ClassPair_ScatterMatrix) still seeks one feature subset to distinguish among all the classes although
it calculates the class separability value for each pair of classes. In order to explicitly evaluate the
effectiveness of the proposed feature selection criterion, the mean square correlation coefficient for
each pair of selected features is calculated to measure the redundancy among the selected features.
The higher mean square correlation coefficient indicates higher redundancy among the selected
features. The conventional scatter-matrix-based feature selection method (hereafter referred to as
AllClass_ScatterMatrix), also follows the class separability construction mode as shown in Equation (2),
using the SFFS method to search the feature subset, and is used in the comparison of redundancy of
selected features with the proposed feature selection method.

2.2. GaborSpatial Features Extraction

Nowadays, a wide range of techniques is used to extract spatial features of hyperspectral
image, such as spatial features based on gray-level co-occurrence matrix (GLCM) [30], morphological
profiles [31] and the two-dimensional Gabor wavelet [26]. Considering that the conventional
two-dimensional Gabor wavelet has already been proven superior for representing the spatial features
in the natural scene and aerial photographs [23], the two-dimensional Gabor wavelet is used in this
paper. The top two principal components (PCs) of the hyperspectral image which account for about
90% variance of image are used as base images for the Gabor features extraction. A two-dimensional
Gabor wavelet function Ψµ,v(z) is an elliptical Gaussian envelope modulated by a complex plane
wave as defined in Equation (7).

Ψµ,v(z) =
‖kµ,v‖2

σ2 e(−‖kµ,v‖2z2/2σ2)
[
eizkµ,v − e−σ

2/2
]

(7)

where z = (x, y) is the spatial domain variable; ‖.‖ denotes the norm operator; and µ and v define the
orientation and scale of Gabor kernel. kµ,v is the frequency vector and is equal to kvei∅µ in which
kv = kmax/fv, ∅µ = πµ/8; kmax is maximal frequency and f is the spacing factor between kernels
in frequency domain; σ is the ratio of Gaussian window width and wavelength, and determines the
number of oscillations under the Gaussian envelope.

The Gabor wavelet representation of a grayscale image could be obtained by convoluting the
image with a set of Gabor kernels as defined in Equation (7). The convolution of image Img (z) and
a Gabor kernel Ψµ,v(z) is defined as Equation (8).

Gµ,v(z) = Img(z)∗Ψµ,v(z) (8)

where ∗ denotes convolution operator; and Gµ,v(z) is the convolution result using Gabor kernel
with orientation µ and scale v. It could be also defined as Gµ,v(z) = Mµ,v(z). exp (iθµ,v(z)) in
which Mµ,v(z) and θµ,v(z) represent magnitude and real part, respectively. The magnitude part
contains the local energy change of image and is used as texture feature image for subsequent
analyses. In practice, Gabor transformation of a grayscale image could be conducted in m scales
and n orientations. Therefore, each pixel of an image could have a corresponding feature vector with
m*n dimensions.

2.3. An Integrated Scheme for Vegetation Classification

Considering that the spectra of different vegetation types have high spectral similarities, it is
necessary to involve spatial features in vegetation classification for providing complementary
information to spectral features. However, as in all classification problems, it should be noticed
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that increasing the number of features used does not produce an endless improvement in classification
accuracy due to the well-known curse-of-dimensionality problem. Moreover, not all features are
useful for a specific classification problem at hand. Therefore, the proposed scatter-matrix-based
feature selection is also conducted on the newly formed feature vector which consists of the
spectral bands selected by the scatter-matrix-based feature selection and Gabor spatial features.
Figure 1 shows the flowchart of the proposed integrated scheme (hereafter referred to as the
SpeSpaVS_ClassPair_ScatterMatrix).Remote Sens. 2017, 9, 261 6 of 16 
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Figure 1. Flowchart of combining spectral features and spatial features for vegetation classification.
SVM: support vector machine

