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Abstract: Surveys of windthrown trees, resulting from hurricanes and other types of natural disasters,
are an important component of agricultural insurance, forestry statistics, and ecological monitoring.
Aerial images are commonly used to determine the total area or number of downed trees, but
conventional methods suffer from two primary issues: misclassification of windthrown trees due to
the interference from other objects or artifacts, and poor extraction resolution when trunk diameters
are small. The objective of this study is to develop a coarse-to-fine extraction technique for individual
windthrown trees that reduces the effects of these common flaws. The developed method was tested
using UAV imagery collected over rubber plantations on Hainan Island after the Nesat typhoon in
China on 19 October 2011. First, a coarse extraction of the affected area was performed by analyzing
the image spectrum and textural characteristics. A thinning algorithm was then used to simplify
downed trees into skeletal structures. Finally, fine extraction of individual trees was achieved using a
line detection algorithm. The completeness of windthrown trees in the study area was 75.7% and the
correctness was 92.5%. While similar values have been reported in other studies, they often include
constraints, such as tree height. This technique is proposed to be a more feasible extraction algorithm
as it is capable of achieving low commission errors across a broad range of tree heights and sizes.
As such, it is a viable option for extraction of windthrown trees with a small trunk diameter.

Keywords: unmanned aerial vehicle images; individual windthrown trees; random classification;
Hough transform

1. Introduction

As a result of climate change, the risk of hurricane damage in forests and plantations is
increasing. Damage assessment after a hurricane or other natural disaster is an important component
of agricultural insurance, forestry statistics, and ecological monitoring. Large areas must be surveyed
quickly to obtain statistics regarding the number of individual windthrown trees [1,2]. Remote sensing
techniques, including optical remote sensing and airborne LiDAR, have been widely employed in
this field. Currently, there are three primary extraction methods based on remote sensing techniques:
(1) artificial visual interpretation, (2) area extraction, and (3) individual windthrown tree extraction.
Fransson et al. proposed a method based on visual interpretation over simulated wind-thrown forests
at both the single-tree and stand levels using SAR images from the Swedish airborne CARABAS-II
and LORA systems after a storm event [3]. Visual interpretation of remote sensing images is relatively
simple and results in a high degree of accuracy [4,5]. However, these methods require a significant
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amount of time-consuming manual intervention and are dependent on professional knowledge. Thus,
it is important to develop automated methods.

In recent years, several authors have proposed automated extraction algorithms. These techniques
are typically based on comparisons between data collected before and after a storm in the fallen area.
Wang et al. reported on the detection of downed trees in an affected area by comparing changes
in optical remote sensing images and standard aerial photographs (4000–5000 m high) before and
after a hurricane [6,7]. Szantoi et al. employed a Sobel edge detection algorithm combined with
spectral information based on color filtering. They included 15 different statistical combinations of
spectral bands to detect downed trees and debris volume through a Leica Airborne Digital Sensor
(ADS40) using high-resolution digital images [8]. Although areas with concentrated trees were
identified, due to the effects of resolution and obstruction, it was difficult to achieve extraction of
individual trees via optical remote sensing images and standard aerial photographs. LiDAR, with
its ability to penetrate vegetation and forest canopies, proved to be an effective tool for extraction of
individual fallen trees, thereby overcoming the problem of obstruction [9–13]. The focus of current
research is the identification and extraction of individual fallen trees using airborne laser scanning.
Blanchard et al. used the object-oriented image analysis method to extract fallen pines and cypresses
in a forest ecosystem under small canopy coverage, achieving a completeness of 73% [14]. However,
due to over-division, the outline of individual fallen trees was not complete. Mücke et al. used
full-waveform airborne laser scanning data and extracted windthrown trees based on an object height
model and an area-perimeter ratio [15–17]. They reported a completeness of 75.6% and an accuracy of
89.9%. Lindberg and Nyström et al. performed binary classification based on height characteristics to
eliminate the interference of foreign objects under a closed canopy [18,19]. Their techniques were based
on the template matching method, with a reported correctness of 32% and 38% at individual tree level,
respectively. Much higher detection rates were reported for taller (>27 m) trees (i.e., 89% by Nyström).
The higher value was partially a result of larger tree diameters. In a study of trees with small diameters
(<300 mm), Nyström reported a completeness of 43%. Polewski et al. used full-waveform LiDAR point
clouds to merge short segments into whole fallen trees using Normalized Cut algorithm in a forest
ecosystem with substantial canopy coverage, thereby achieving enhanced extraction. Their reported
accuracy reached 80% [20]. This study also demonstrated that trunk diameter was the primary factor
affecting extraction resolution.

