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Abstract: Geographic Object-Based Image Analysis (GEOBIA) mostly uses proprietary software,
but the interest in Free and Open-Source Software (FOSS) for GEOBIA is growing. This interest
stems not only from cost savings, but also from benefits concerning reproducibility and collaboration.
Technical challenges hamper practical reproducibility, especially when multiple software packages are
required to conduct an analysis. In this study, we use containerization to package a GEOBIA workflow
in a well-defined FOSS environment. We explore the approach using two software stacks to perform
an exemplary analysis detecting destruction of buildings in bi-temporal images of a conflict area.
The analysis combines feature extraction techniques with segmentation and object-based analysis to
detect changes using automatically-defined local reference values and to distinguish disappeared
buildings from non-target structures. The resulting workflow is published as FOSS comprising
both the model and data in a ready to use Docker image and a user interface for interaction with
the containerized workflow. The presented solution advances GEOBIA in the following aspects:
higher transparency of methodology; easier reuse and adaption of workflows; better transferability
between operating systems; complete description of the software environment; and easy application
of workflows by image analysis experts and non-experts. As a result, it promotes not only the
reproducibility of GEOBIA, but also its practical adoption.

Keywords: reproducibility; GEOBIA; Docker; conflict monitoring; reproducible research;
object-based image analysis; QGIS; containerization

1. Introduction

1.1. Motivation

For a scientific method to gain impact in research, it must be understandable and replicable
by fellow scientists. To gain impact in practice, it also needs to be easy to adopt by users from
different fields. In computational sciences, such as Geographic Object-Based Image Analysis (GEOBIA),
replicability requires access to code and data. Practical applicability in addition requires ease of use and
the customizability of methods. In this work, we present a novel solution for the GEOBIA community
to conduct research in a reproducible way by packaging code, data and even the required runtime
environment in executable units called containers. We discuss the dilemma of balancing reproducibility,
ease of use and the customizability of containerized methods and propose an approach to enable
interaction with those methods through parameterized containers and a graphical user interface. The
solutions can foster reproducibility and practical adoption of complex workflows, not least because
they rely on Free and Open-Source Software (FOSS).

Remote Sens. 2017, 3, 290; doi:10.3390/rs9030290 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2017, 3, 290 2 of 24

1.2. Reproducible Research

Openness in research is not a new topic, but there is a recent trend towards transparency and
availability under the terms Open Science and Open Access (cf. [1]). All stakeholders in the research
process contribute rules, incentives or guidelines to foster openness: on the funding side, the European
Union requires Open Access as part of the Horizon 2020 framework programme (cf. [2]) and builds
the European Open Science Cloud [3]; on the publishing side, journals such as Science [4] and
Bioinformatics [5] encourage reproducibility; on the research institution side, scientists themselves
argue for reproducibility with “Five selfish reasons to work reproducibly” [6], develop guidelines like
the Vienna principles [7], or publish “Ten Simple Rules for Reproducible Computational Research”
arguing in favour of a proper scientific workflow simply to be able to reproduce your own results [8].
A core notion of all of these activities is the ideal to publish data, methods, and software along with
scholarly publications.

A definition of the term reproducibility is far from trivial, not least because it is often used together
with other terms to describe different levels of redoing. The Vienna Principles’ definition focuses on
traceability [7]; others treat “reproducibility” and “replicability” as interchangeable [9] or completely
different terms [10]; others qualify the term further, e.g., “computational reproducibility” [5].

For the remainder of this work, we use “reproduce”, “reproducibility” or “computational
reproducibility” to say a third party can re-run an analysis using code and data provided by the
author of a published work, and this execution creates the same computational result (following the
definition by Peng [5]). Besides technical difficulties, which is the focus of this work, computational
reproducibility is likewise a question of proper practices. For example, researchers must fix
seeds of random number generators [8], design transparent processing workflows [11] or utilize
virtualization [12]. Nevertheless, the uniqueness of data (e.g., it can only be captured once by one
sensor) or processing environments (e.g., supercomputers) can make “real” replication of results
impossible, so that trust in the applied methods must be established instead [13]. In (GE)OBIA, the
term “reproducible” is thus far used to describe a shift from manual analysis (based on interaction
with a user interface) to script-based analysis using sets of processing steps and classification rules (cf.
[14–16]).

Packaging data, code and documentation for reproducibility was previously described under
the term research compendia by means of programming language-specific packaging mechanisms
[9,17] or as research objects with a focus on workflows using semantic enrichment and provenance [18].
Alternative approaches to create self-contained packages for reproducibility are tracing techniques
(cf. [19,20]).

1.3. FOSS for GEOBIA

To achieve trust in computational reproducibility, open-sourcing of workflows and the underlying
software is crucial. While benefits of Free and Open-Source Software for business and security have
been documented widely (see for example [21] and [22] ), the important aspect of FOSS in science is
the potential for scrutiny and collaboration. FOSS facilitates audits down to the level of the source
code. It also promotes the reuse, improvement and adaption of a methodology or software. FOSS
licensing models (for a quick introduction we recommend http://choosealicense.com/) allow to
combine individual contributions of functional parts into a solution for a larger problem at hand. FOSS
projects must allow (technically and legally) maintenance and re-purposing by third parties. This
modularity lies at the roots of many open-source software projects and is propagated by the Unix
philosophy [23]: Each programme should only provide a specific feature and excel at it.

A number of publications at GEOBIA conferences over the last few years demonstrate the growing
interest in an FOSS approach to GEOBIA. For example, [24] developed a workflow for urban Land
Use and Land Cover (LULC) classification using GRASS GIS and R. They also published the analysis
reproducibly as an executable notebook. The work in [25] used the Orfeo ToolBox and R for automated
selection of segmentation parameters and classification of urban scenes. The work in [26] applied
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GRASS GIS to map impervious surfaces using aerial images and LIDAR (Light Detection and Ranging)
data. Specific OBIA FOSS projects exist, as well; for example GeoDMA [27] and InterIMAGE [28] for
desktop environments or InterCloud [29] for cloud computing infrastructures. Nevertheless these
activities are still in the minority.