3. Experiments and Analysis

3.1. Data Set Description

The experiments and comparative analyses were conducted on the widely used Indian Pine
hyperspectral image which was collected by the Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) over the agriculture area of Indian Pines test site in northwestern Indiana, USA in 1992 [32,33].
The spatial size of this image is 145 × 145 pixels and the spatial resolution is 20 m per pixel.
Water absorption bands and bands with low signal to noise ratio were removed, leaving 200 bands to
use for the experiments. Figure 2 shows the three-band color composite of this hyperspectral image and
the corresponding ground truth. This image has high complexity and the corresponding ground truth
image is available, so it is appropriate to use it for the evaluation of the proposed methods in the paper.
Five vegetation classes are considered and their details are shown in Table 1. The reason for choosing
these classes is that corn, soybean and wheat are widely planted crops in China, and meanwhile woods
and grass/trees around buildings or roads are common to appear nearby croplands in practical scenes.
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Table 1. Ground truth classes for AVIRIS Indian Pines image used in the study and their respective
number of samples.

Class Label Class Name Samples

class 1 Corn-notill 1428
class 2 Soybean-mintill 2455
class 3 Wheat 205
class 4 Wood 1265
class 5 Building–Grass–Trees–Drives 386

3.2. Experimental Settings

In the experiments, two data sets were generated based on the Indian Pine hyperspectral image
and each data set consisted of independent training data set and testing data set. In the two data
sets, the number of training samples for each class was 100 and 150, respectively, and the rest of
them were formed into testing data sets. The training samples for each class were selected randomly.
The two data sets were respectively referred to as data set 1 and data set 2 in order to facilitate
description. The multiclass, one versus one, support vector machine (SVM) classifier was chosen
to classify different classes, due to its good performance in the classification of hyper-dimensional
feature sets. The LIBSVM (A Library for Support Vector Machines) package [34] was used for the
implementation of the soft-margin SVM with radial basis function (RBF) kernel which has been proven
superior in a large amount of different classification problems. Two important parameters C and σ of
SVM with RBF kernel were determined by grid-search using fivefold cross-validation. The overall
classification accuracy (OA), Kappa coefficient (KC) and producer accuracy (PA) were used to evaluate
the performance of methods investigated in the paper.

3.3. Results

3.3.1. Performance of the Scatter-Matrix-Based Feature Selection Method

To validate whether the proposed ClassPair_ScatterMatrix method can better avoid selecting
mutually redundant features than the AllClass_ScatterMatrix method, the mean square correlation
coefficients of all pairwise spectral bands selected by the two methods were calculated and compared.
The higher mean square correlation coefficient indicates higher redundancy among the selected spectral
bands. Figure 3 shows the mean square correlation coefficient versus the number of selected spectral
bands for the ClassPair_ScatterMatrix and AllClass_ScatterMatrix methods on the two data sets.
It can be obviously found that the mean square correlation coefficient for the AllClass_ScatterMatrix
method was always higher (or close) than (or to) that for the ClassPair_ScatterMatrix method under
each number of selected spectral bands (Figure 3a,b). The results indicated that the proposed
ClassPair_ScatterMatrix method performed better in avoiding selecting mutually redundant features
compared to the AllClass_ScatterMatrix method.