The above methods suffer from two primary issues: (1) traditional optical images are often
low-resolution and include obstructions; (2) height-based LiDAR is prone to the influence of other
linear objects—such as the edges of a river ditch, a row of shrubs, or a road—which are often incorrectly
identified as windthrown trees. The authors were able to pre-classify terrain and low vegetation points
to produce an object height model (OHM), which reduces the influence of other objects. However,
it still suffers from interference caused by objects with a shape similar to the OHM. These factors
often resulted in low extraction accuracy, especially for trees with small diameters (<300 mm). Since
unmanned aerial vehicle (UAV) images are typically high-resolution, they represent new potential for
recognition of fallen trees [21]. The overall objective of this study is to develop a novel method for
extraction of windthrown trees via a coarse-to-fine algorithm based on UAV images.

2. Study Area and Data Collection

2.1. Study Area

The study area was a rubber tree plantation located in northeastern Hainan, China. The severe
2011 typhoon ‘Nesat’ caused severe damage and felled a large number of trees under an open
canopy in a concentrated area. Two subsets were selected in the region for testing purposes:
an experimental area (0.13 ha) and a verification area (0.12 ha). Individual windthrown trees were
extracted from the experimental area while the verification area was used to assess the feasibility of
the proposed technique.
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2.2. UAV Image Acquisition and Preprocessing

Aerial images were collected with a commercially available UAV (Sky-01C Zhong 5 UAV)
equipped with a Canon EOS 5D Mark II RGB camera. The flying height was at 500m above the
ground in a north–south orientation. UAV imaging parameters are shown in Table 1.

Table 1. UAV image parameters.

Parameter Value

Platform Sky-01C Zhong 5 UAV
The type of sensor CMOS

Camera Canon EOS 5D Mark II
Average altitude (above the ground) 500 m

Date 19 October 2011
Color channel used Red, Green, Blue

Format JPEG
Resolution 5616 × 3744

Quality Fine
Range of experimental area (pixels) 320 × 420
Range of verification area (pixels) 300 × 400

500 images were collected in JPEG format with the camera set in automatic at noon under a clear
sky and minimize wind. The forward and side overlap were set to 70% and 30%, respectively. Absolute
positioning was based on a direct geo-referencing approach using the position/attitude measurements
acquired by UAV-embedded GPS/IMU instrumentation.

Images were then processed using the Pix4D software, which was chosen because of its
high efficiency and good accuracy [22]. The software processing was based on a conventional
photogrammetric approach. An automated image-matching algorithm identified tie points in
the images, which were then used to retrieve orientation parameters for the aerial triangulation
(bundle-block adjustment). Once oriented, the software allows DSM extraction and the generation of
orthomosaics from the images. Color balancing between images with histogram matching was applied
during orthomosaicking. Finally, orthophotos (0.1 m) were generated from the UAV images (Figure 1).
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According to field surveys and the aims of the project, the amount of windthrown trees in the
two study areas were counted and found to contain 33 and 28 fallen trees, respectively. The spatial
distribution of windthrown trees was obtained (Figure 2) from visual inspection. The average length
was 10 m and the average trunk diameter was 200 mm, the maximum of which is 300 mm.

Remote Sens. 2017, 9, 306  4 of 12 

 

According to field surveys and the aims of the project, the amount of windthrown trees in the 
two study areas were counted and found to contain 33 and 28 fallen trees, respectively. The spatial 
distribution of windthrown trees was obtained (Figure 2) from visual inspection. The average length 
was 10 m and the average trunk diameter was 200 mm, the maximum of which is 300 mm. 

 
(a) (b)

Figure 2. The reference data: (a) experimental area; (b) verification area. 

3. Methods 

The whole workflow for individual windthrown tree extraction can be divided into three parts. 
First, the area spanned by the downed trees was determined based on a binary random forest 
classification, during which the spectrum and texture were used as features for classification. Then, 
in order to reduce the influence of trunk diameter on individual tree extraction, a skeletonization 
algorithm was used to simplify trees into skeletal lines. Finally, individual windthrown trees were 
extracted using a Hough transform. The specific extraction process is described below. 

3.1. Coarse Extraction of Windthrown Trees 

Windthrown trees display slender geometry and a bright spectrum, due to lateral optical 
scattering, which makes them observably different from other objects. As such, binary image 
classification was performed to identify the affected windthrown area:  p , = Ρ , ϵ∁ feature . (1)

In Equation (1), p ,  represents the total possible image area containing downed trees 
that satisfies the characteristic value feature	  in the original image. 

Among conventional binary image classification methods, two of the most common are support 
vector machine (SVM) [23] and random forest (RF) [24]. The RF method was adopted for this study 
because of its robustness and effectiveness in the classification of varying object types and ease of 
the execution. Compared to SVM, RF is able to achieve a comparably high classification precision 
with fewer initialized parameters [25,26]. Random forest only requires two parameters: the number 
of decision trees (ntree) and the number of random split variable characteristics (mty) [27,28]. The 
optimal value for ntree is typically determined by out-of-bag (OOB) error convergence, while mty is 
the square root of the input characteristic numbers [29]. The included spectral characteristics were: 
red, green, and blue wave bands. Texture characteristics featured six additive statistics—mean, 
variance, homogeneity, contrast, entropy, and angular second moment—to compensate for the low 
precision of the spectral criteria [30]. 