1.4. Balancing Reproducibility and Customizability for Practical Adoption

Complex workflows based on FOSS often integrate a number of independent and interdependent
tools. These building blocks are developed by different communities and in differing maintenance
cycles. Their use can be visible or invisible (e.g., transitive dependencies) to the analyst. This hampers
reproducibility because of potential compatibility conflicts between different software packages in
changing versions. Containerizing a computational method with all required software and data
mitigates these problems because it eliminates the need to recreate the original runtime environment
on the executing computer. In addition to the positive implications for research (see Section 1.2), we see
a high potential in this approach to foster practical adoption of new GEOBIA methods. One main
barrier to the application of GEOBIA approaches by practitioners besides cost factors are technical
challenges in adopting complex analysis methods for their use case. Containerization can significantly
simplify this process by providing non-experts with easy access to complex methods.

However, another important aspect with regard to practical adoption is the transferability of a
method, i.e., the applicability to different study areas or different image types. GEOBIA facilitates
the development of adaptive and transferable workflows, e.g., through the inclusion of context
knowledge and human semantics [30]. There has been significant progress in the GEOBIA community
concerning transferability, e.g., through automatic determination of segmentation parameters [31,32]
or classification thresholds [33] and fuzzy classification [34]. However, although the workflows are
increasingly robust, some adaptions (e.g., of segmentation parameters or classification thresholds) are
usually necessary to tune an analysis method to a specific study area or image type [35,36]. Therefore,
the possibility to customize a GEOBIA method is an important requirement for practical adoption,
which can be hampered if analysis tools are containerized as black boxes without manipulation
options. To reconcile reproducibility and customizability and thereby facilitate practical adoption,
containerization should allow one to change model parameters or to use one’s own input data in a
containerized method. For widespread adoption, a Graphical User Interface (GUI) is required.

1.5. Contribution and Overview

The main contribution of this work is a fully-reproducible and open workflow for Geographic
Object-Based Image Analysis (GEOBIA). We package a GEOBIA example study including the data
and specific combination of software in an executable container. The container is parameterized so
that the analysis can be evaluated and adapted. Users can interact with the container and manipulate
an analysis through a GUI. The container is based on mainstream IT technology, and the software is a
collection of general-purpose scripts, image analysis libraries and Geographic Information Systems
(GIS). All components are FOSS. The implemented method detects destruction in a bitemporal image
subset of a conflict area and builds on previous work [37,38]. The application of remote sensing
for monitoring of human rights issues has been explored in a number of studies, and GEOBIA has
proven to be a promising tool, e.g., for refugee camp monitoring [39,40] or damage assessment [41].
A comprehensive review of research and applications in this field (pixel- as well as object-based
analyses) can be found in [42]. An open and transparent approach is specifically advantageous in
human rights fact-finding because non-profit organizations face budget restrictions and because
transparency is crucial when using complex techniques in a politically sensitive environment [43].

The following section describes the image analysis workflow, how it is implemented with FOSS
and how it is made reproducible (Section 2). Section 3 explains the execution of the packaged analysis.
Finally, we discuss the solution and the challenges (Section 4), and conclude with a summary and
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outlook in Section 5. This paper is an extended version of our contribution to the GEOBIA 2016
conference [44].

2. Materials and Methods

2.1. Data

Two images of a village in Darfur, Sudan, are our example data. They are available online as
part of a blog post by the American Association for the Advancement of Science (AAAS) Geospatial
Technologies Project [45]. The copyright holder DigitalGlobe granted permission to re-publish them as
part of this work. The images are previews of remote sensing imagery of the village Jonjona, located at
13.686◦N, 24.979◦E, before (December 2004) and after (February 2007) reported attacks in the area (see
Figure 1). They were downloaded from the website in jpg format, manually georeferenced (entering
coordinates retrieved from georeferenced imagery), resampled to a spatial resolution of 0.5 metres
(nearest neighbour resampling), and saved as GeoTIFF files. The spatial resolution approximates the
one of current commercial very high resolution satellites.

0 50 100 150 200 m

Figure 1. Example image of a village in Darfur (location: 13.686◦N, 24.979◦E) before (December 2004,
top) and after (February 2007, bottom) a reported attack. Images c© 2016 DigitalGlobe.

2.2. Example Analysis: Conflict Damage Assessment

2.2.1. Summary

The analysis model applies a rule-based approach to investigate bi-temporal images at two
different scales represented by different image object levels. It demonstrates image interpretation
using object-based features (e.g., shape, topological and hierarchical relations) using FOSS and is a
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simplified version of the method described in [38]. In the first stage, the imagery is automatically
searched for areas where settlements exist in the pre-conflict image (see Section 2.2.2). In the second
stage, the change analysis is conducted on a finer segmentation level (see Section 2.2.3) within detected
settlement areas. In these areas, the model identifies changed dwelling structures using relative change
values, as well as shape and size. As demonstrated in [38], this approach facilitates the application
in complex analyses of images with varying properties (such as sensor configurations, illumination
conditions), especially when spectral features are investigated. Figure 2 shows an overview of the
analysis workflow.

Detect settlement areas: 
- Segmentation (chessboard) 
- Detect seeds 
- Grow and merge seeds 
- Define settlement areas 

settlement 2 settlement 1 settlement n 

Change analysis : 
- Segmentation (watershed) 
- Automatically determine local reference values for settlements 1…n 
- Individually identify changed objects in settlements 1…n 
- Extract dwelling structures from changed objects 

… 

Detect settlement areas: 
• Standard deviations of edge 

layer 
• Proximity of seed objects to 

each other 
• Area (size) of settlement area 

 

Change analysis: 
• Existence of settlement (super-

object) 
• Difference in edge intensity of 

pre- and post-conflict layers (in 
relation to local reference) 

• Area (size) 
• Shape Index 
• Ratio unfiltered/filtered pre-

conflict layer (morph. closing) 
 

 

Workflow 

Input images 

Classification features 

PCA Morph. closing Edge detection 

Figure 2. Overview of the example analysis workflow. It shows the key analysis steps on the left and
the applied features for the object-based change detection and classification on the right. The first row
shows the input images and image processing results created in the first step of the workflow and used
as input for the object-based analysis in the subsequent steps (modified after [38]).