A comparative analysis of the ClassPair_ScatterMatrix, AllClass_ScatterMatrix, JM-based feature
selection method and four typical MI-based feature selection methods including JMI, mRMR,
CMIM and DISR was conducted from the perspective of classification accuracy. Figure 4 shows
the performance of each method, in terms of overall classification accuracy, as a function of the
number of selected spectral bands, using different training sets. As expected, with the increase in the
number of selected bands, the overall classification accuracy of each method first increases and then
approaches a saturation value generally. With increasing the number of training samples, the highest
overall classification accuracy of each method increases. The performance of each method on the
data set 1 and data set 2 shows the similar trend. As can be observed in Figure 4a,b, the proposed
ClassPair_ScatterMatrix method produced better results than the other methods in most cases. Of these
methods, mRMR performs the worst and the overall classification accuracy of this method had the
strongest fluctuation when the number of selected bands was less than 10.
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In order to clearly compare the performance of each feature selection method, the best results
of seven feature selection methods and the corresponding number of selected bands on data set 2
are shown in Table 2. In the experiment, the classification result using all bands was considered
as a benchmark. As can be observed in Table 2, the classification result using all bands was
better than those of the other methods except the AllClass_ScatterMatrix method and the proposed
ClassPair_ScatterMatrix method. It indicates that the feature selection methods based on the
scatter-matrix-based class separability measure are more effective than those based on MI for
vegetation classification. Meanwhile, it also supports that the SVM classifier has good capability
in the classification of hyper-dimensional feature sets since the curse of dimensionality does not
appear when using all the bands in the classification. Among the seven feature selection methods,
the ClassPair_ScatterMatrix method achieved the highest overall accuracy. The ClassPair_ScatterMatrix
method increased the overall accuracy by 4.5% and 14.1%, compared to the JM method the mRMR
method, respectively. The JMI method and JM-based feature selection method produced better overall
accuracies than the CMIM method and DISR method. The mRMR method yielded the lowest overall
accuracy. The ClassPair_ScatterMatrix method selected more spectral bands when achieving the
highest overall accuracy, relative to the DISR method, JM-based feature selection method and CMIM
method. However, it can be observed that the proposed ClassPair_ScatterMatrix method can still obtain
the higher overall accuracy when using the same number of spectral bands with the DISR method than
the other methods (Figure 4b). Comparing the producer accuracy of each class, it can be found that
class 3 (wheat) and class 4 (wood) are much more easily classified than the other classes. The proposed
ClassPair_ScatterMatrix method improves the producer accuracy for each class, compared with the
other methods. It indicates that the proposed ClassPair_ScatterMatrix method can well capture useful
bands for the discrimination of different vegetation types.

Table 2. Performance of the feature selection methods investigated in the paper on data set 2.
PA: producer accuracy; OA: overall classification accuracy; KC: Kappa coefficient.

Method Num. of Bands OA KC
PA

Class 1 Class 2 Class 3 Class 4 Class 5

JMI 40 0.863 0.798 0.823 0.861 0.982 0.913 0.839
mRMR 40 0.757 0.644 0.708 0.732 0.945 0.883 0.623
CMIM 32 0.846 0.773 0.784 0.844 0.982 0.917 0.839
DISR 23 0.844 0.768 0.760 0.852 0.982 0.938 0.750

JM 24 0.856 0.788 0.843 0.843 1.000 0.899 0.818
AllClass_ScatterMatrix 38 0.879 0.821 0.854 0.871 1.000 0.930 0.822
ClassPair_ScatterMatrix 39 0.901 0.853 0.891 0.885 1.000 0.948 0.856

All bands 200 0.874 0.814 0.851 0.880 1.000 0.888 0.856

3.3.2. Complementary Information from Gabor Spatial Features

Different green vegetation types have very similar spectral curves (Figure 5a). It is necessary to
extract spatial features to provide complementary information for better discrimination among these
different vegetation types. In order to give a straightforward view that the Gabor spatial features
can provide complementary information for vegetation spectral features, mean spectra and mean
Gabor features were calculated for each class, and then the correlation coefficient for each pair of mean
spectra and the correlation coefficient for each pair of mean Gabor features were calculated based
on data set 2. Figure 5 shows the mean spectral and mean spatial feature curves for the five classes
investigated in the paper and the corresponding correlation coefficient tables. As seen from the
correlation coefficient tables, the correlation coefficient for each pair of mean spectra was higher than
that for each pair of mean Gabor features. It suggests that the Gabor features may provide useful
information to well discriminate different vegetation types which have high spectral similarities.
For example, corn (class 1) and soybean (class 2) have a very similar spectral feature curve and a high
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correlation coefficient 0.998; however, we might distinguish them because they have a low correlation
coefficient 0.537 on Gabor features.
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3.3.3. Performance of the Proposed Integrated Scheme