2.2.2. Detect Settlement Areas

First, a Principal Component Analysis (PCA) is applied to each file in order to compress the
highly redundant spectral information of the three RGB bands to one dimension, the first principal
component. The results are then used as pre- and post-conflict layers of a bi-temporal dataset. The
detection of settlement areas is performed on a chessboard segmentation level with a 25-m side length.
The segments are analyzed regarding the edge intensity of the pre-conflict image since edge detection
has proven to be an effective means for the identification and analysis of diverse anthropogenic
structures [46–48]. In this example, the edge intensity is determined using an edge detection algorithm
after [49]. Segments are analyzed regarding the standard deviation of the edge layer values within each
segment. The standard deviation is a good measure to identify anthropogenic structures on this coarse
image object level because it accounts for the intensity of edges of those structures in contrast to the
background. In addition to the edge intensity, the proximity of segments possibly covering settlement
structures (candidate segments) to each other is taken into account. This reflects the specific structure
of the sparsely developed villages in Darfur. While dwelling units within these villages are not directly
connected, they usually do exist in certain proximity to each other. An area is therefore considered
a settlement if it is composed of candidate segments that occur in a certain proximity (≤100 m) to
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each other. Those segments are grown and merged into a coherent settlement area. Single candidate
segments without proximity to others are ignored.

The threshold for the standard deviation of the edge layer within each segment is a predefined
value that can be tuned by the user (see Section 3.2). In addition, a minimum size of a settlement area
can be defined to focus the analysis on larger settlements.

2.2.3. Change Analysis within Settlement Areas

The analysis model segments the pre-conflict layer and analyzes the resulting image objects
regarding their change values derived from the pre- and post-conflict temporal layers. This exemplary
method is an “Image-object overlay”, following the categorization by [50]. The workflow can be
divided into three major steps: (i) feature extraction and segmentation; (ii) change analysis; and
(iii) extraction of dwelling objects from changed objects.

In the first step, image objects are created using a watershed segmentation algorithm, which
is based on the identification of local extrema [51]. The segmentation is hampered by the specific
structural properties of the objects of interest. The buildings are often directly attached to fences or
walls, so they poorly separate from the background. Earlier studies in similar areas showed that the
mathematical morphology can eliminate such interfering features [37,52]. Therefore, a morphological
closing operator with a disc-shaped structural element of a 3-pixel radius precedes the segmentation
to smooth out small and linear features.

In the second step, the objects are analyzed for structural differences between the pre- and
post-conflict layer. The analysis focuses on the change of edges because the spectral information in the
example images is limited. The change is calculated as the difference in mean edge density per object.

To extract possibly changed objects regarding this change attribute, the applied method does
not use absolute values, but instead, detects these objects using a local reference value. Hierarchical
relations, using settlement areas as super-objects, allow one to analyze changes of sub-objects with
regard to the distribution of the change values of all other sub-objects in the same settlement (e.g.,
using the mean, minimum or maximum change value). In our example, we compute a “mode value”.
It represents the most abundant degree of change in the corresponding settlement and is used as a
reference. To calculate this reference, the value range of the change feature of all objects within a
settlement area is divided into equal intervals. Each object is then classified into its corresponding
value range interval. The interval covering the largest area is chosen as the reference interval. The mean
change feature value of the objects within the reference interval is defined as the reference value within
the corresponding village. All objects are investigated by the difference between their change and the
local reference value (for more details, please refer to [38]).

We apply two methods to analyze the objects based on this difference: a thresholding and a
k-means cluster analysis. The thresholding defines a minimum value and determines the method’s
sensitivity to change. The threshold can be tuned manually, and its default value is 0.3. Disappeared
objects are detected based on this threshold. The cluster analysis isolates disappeared dwellings in the
cluster of highest difference. Its result is not used in the detection of disappeared objects, but provided
for manual inspection (see Section 2.2.4).

In the third step, the disappeared objects are investigated regarding their extent, shape and values
in the pre-conflict morphological closing layer in relation to the unfiltered layer, i.e., regarding the
impact of the closing operator (see Figure A1). The step distinguishes between changed dwelling
structures and other, similarly changed objects (e.g., fences). The shape of objects is computed using
the shape index [53,54]. It measures how well an object approximates a circle. The more the shape
differs from a circle, the higher the shape index value.

The impact of the morphological closing filter on the objects grey scale values is determined to
identify features that do not fit the structural element (e.g., small and linear structures), but have
similar shape attributes after applying segmentation on the filtered image. This is done by calculating
the ratio of the standard deviation values (per object) of the unfiltered pre-conflict layer to those after
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filtering. For the shape and size attributes, fixed thresholds are applied to extract objects of interest,
i.e., huts and sheds. More details on the object properties and thresholds used in the example analysis
can be found in Table A1.

2.2.4. Analysis Output

The workflow produces three outputs (see Figure 3): (i) the main output: a point shapefile with
centroids of dwelling objects detected as disappeared; (ii) a polygon shapefile of settlement areas
(see Section 2.2.2); and (iii) a supplementary shapefile for understanding the change detection result.
It contains polygons of all objects (changed and unchanged) without the thresholding of the second
step. The polygon attributes include among others the change cluster (resulting from the unsupervised
clustering), as well as the computed change feature for each polygon. They can be used to refine the
analysis workflow, e.g., by adapting thresholds. Figure 4 shows outputs (i) disappeared dwellings
(resulting from a change sensitivity of 0.33) and (ii) the settlement area (resulting from a settlement
detection sensitivity of 0.3). The result well reflects the overall pattern of destruction showing hot
spots in the central and southwestern parts of the village. The accuracy is of course impacted by the
limited quality and information content of the preview images used as example data. Fifty nine objects
were detected as destructed dwelling structures (huts or sheds); 36 of them could be confirmed by
visual inspection. Most of the false positives were caused by trees (no infrared channel) and certain
configurations of disappeared fences with similar object properties. In addition, we found 20 possibly
destructed structures that were not detected by the algorithm.

2.3. Implementation and Packaging of QGIS-Based Workflow

2.3.1. Development in the QGIS Modeler

QGIS is a FOSS GIS [55]. Its processing framework [56] provides access to native QGIS algorithms,
as well as a huge number of geoprocessing capabilities of third-party applications, such as GRASS
GIS, Orfeo ToolBox, SAGA GIS or R. In addition, user-created algorithms written in Python [57] and
consequently the features of any Python library can be added. Analyses can be built using a graphical
modeler and are saved as model files. These models can then be run on a selected set of inputs (e.g.,
layers in the QGIS desktop application) and user-defined parameters.

In our example, the image processing (PCA including subsequent rescaling, morphological
closing, edge detection) and segmentation steps are conducted using the algorithms of the Orfeo
ToolBox (OTB). OTB is an open-source C++ library for remote sensing and provides a substantial
set of image processing tools, including feature extraction, filtering, classification and segmentation
algorithms [58]. The segmentation using the OTB process initially creates polygons without any
object-specific properties. Therefore, we use native QGIS algorithms to compute image layer value
statistics for each of these objects (e.g., mean values regarding edge intensity). Other native algorithms
are used for example to perform calculations on object feature values, to extract objects by thresholds
or to identify centroids of polygons for the output of results. To compute shape and size properties of
objects, the SAGA GIS algorithm polygon shape indices is used [59]. Another SAGA algorithm called
identity is applied to establish hierarchical relations: for each object on the level of single buildings
(defined as sub-objects), this process identifies the object on the level of settlements (super-objects) in
which it is contained. The IDs of these super-objects are saved as attributes of the sub-objects.
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OTB:
- principal component analysis
- edge detection
- mathematical morphology
- segmentation

SAGA:
- compute shape attributes
- identify super-objects

Python scripts:
- compute difference to 

local reference
- perform cluster analysis

QGIS:
- compute layer values/statistics 

per object
- compute differences and ratios
- extract objects by attributes
- compute centroids

Settlement detection
(imported model)

Input imagesInput thresholds

Output shapefiles

Figure 3. Screenshot of the QGIS graphical workflow modeler showing the example change analysis.
Two input images and three numerical parameters are shown in purple boxes at the top. The inputs,
processing steps and outputs are connected by grey arcs and roughly ordered from top to bottom. The
analysis steps are based on four libraries highlighted by the colored boxes: OTB (red), QGIS (green),
SAGA GIS (blue) and Python (yellow). A detailed view of the sub-model detect settlements (grey,
left hand side) is in Figure A2. At the bottom, the three output shapefiles are shown in turquoise boxes.



Remote Sens. 2017, 3, 290 9 of 24

0 50 100 150 200 m

Figure 4. Post-conflict image (location: 13.686◦N, 24.979◦E) with two results of the example analysis.
The detected settlement area is the yellow polygon. The results of the damage assessment, i.e.,
the disappeared dwellings, are the red circles (image c© 2016 DigitalGlobe).

To calculate each sub-object’s difference in change to their local reference values (see Section 2.2.3),
we developed a Python script. The script uses the super-object IDs to determine sub-objects within the
same settlement area and computes the local reference within each settlement individually. It then
calculates the difference of each sub-object to the corresponding local reference. For the unsupervised
clustering, another Python script was developed because the required algorithm is not available in the
QGIS modeler. It reads attribute values of image objects from shapefiles and performs unsupervised
clustering of those attributes using the k-means algorithm from the SciPy library [60].

Using the graphical modeler, all processes were combined and saved as a model, which only
needs the pre- and post-conflict images as input. Optionally, the thresholds for the settlement detection
and the change analysis can be defined (otherwise, the model uses default values). It returns three
shapefiles of the three results explained in Section 2.2 as output. Figure 3 shows a screenshot of the
modeler view of the change analysis, with annotations of analysis steps and used software packages.
A detailed list of all FOSS packages and algorithms used, as well as their function within the workflow
can be found in Table A2.

2.3.2. Workspace Preparation

The user workspace comprises the directories and files shown in Listing 1. They are stored
in a specific directory structure, so that the model executor can find them. The contents of the
workspace are:

• a subdirectory data with the two georeferenced data files in TIFF format
• a Python script file, model.py, calling the actual model using the QGIS Python API (Application

Programming Interface, based on [61])
• analogous to the QGIS models and scripts directories, a models and a scripts directory containing

.model (for a visual summary, see Figures 3 and A2, respectively) and Python files
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Listing 1: Excerpt of workspace directory tree; the full workspace is available on GitHub [62] and in
the reproducibility package, see Section 3.4.

/workspace
|-- data
| |-- COPYRIGHT
| |-- jonjona_pos_conflict_proj.tif
| ‘-- jonjona_pre_conflict_proj.tif
|-- model.py
|-- models
| |-- detect_settlements_on_edgelayer.model
| ‘-- example_analysis_linux_v3 .1. model
‘-- scripts

|-- diff_to_local_ref_v1 .3.py
‘-- kmeans_clustering_v2 .3.py

2.3.3. Containerization of the Workspace and Runtime Environment

The prepared workspace is packaged in an executable container using a tool originally developed
for DevOps (cf. [63]) called Docker (http://docker.io). It provides lightweight virtualization and
process separation to package an application and its dependencies, for example for scalable deployment
in cloud infrastructures. We use a Docker image to encapsulate the GEOBIA workflow with a
well-defined software environment. The image can be executed anywhere where a Docker host
environment is running, including Linux, Windows and OSX (https://docs.docker.com/engine/
installation/).

For execution, a container is started based on an image. A container can be paused, stopped
and restarted or be removed from the host. The image is built from a human- and machine-readable
definition of the complete environment called Dockerfile. This “recipe” allows a scripted definition
of Docker images, i.e., installation and configuration of contained software and files, and consequently,
a repeatable building of a runtime environment. Dockerfiles can start from scratch or a base image
and contain arbitrary textual metadata using labels. Image layering allows one to re-use well-vetted
images, for example a base image with all typical OBIA software, across projects. The data and specific
tools or configuration are added to project-specific images, which can override files and environments
of base images.

While not being intended for it, Docker is a means to ensure long-term reproducibility of
computational research, as demonstrated for example for R [64]. A Docker image suffices to capture
the data, software and runtime environment in a well-defined manner and facilitates reproducibility.
For reproduction, a user must only have the concrete project’s Docker image. It can be downloaded
from an image repository or loaded from a file.

Docker images of software used in our workflow have been published on Docker Hub (for example
Todd Stavish’s QGIS [65] and OTB [66] images; the Kartoza image for QGIS [67]), but because these
execute a GUI by default and do not provide complete control over each software’s version, we created
our own set of images to run standalone models. Our Dockerfiles are published on GitHub [62] and
the corresponding images on Docker Hub (https://hub.docker.com/r/nuest/qgis-model).