The Gabor spatial features are integrated with spectral features selected by the
ClassPair_ScatterMatrix method to improve the overall accuracy of vegetation classification. In order
to demonstrate the effectiveness of Gabor features for characterizing vegetation spatial information,
Gabor features are compared with GLCM-based features and morphological features, which are two
widely used spatial features. The most widely used GLCM-based spatial measures, which are angular
second moment (energy), entropy, contrast and homogeneity (inverse difference moment) [35], are used
in the study. These spatial features were all extracted from the first two principal components which
accounted for over 90% variance of the image. The sizes of moving windows were respectively set to
17 and 31 for GLCM-based spatial feature extraction and Gabor spatial feature extraction after several
trails. The disk-shaped structuring element was used and its size was set to 2, 4, 6, 8 and 10 in turn for
conducting sequential morphological operations. It can be observed that Gabor features got higher
overall accuracy than GLCM-based features (GLCM) and morphological features (Morph) (Tables 3
and 4). The Gabor features increased overall accuracy by 4.1%, compared to the morphological features
(Table 4). The overall accuracy obtained by morphological features was improved by 5.2% relative
to the GLCM-based features (Table 4). It is worth noticing that the Gabor features yielded higher
overall accuracy than the spectral features selected by the proposed ClassPair_ScatterMatrix method
(Tables 3 and 4). It indicates that spatial features play a more important role than spectral features for
vegetation classification.
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Table 3. Performance of the methods investigated in the paper on data set 1. GLCM: gray-level
co-occurrence matrix; NWFE: nonparametric weighted feature extraction.

Method Num. of Fea. OA KC
PA

Class 1 Class 2 Class 3 Class 4 Class 5

ClassPair_ScatterMatrix 31 0.872 0.814 0.873 0.862 0.990 0.900 0.780
GLCM 8 0.857 0.798 0.864 0.803 1.000 0.915 0.990
Gabor 80 0.955 0.935 0.980 0.918 1.000 0.986 1.000
Morph 20 0.904 0.860 0.870 0.884 0.990 0.967 0.941

SpeSpaDF 31/80 0.916 0.879 0.989 0.823 0.990 0.997 0.979
SpeSpaVS_NWFE 29 0.964 0.948 0.972 0.937 1.000 0.999 1.000

SpeSpaVS_ClassPair_ScatterMatrix 23 0.976 0.964 0.977 0.959 1.000 0.998 0.990

Table 4. Performance of the methods investigated in the paper on data set 2.

Method Num. of Fea. OA KC
PA

Class 1 Class 2 Class 3 Class 4 Class 5

ClassPair_ScatterMatrix 39 0.901 0.853 0.891 0.885 1.000 0.948 0.856
GLCM 8 0.874 0.818 0.894 0.825 1.000 0.921 0.987
Gabor 80 0.967 0.951 0.984 0.944 1.000 0.987 1.000
Morph 20 0.926 0.890 0.871 0.928 1.000 0.970 0.987

SpeSpaDF 39/80 0.930 0.897 0.991 0.858 1.000 0.996 0.979
SpeSpaVS_NWFE 29 0.974 0.961 0.986 0.951 1.000 0.995 1.000