Listing 2: Excerpt from the base image Dockerfile. For brevity and illustration, environment variables
and commands are shortened.

FROM ubuntu :16.04

RUN apt -get update \
&& apt -get install -qqy --no -install -recommends gdal -bin qgis =2.8.6+ dfsg -1 build1

RUN wget http ://[..]. sourceforge.net /[..]/ saga_2 .2.0. tar.gz \
&& tar -xvzf saga*.tar.gz

RUN ./ configure && make make install

http://docker.io
https://docs.docker.com/engine/installation/
https://docs.docker.com/engine/installation/
https://hub.docker.com/r/nuest/qgis-model
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RUN wget https ://www.orfeo -toolbox.org /[...]/OTB -5.6.1 - Linux64.run -q \
&& ./OTB -5.6.1 - Linux64.run

ENV PYTHONPATH =/usr/share/qgis/python :/usr/share/qgis/python/plugins
ENV QGIS_WORKSPACE =/ workspace
ENV QGIS_MODELFILE =/ workspace/models /*. model
ENV QGIS_MODELSCRIPT =/ workspace/model.py
ENV QGIS_RESULT =/ results
ENV QGIS_USER_MODELDIR =/root/.qgis2/processing/models

WORKDIR /qgis
COPY model.sh model.sh
RUN chmod 0755 model.sh

VOLUME $QGIS_WORKSPACE
VOLUME $QGIS_RESULT

ENTRYPOINT ["/ bin/bash", "/qgis/model.sh"]

In our specific case, the base image ubuntu/Dockerfile.xenial (see Listing 2) installs the
required software, sets environment variables and configures the container’s default command.
The installation commands rely on software packages from the Ubuntu repositories and source
installations for SAGA and OTB (SAGA is installed from the source in a specific version not available
in the repositories to solve compatibility issues with QGIS; see http://hub.qgis.org/issues/13279 for
details). Environment variables provide a single point of configuration. The default command is run
with a Bash shell (see [68]). The project Dockerfile workspace/rs-jonjona/Dockerfile (see Listing 3)
extends the base image by copying the workspace data into the container and by defining an image
label with the information about configurable workflow options.

Listing 3: Project Dockerfile.

FROM nuest/qgis -model:xenial -multimodel
COPY . /workspace
LABEL de.ifgi.qgis -model.options ’[ \

[...]
{ "id": "change_analysis_threshold", \
"name": "change sensitivity", \
"value": "0.3", \
"comment ": "minimum change in edge intensity for objects

to be flagged as changed" }]’

Figure 5 shows the complete control flow in the container. Excerpts from the core files model.sh
and model.py are shown in Listings 4 and 5 respectively (using XVFB [69] for a virtual frame buffer
because the container does not have a physical display, but QGIS needs a display even if not used;
mounting the hosts physical display would be possible on desktop computers, but not in cloud
environments).

Listing 4: Excerpt from model.sh; utility code left out for brevity.

cp /workspace/models /*. model /root/. qgis2/processing/models
cp /workspace/scripts /*.py /root/.qgis2/processing/scripts
xvfb -run python /workspace/model.py

http://hub.qgis.org/issues/13279
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1) docker run starts a container and executes the entry point script /qgis/model.sh using a Bash shell

2) /qgis/model.sh . . .

a) copies model and script files
from /workspace/models/* to /root/.qgis2/processing/models
from /workspace/scripts/* to /root/.qgis2/processing/sripts

b) executes model.py as a Python file with a virtual frame buffer

3) /workspace/model.py . . .

a) initiates QGIS application

b) loads manipulation parameters and construct input and output paths

c) runs the model example_analysis_linux_v3.1.model using the QGIS Python API passing
configuration parameters

4) /root/.qgis/processing/models/example_analysis_linux_v3.1.model . . .

a) executes the model steps, using user scripts from /root/.qgis/processing/scripts

b) saves the files to the result directory

5) /results holds the output files for user access

Figure 5. Control flow during an execution of the Docker container in a list of numbered steps.
Starting from the command docker run, the control flow goes through two script files, one in Bash
and one in Python, each in turn acting on other files and being configured using environment variables.
Supplementary steps such as logging or loading libraries are omitted for brevity. At the end, the output
files are available in a pre-defined directory.

Listing 5: Excerpt from model.py; command construction based on environment variables and utility
code left out for brevity.

app = QgsApplication ([], True)
QgsApplication.initQgis ()
Processing.initialize ()
import processing
processing.runalg("modeler:example_analysis_linux_v3 .1", # qgis_model_name

"/workspace/data/jonjona_pre_conflict_proj.tif", # inputimage_pre
"/workspace/data/jonjona_pos_conflict_proj.tif", # inputimage_post
0.3, # change_analysis_threshold
0.3, # settlement_threshold
0, # settlement_size
"/results/settlements.shp", # output_settlements
"/results/result_threshold.shp", # output_result_threshold
"/results/result_unclassified.shp") # output_result_unclassified

2.4. InterIMAGE-Based Analysis

InterIMAGE is another candidate for a FOSS-based OBIA workflow. It provides different
segmentation algorithms including the widely-used multiresolution segmentation [70], and operators
for calculation of attributes, such as shape, texture or topological characteristics [28]. A so-called batch
mode feature has been available since Version 1.39. It allows the automatic execution of InterIMAGE
interpretation projects, so-called semantic networks. The networks store the classes and operators to
be executed.

We were able to demonstrate running the user interface of the latest available Linux release
(1.27) in a Docker container by sharing a local X11 socket [71]. However, several issues hinder
the implementation of the use case. Firstly, the software focuses on image interpretation, and not
all required algorithms for processing the image layers (e.g., the edge detection) are available in
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the basic package. A combination with other tools is possible to add missing functionality (see,
e.g., [72,73]), but it is unclear how to achieve that in a scripted workflow. More importantly, the
latest available download for Linux is outdated (Version 1.27; see http://www.lvc.ele.puc-rio.br/
projects/interimage/download). We were not successful in compiling a later version of the source
code for Linux as part of this work due to a lack of documentation and community support (https:
//groups.google.com/forum/#!topic/interimage/924t-uZrAMs).

While Linux is currently the main operating system for both Docker containers and hosts, support
for multi-platform containers exists and is developed further (see [74] for information on Windows
containers). Linux containers can be executed in a native Docker for Windows application for recent
Windows versions with Hyper-V technology (see https://docs.docker.com/docker-for-windows/).
Therefore, Windows-based containers for InterIMAGE will be possible in the future, although the
question of licensing is not answered yet.

3. Results

3.1. Running the Container: Command Line Interface

The container can be executed on any computer with Docker. The image with the analysis is
published on Docker Hub. Only the first command shown in Listing 6 is required to run the container
and reproduce the analysis, because Docker downloads images automatically from Docker Hub. The
configuration options enable console output and name the container for later reference. The log (see
[75] for a full log) comprises all installed software and their versions, the configured parameters and
the output of the started processes.

Listing 6: Full reproduction commands: run the container from Docker Hub and extract the result.

docker run -it --name repro nuest/qgis -model:rs-jonjona
docker cp repro :/ workspace/results /tmp/repro_results

The second command copies the output of the workflow to a directory of the host computer.
Listing 7 shows the contents: a directory with a timestamp of the current execution with three shapefiles,
the actual model output. The shapefiles can now be inspected or processed further. Figure 4 shows a
visualization of the files result_threshold.shp and settlements.shp.

Listing 7: Result directory tree after execution, supplementary shapefile files, i.e., .dbf, .prj, .qpj, and
.shx, and workspace files (see previous Listing 1) not shown.

|/ result
|‘-- 20161212 -172947
| |-- result_threshold.shp
| |-- result_unclassified.shp
| |-- settlements.shp

The image can be used to apply the same analysis to another use case. Listing 8 shows the exchange
of data (mounting a different workspace) and parameter manipulation (changing the environment
variable).

Listing 8: Analysis control and data switching examples. From top to bottom: (a) mounting another
workspace; (b) mounting only input files; (c) changing model options via environment variables.

# (a)
docker run -it -v /my/analysis :/ workspace nuest/qgis -model:rs -jonjona

# (b)
docker run -it -v mypreconflict.tif:/ workspace/data/pre_conflict.tif

-v mypostconflict.tif:/ workspace/data/pos_conflict.tif nuest/qgis -model:rs-jonjona

# (c)
docker run -it -e change_analysis_threshold =0.28 nuest/qgis -model:rs-jonjona

http://www.lvc.ele.puc-rio.br/projects/interimage/download
http://www.lvc.ele.puc-rio.br/projects/interimage/download
https://groups.google.com/forum/#!topic/interimage/924t-uZrAMs
https://groups.google.com/forum/#!topic/interimage/924t-uZrAMs
https://docs.docker.com/docker-for-windows/
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3.2. Running the Container: Graphical User Interface

As mentioned in Section 1.4, the transferability of rule sets and analysis models is an important
aspect in GEOBIA, but some parameters usually need to be adapted to tune an analysis method to
a specific study area. In terms of practical application of GEOBIA, a flexible parameterization of
analysis workflows by the users must be possible after containerization. Input data need to be easily
interchangeable to enable the transfer of a reproducible analysis method to the study area at hand.

To reconcile the issues of reproducibility of and interaction with OBIA workflows, we extended
Kitematic (https://kitematic.com/), a FOSS project for managing and running Docker containers with
a GUI, with model control functions. We forked the project (https://github.com/nuest/kitematic/
tree/model-ui) and added a simple form for controlling the options of workflows (see Figure 6),
which hides the complexity of manipulation using environment variables. Instead, the user configures
settings (i.e., images to compute the analysis on or thresholds used in the workflow) through fields
and buttons. The container’s full output log is also readily available.

Figure 6. Screenshot of extended Kitematic software. The left-hand side lists locally available containers
and the currently-selected one is highlighted in blue. At the top, buttons control the container state.
Two nested levels of tabs show information on and allow configuration of the selected container.
The tab “model” is active and was developed as part of this work. Its contents in the central area of the
UI provide a form-based user interface for controlling parameterized GEOBIA workflows. The list of
model options (bottom) shows the option name, current value and default value. A pop-up displays
an information text for the third option as the cursor hovers over that line. A "Save and run" button at
the bottom can be used to restart the analysis with the changed parameters.

Users can access the result files by mapping the volume where the container stores the results to a
directory on the host. Another volume allows one to exchange the whole workspace, i.e., input data
and model. Hence, the graphical user interface allows the same level or manipulation as command
line options.

3.3. Running InterIMAGE inside Container

Figure 7 shows a screenshot of the InterIMAGE GUI running inside the container. As stated above,
it was not possible to run a fully-automated workflow by use of a script as in Section 2.3. Instead,

https://kitematic.com/
https://github.com/nuest/kitematic/tree/model-ui
https://github.com/nuest/kitematic/tree/model-ui


Remote Sens. 2017, 3, 290 15 of 24

this example shows a different level of integration, which is to run the user interface of the software
inside a container without triggering any predefined models. This provides the users with the full
capabilities of that software for building their own analyses without the need to recreate the complete
runtime environment.

Figure 7. Screenshot of InterIMAGEUI. The software was started with a shared X server
using the command xhost + && docker run -it –rm -v /tmp/.X11-unix:/tmp/.X11-unix
-e DISPLAY=unix$DISPLAY -e uid=$(id -u) -e gi d=$(id -g) -v /data:/data
nuest/docker-interimage:1.27 ./interimage. The command mounts the display and configures
the user within the container to be the same as the executing user. It also mounts a data directory
containing the workspace, of which one input image is displayed in the central area of the UI.

3.4. Reproducibility Package

In the spirit of reproducibility and being well-aware of the ephemeral nature of online platforms
such as GitHub or Docker Hub, we provide a comprehensive reproducibility package with this work.
It contains software, data, Docker images and Dockerfiles, documentation of how it was created and
instructions on how to run it. It is published at Zenodo, a repository for long-term preservation [75].
The software comprises a current version of Docker and the developed software. Both are included as
installers for common operating systems and as source code.

3.5. Reproducible GEOBIA

Three observations can be made for reproducibility in the GEOBIA domain. First, the existing
reproducibility spectrum [13] does not represent typical GEOBIA analyzes well because of the limited
availability of open data and the dominance of a single commercial software. Since many researchers
in the domain actually have access to a de facto standard software, most of them could reproduce an
open workspace, although the software is not FOSS. Consequently open-sourcing of the workspace
could be distinguished from open-sourcing the used software.