SpeSpaVS_ClassPair_ScatterMatrix 24 0.986 0.980 0.991 0.979 1.000 0.993 1.000

To testify the effectiveness of the proposed integrated scheme (SpeSpaVS_ClassPair_
ScatterMatrix), the decision-level fusion [23] of spectral features selected by the ClassPair_ScatterMatrix
method and Gabor spatial features was conducted for comparison. This decision-level fusion method is
referred to as SpeSpaDF hereafter. It has been reported that nonparametric weighted feature extraction
(NWFE) has good capability in feature extraction [36]. In order to further prove the effectiveness
of the proposed ClassPair_ScatterMatrix method, NWFE was used to reduce the dimensionality
of the formed feature vector consisting of spectral features selected by the ClassPair_ScatterMatrix
method and Gabor spatial features. This method is referred to as SpeSpaVS_NWFE later. The best
classification results of each method on two data sets are shown in Tables 3 and 4. On both data
sets, the proposed integrated scheme (SpeSpaVS_ClassPair_ScatterMatrix) produced higher overall
accuracy, compared to the SpeSpaDF method and SpeSpaVS_NWFE method. The SpeSpaVS_NWFE
method achieved higher overall accuracy than the SpeSpaDF method. The overall classification
accuracy of the proposed integrated scheme (SpeSpaVS_ClassPair_ScatterMatrix) was improved by
5.4% and 1.3%, compared to the SpeSpaDF method and SpeSpaVS_NWFE method, respectively
(Table 4). It can be clearly observed from Tables 3 and 4 that the overall accuracy of the proposed
scheme (SpeSpaVS_ClassPair_ScatterMatrix) is higher than those of the methods using only spectral
features or spatial features. The experimental results demonstrate that the proposed scheme can well
exploit spectral and spatial features for vegetation classification. The results also suggest that it is
more effective to stack spectral features with spatial features than to fuse spectral features with spatial
features in decision level for vegetation classification. As mentioned before, Gabor spatial features have
better capability than spectral features in discriminating different vegetation types. Therefore, it will
not exert the advantage of spatial features when performing equally decision-level fusion of spectral
features and spatial features. It is worth noticing that the SpeSpaDF method decreases the overall
classification accuracy by 3.7%, compared to only using Gabor spatial features (Table 4). It further
suggests that the overall classification accuracy could not be improved unless the spectral and spatial
features are integrated in an appropriate way.

Using the training samples on data set 2, Figure 6 shows the classification maps of seven different
methods including ClassPair_ScatterMatrix, AllClass_ScatterMatrix, JM, JMI, Gabor, SpeSpaDF and
SpeSpaVS_ClassPair_ScatterMatrix. In can be clearly observed that the methods involving Gabor
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spatial features achieved better results in both accuracy and visual interpretation compared to the
methods only using spectral features. After involving Gabor spatial features, the “salt and pepper”
phenomenon was significantly reduced and the spatial continuity of each class was increased in
Figure 6f–h. In these maps, the most spectrally similar class pair (corn and soybean) is focused on.
It can be seen that corn exists in the soybean in all of the classification maps because corn and soybean
have similar spectra. However, with the help of Gabor spatial features, Figure 6f–h show fewer
misclassifications than Figure 6b–e for corn and soybean. In Figure 6f–h, the main misclassifications
occurred among corn, soybean and wood. The proposed integrated scheme (Figure 6h) obviously
decreased these misclassifications and achieved the best classification result among three methods
involving Gabor spatial features.
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4. Discussions

In the comparison of redundancy among the selected features, the proposed feature selection
criterion, which calculates the pairwise scatter-matrix-based class separability values and then
averages them, shows its superiority to the conventional scatter-matrix-based feature selection
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criterion in which within-class scatter matrix and between-class scatter matrix are calculated from
the perspective of all classes. The lower mean square correlation coefficients for the proposed
feature selection method indicate that the newly constructed selection criterion can better alleviate
selecting mutually redundant features, relative to the conventional one (Figure 3). As seen in the
comparative analysis of MI-based feature selection methods and class separability measure-based
feature selection methods, class separability measure-based feature selection methods generally got
higher overall accuracy for vegetation classification, especially scatter-matrix-based feature selection
methods. This demonstrates the effectiveness of the proposed ClassPair_ScatterMatrix method in the
vegetation classification. It can be observed that the optimal number of features to be selected in the
proposed ClassPair_ScatterMatrix method could not be determined automatically. Actually, it is still
an open issue in many feature selection methods and worth further study. Among the MI-based feature
selection methods, the JMI, DISR and CMIM methods obtained higher classification accuracies and had
higher stability, compared to the mRMR method. The results are consistent with that observed in Gavin
et al. [15]. The results of this study also confirmed that the JMI, DISR and CMIM had better trade-off
of accuracy and stability, especially the JMI method. It is also worth noting that the comparison of
MI-based feature selection methods and class separability measure-based feature selection methods is
only conducted from the perspective of experiment in the study, further theoretical comparison of them
is necessary for constructing more effective feature selection criteria. A possible direction for future
research is to reduce the mutual redundancy among the features selected by the scatter-matrix-based
class separability measure-based feature selection methods.