Second, acquisition of remote sensing data is costly, and often, there are no free suitable
alternatives. Consequently, one could accept data not being open, because it is readily available
for anyone having the financial resources.

Third, no specific guidelines for authors of (GE)OBIA papers exist comparable to the examples
from other domains (see Section 1.2). Such guidelines can comprise the aspects documentation,
scripted workflows, best practices for project structures, freeware (free as in “free beer”; see [76]) and



Remote Sens. 2017, 3, 290 16 of 24

FOSS and open data. The former two are already common, yet the latter could have a high impact on
reproducibility and practical adoption.

4. Discussion

We successfully demonstrate packaging a complete GEOBIA workflow using FOSS. The package
created is transferable between machines (different host operating systems, as well as desktop and
cloud platforms), and all tools are available free of charge. This is the first time environment variables
and Docker image labels are used to parameterize a scientific workflow with a GUI. Our experiments
show that containerization is useful not only for reproducibility by third parties, but also for the
original development of a FOSS-based analysis, because of the numerous tools involved in different
versions and potential conflicts between them. The customized user interface removes barriers for
practitioners with limited computer science experience. However, this only concerns the use of a
containerized method. For authors of new methods, the creation of a container requires knowledge in
the area of Docker and the QGIS Python API.

A Docker container is not a black box, since each applied software is documented in detail in
the Docker file. The presented solution also allows one to customize a method by changing input
parameters and data. In our example, we only enable three parameters to be manipulated, but the
approach can accommodate any number of additional variables (e.g., segmentation parameters). It
is also possible to develop more complex containers allowing users to choose different algorithms.
We thereby present a means to technically reconcile the conflicting priorities of customizability and
reproducibility. However, the conceptual question on the desired degree of customizability, i.e., to
what extent the target group of practitioners is expected to redevelop a methodology provided by an
expert, remains open and strongly depends on the specific use case.

Our work also reveals challenges with regard to the overarching goal of reproducible research.
The presented solution is arguably a one-off effort to containerize a specific workflow and does not
require any standardization beyond the docker run command. Yet, only an experienced developer
can trace the complete flow of information, from the Docker entry point via used scripts to the actually
executed code and used parameters, to grasp the complete picture. The user scripts and analysis model
are embedded in the container, and extracting them requires the container to be started. This could
be a barrier for users and for the purposes of development and exploration, but a copy could be kept
outside the image or be made available by reproducibility tools. Keeping a copy outside the image
naturally leads to a nested packaging approach.

The selection of Docker as the container engine makes it crucial for both reproduction and
archiving. This dependency on a specific product is mitigated by Docker being open-source and highly
adopted in the IT industry. An open standardization effort also is underway: the Open Container
Initiative (https://www.opencontainers.org/). This effort contributes to a proper long-term archiving
solution because the runtime environment must be preserved, and archiving cannot rely solely on the
Dockerfile without replicating all source repositories or download sites. Layers of images, i.e., base
images and an analysis image, make it possible to easily store, share, adopt and collaborate on complex
analyses because they can be shared or extended further. However, they also increase complexity.

The approach for UI-based GEOBIA within containers (see Section 3.3) using the current tools is
only possible on Unix-based operating systems. Interactive interfaces for containerized workflows are
possible in an OS-independent manner by developing the whole analysis within a container, which
provides a user interface via HTTP and HTML to a regular web browser (cf. [77]). The advantages
are complete and consistent containers and immediate visual access to results. However, we suspect
that most users prefer to develop an analysis in the environment they are used to and only package a
complete analysis.

Besides the technical challenges, best practices for reproducible research could provide a
meaningful yet generic workspace structure and enforce general practices, such as managing scripts
in a version control system [78]. Such practices could be implemented in a standardized format

https://www.opencontainers.org/
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for container-based reproducibility packages, be supported by ready-to-use templates and even be
partially automated for example with an “export to container”-button in the QGIS workflow modeler
to generate a Dockerfile. The presented solution can accommodate such best practices. The formal
specification of a container format and supporting services for semi-automatic creation are subject of
current research and can mitigate the above-mentioned knowledge requirements for the authors of
methods (cf. [79]).

The availability of open data remains a general issue. Especially in GEOBIA, where very high
resolution imagery plays an important role in many analyses, the applied images are often not freely
available. In these cases, it is not possible to publish the data along with the analysis workflow
and software. On the other hand, GEOBIA is a widely-used tool in the rapidly-growing field of
analyzing very high-resolution data, e.g., from unmanned aerial systems (UAS). Here, scientists
become producers of their own image data. This makes an approach as presented here especially useful
because the studied images can be published and at the same time become an essential requirement
for full reproducibility due to their uniqueness.

The FOSS solutions applied in the containerized workflow, at the current stage, cannot compete
with commercial software packages, such as eCognition, regarding functionality and data models for
GEOBIA. The available functions of FOSS tools already provide a substantial set of algorithms, and
the analysis is created with a user-friendly interactive modeler in a Desktop environment. However,
the number of actual OBIA operations for image interpretation is limited. Our example analysis shows
that many aspects of GEOBIA can already be realized, e.g., by a combination of algorithms and tailored
scripts. However, more complex models, including iterative sequences of segmentation, merging and
interpretation of objects (e.g., for a better extraction of relevant dwelling structures, cf. [46,80]) are still
difficult to develop in FOSS. However, since FOSS tools are easily extensible, the missing functionality
can be contributed as new functions or independent tools.

5. Conclusions

Docker containers and a combination of established free and open-source GIS and image analysis
software enable reproducible GEOBIA. We build and distribute a container to carry all required
software and data in a transparent manner. The provided user interface makes the package easy
to use. This is a breakthrough for creating a transferable and executable package of a GEOBIA
workflow. The presented analysis goes well beyond simple processing by successfully integrating
tools into a complex multi-step analysis. Packaging GEOBIA software and workflows opens new
possibilities for reviews of scientific work, collaboration between researchers and adoption by
practitioners. The example analysis in conflict damage assessment presents an application field
where transparency and cost are important factors, so that an open approach is advantageous.
The shortcomings with respect to the reproducibility of analyses are mostly related to usability. To reach
a comprehensive feature set, high user-friendliness and subsequently practical adoption, a community
of GEOBIA users applying and contributing to open-source technologies is needed. Although there
are commonalities across all scientific disciplines, domain-specific requirements demand: (i) targeted
education; (ii) high-quality specialized FOSS; and (iii) best practices. The challenge starts with an open
discourse on reproducible research and a working definition of reproducibility specifically for GEOBIA
(cf. [81]), to which this work intends to be a first step.
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Abbreviations

The following abbreviations are used in this manuscript:

MDPI Multidisciplinary Digital Publishing Institute
GIS Geographic Information System
GEOBIA Geographic Object-Based Image Analysis
OBIA Object-Based Image Analysis
FOSS Free and Open-Source Software
LULC Land Use and Land Cover
LIDAR Light Detection and Ranging
GUI Graphical User Interface
AAAS American Association for the Advancement of Science
PCA Principal Component Analysis
OTB Orfeo ToolBox
SAGA System for Automated Geoscientific Analyses
API Application Programming Interface
XVFB X Window Virtual Frame Buffer
UAS Unmanned Aerial Systems
HTTP Hypertext Transfer Protocol
HTML Hypertext Markup Language

Appendix A

Table A1. List of properties used in the settlement detection and the subsequent detection of
disappeared structures (within detected settlement areas) along with the corresponding rules and
recommended thresholds.

Object Property Rule or Threshold Analysis Step

Standard deviation of edge layer (pre-conflict) of seed segments ≥ 0.3 Settlement detection

Proximity of seed segments to each other ≤ 100 m Settlement detection

Number of seed segments (per settlement) ≥ 2 Settlement detection

Optionally: Size of settlement area (after merging of seeds) ≥ 0 (no default threshold set in this example) Settlement detection

Existence of super-object of class settlement True (super-object ID > 0) Change analysis

Change of edge intensity Difference to local reference value ≥ 0.33 Change analysis

Minimum size (area) 10 m2 Change analysis

Maximum size (area) 60 m2 Change analysis

Shape Index value ≤ 1.55 Change analysis

Impact of morphological closing (ratio of standard deviation of pre-conflict
layer values per object before and after morphological closing)

≤ 5.5 Change analysis
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Table A2. Summary of the QGIS-based analysis workflow showing the processing steps and the corresponding algorithms (Python: the scripts written in Python; see
Section 2.3.1).

Analysis Step Algorithm Stage of Workflow

Extract first principal component of pre- and post-conflict image OTB:DimensionalityReduction (pca) Image processing

Rescale both principal components to 8bit OTB:Rescale Image Image processing

Edge detection on both layers OTB:EdgeExtraction (touzi) Image processing

Morphological closing on pre-conflict layer OTB:GrayScaleMorphologicalOperation
(closing)

Image processing

Determine extent of raster layer QGIS:Raster layer bounds Settlement detection

Create chessboard segmentation within extent QGIS:Create grid Settlement detection

Compute standard deviation of edge layer within segments QGIS:Zonal statistics Settlement detection

Extract settlement candidate segments according to standard deviation of edge layer QGIS:Extract by attribute Settlement detection

Create settlement area objects by growing and merging candidate segments that are within proximity (100 m max) to each
other (ignore isolated candidates)

QGIS: Fixed distance buffer
QGIS:Multipart to singleparts
SAGA:Polygon shape indices
QGIS:Extract by attribute
QGIS:Fill holes

Settlement detection

Create IDs in attribute table and specify field name QGIS:Add autoincremental field
QGIS:Refactor fields

Settlement detection

Create objects on level of single huts OTB:Segmentation (watershed) Change analysis

Compute mean of edge intensity within objects (pre- and post-conflict) QGIS:Zonal statistics Change analysis

Calculate difference in mean edge density between pre- and post-conflict (check for NULL) QGIS:Adv. Python Field Calculator
QGIS:Extract by attribute

Change analysis

Compute shape and size properties of objects SAGA:Polygon shape indices Change analysis

For all sub-objects, get IDs of containing super-objects (settlements) SAGA:Identity Change analysis

Compute local reference (of change) within settlements and difference of sub-objects to this reference Python:Difference to local reference v1.3 Change analysis

Compute unsupervised clustering regarding change Python:Kmeans clustering v2.3 Change analysis

Extract objects by minimum and maximum size QGIS:Extract by attribute Change analysis

Extract objects by their shape index QGIS:Extract by attribute Change analysis

Compute statistics of pre-conflict layer per object before and after morphological closing QGIS:Zonal statistics Change analysis

Calculate ratio of sdev. values of pre-conflict layer before and after morphological closing QGIS:Refactor fields Change analysis

Extract objects by ratio value QGIS:Extract by attribute Change analysis

Extract objects by change value (difference in mean edge density) using pre-defined threshold QGIS:Extract by attribute Change analysis

Compute centroids of objects extracted by threshold and within settlements QGIS:Polygon centroids
QGIS:Extract by attribute

Change analysis
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0 10 20 m

sdev ~ 53 sdev ~ 38 sdev ~ 22sdev ~ 4

Figure A1. Subset of the pre-conflict layer before (left image) and after (right image) morphological
closing. It shows the effect of the filter on a dwelling object (right object) and a fence (left object).
The higher impact of the filter on small, linear structures is used as an additional feature to remove them
by measuring the ratio of the standard deviation per object of the unfiltered to that of the filtered layer.

Input Image 
(pre-conflict edge layer)Input thresholds

Output shapefile

QGIS:
- create chessboard with extent 

of image layer
- compute object features
- extract by attributes
- grow and merge seed segments
- extract settlements by size
- assign ID to settlements

SAGA GIS:
- Determine settlement extent

Figure A2. Screen-shot of analysis workflow in the QGIS graphical modeler with highlighting.
Three inputs, two numerical thresholds and the pre-conflict edge layer are shown in purple at the
top. The analysis steps are connected with grey arcs and executed from top to bottom. They are based
on QGIS (green boxes) and SAGA GIS (dark blue box). This model is applied as one algorithm in
the analysis workflow depicted in Figure 3. The model output is a single shape file with detected
settlements, shown in turquoise at the bottom.
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