In the exploration whether the Gabor spatial features could provide complementary information
for the discrimination among different green vegetation types which have high similar spectral feature
curves (Figure 5a), the lower correlation coefficients among the mean Gabor features of different
vegetation types indicate that the Gabor spatial features can provide more discriminative information
for vegetation classification compared to spectral features. In the following comparison of classification
accuracies for different spectral feature selection methods and spatial feature extraction methods,
the Gabor method produced the highest overall accuracies of 0.955 and 0.967 on both data sets,
respectively. The experimental results also support that the Gabor spatial features are more capable of
discriminating different vegetation types, compared to spectral features. This finding was similar with
that observed in [24]. In [24], the misclassifications occurring in the most spectrally similar class pair
(roof and road) were significantly reduced with the help of Gabor texture and shape features.

The proposed integrated scheme simultaneously exploring spectral and spatial features obtained
the highest classification accuracy on both data sets among the investigated methods which employ
either spectral features or spatial features. As to the visual interpretation, the classification map of
the proposed scheme had less “salt and pepper” noise and better spatial continuity compared to
those of the other methods (Figure 6). Generally, the classification maps of the methods involving
spatial features had better spatial continuity, compared to those of the methods just using spectral
features. The results were consistent with those observed in [24,25]. The main reason for it is
that the within-class difference becomes smaller and the inter-class difference becomes larger after
involving spatial features, compared to just using spectral features since different vegetation types
have similar spectra. To determine the proper way for combining spectral features and spatial features,
decision-level fusion of the spectral features selected by the ClassPair_ScatterMatrix method and the
Gabor spatial features is also investigated in the study. It can be obviously seen that the decision-level
fusion method obtained lower overall classification than the Gabor method. The experimental
results indicate that equal decision-level fusion of spectral and spatial features cannot exploit the
complementary information from the spatial features for vegetation classification. The vector stacking
method and decision-level fusion method are widely used in integrating different types of features in
hyperspectral classification. Kalluri et al. [23] proposed an effective approach for the decision-level
fusion of the spectral reflectance information with the spectral derivative information for robust land
cover classification. Zhang et al. [24] introduced the patch alignment framework to linearly combine
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multiple features and obtained a unified low-dimensional representation of these multiple features
for hyperspectral image classification. This suggests that the optimal way for integrating different
kinds of features is determined by the types of multiple features and the specific classification problem
at hand. It has been mentioned above that the Gabor spatial features play a more important role in
vegetation classification than the spectral features in the study. Further study is necessary to verify
the weighted decision-level fusion of spectral and spatial features, and compare different integration
methods of multiple features for vegetation classification of hyperspectral images.

5. Conclusions

This study mainly focuses on vegetation classification for precision agriculture applications using
hyperspectral images. This study proposes a new feature selection method ClassPair_ScatterMatrix
which calculates scatter-matrix-based class separability measure for each pair of classes and
takes average of them as feature selection criterion in order to alleviate the problem of selecting
mutually redundant features appearing in the feature selection method based on conventional
scatter-matrix-based class separability measure. The SFFS is used to realize the feature subset search.
As experimentally demonstrated, the proposed feature selection method gives the overall best feature
selection performance among those compared. In order to provide complementary information to
spectral features and further improve overall classification accuracy, an integrated scheme called
SpeSpaVS_ClassPair_ScatterMatrix, is proposed. In this method, the spectral features selected by the
ClassPair_ScatterMatrix method and Gabor spatial features are stacked to form a new feature vector
and then the ClassPair_ScatterMatrix method is conducted on the formed feature vector to select
informative features for subsequent classification. The experimental results indicate that the proposed
SpeSpaVS_ClassPair_ScatterMatrix method can well exploit spectral features and spatial features
simultaneously, and can further improve the vegetation classification accuracy. The experimental
results also suggest that spatial features play a more important role than spectral features for vegetation
classification, especially when there are high spectral similarities among different vegetation types.
The comparison of the proposed integrated scheme with the decision-level fusion of spectral and
Gabor spatial features further demonstrates that good classification performance cannot be achieved
unless the spectral and spatial features are integrated in an appropriate way.
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