3.2. Fine Extraction of Individual Windthrown Trees 

During coarse extraction, misclassification of other objects occurred due to the salt-and-pepper 
phenomenon, which reduced the significance of linear trunk characteristics in the classification of 

Figure 2. The reference data: (a) experimental area; (b) verification area.

3. Methods

The whole workflow for individual windthrown tree extraction can be divided into three parts.
First, the area spanned by the downed trees was determined based on a binary random forest
classification, during which the spectrum and texture were used as features for classification. Then,
in order to reduce the influence of trunk diameter on individual tree extraction, a skeletonization
algorithm was used to simplify trees into skeletal lines. Finally, individual windthrown trees were
extracted using a Hough transform. The specific extraction process is described below.

3.1. Coarse Extraction of Windthrown Trees

Windthrown trees display slender geometry and a bright spectrum, due to lateral optical
scattering, which makes them observably different from other objects. As such, binary image
classification was performed to identify the affected windthrown area:

pstem(x, y) = P
(

p(x, y)ε{stem
∣∣feature(p)

)
. (1)

In Equation (1), pstem(x, y) represents the total possible image area containing downed trees that
satisfies the characteristic value feature(p) in the original image.

Among conventional binary image classification methods, two of the most common are support
vector machine (SVM) [23] and random forest (RF) [24]. The RF method was adopted for this study
because of its robustness and effectiveness in the classification of varying object types and ease of
the execution. Compared to SVM, RF is able to achieve a comparably high classification precision
with fewer initialized parameters [25,26]. Random forest only requires two parameters: the number of
decision trees (ntree) and the number of random split variable characteristics (mty) [27,28]. The optimal
value for ntree is typically determined by out-of-bag (OOB) error convergence, while mty is the
square root of the input characteristic numbers [29]. The included spectral characteristics were: red,
green, and blue wave bands. Texture characteristics featured six additive statistics—mean, variance,
homogeneity, contrast, entropy, and angular second moment—to compensate for the low precision of
the spectral criteria [30].
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3.2. Fine Extraction of Individual Windthrown Trees

During coarse extraction, misclassification of other objects occurred due to the salt-and-pepper
phenomenon, which reduced the significance of linear trunk characteristics in the classification of
images. A variety of extraction methods are used to determine linear characteristics. A commonly
effective method involves the enhancement of skeleton significance via the morphological closing
operation. Specifically, the expansion-corrosion closing operation was used for the coarsely-extracted
area [31,32]:

∅F(x, y) = ε[σ(p(x, y))]. (2)

Here, σ(p(x, y)) represents an expansion operation, ε[σ(p(x, y))] is a corrosion operation, and the
result of the closing operation is expressed as ∅F(x, y).

At this point, the areas of windthrown trees were connected and the linear geometry of downed
logs was more apparent. Due to the slender characteristics of windthrown trees, the area-perimeter
ratio was used to quantify thinness. This area and the area-perimeter ratio (apratio) were used to
calculate the total area of windthrown trees. A skeletonization algorithm [33] was then used to simplify
trees into skeletal lines. The dominant thin linear characteristics of windthrown trees were highlighted
by this approach such that the effects of tree diameter were effectively reduced, making trunks easier
to extract.

The most common line detection methods include edge detection [34], line segment detection
(LSD) [35], and the Hough transform [36]. Edge detection is too sensitive to noise and often detects
defects like isolated edge points or pseudo edges [37]. LSD typically divides structures into multiple
lines due to long-line and local fuzzy obstruction [35]. The Hough transform is capable of good
anti-noise performance [38] and is less sensitive to partial blockage. As such, it is widely used in
the extraction of linear objects such as power lines [39], green houses [40], crop direction [41], and
architecture [42]. Windthrown trees have obvious linear characteristics, so the Hough transform was
adopted in this study for extraction purposes. The theory involves transferring image coordinate space
into a reference space and performing line extraction based on a local maximum of spatial parameters
corresponding to the line parameters:

H(θ, ρ) =
∫ +∞

−∞

∫ +∞

−∞
Fskeleton(x, y)δ(ρ − x cos(θ)− y sin(θ))dxdy. (3)

Here, (θ, ρ) and (x, y) represent the coordinates of the Hough spatial domain and the image
spatial domain, δ is the Dirac delta function. The co-linear points (x, y) in the original image
Fskeleton(x, y) were transferred to the sine curve ρ = x cos(θ) − y sin(θ). The term H(θ, ρ) is the
number of sine curves intersecting at point (θ, ρ). This makes it possible to obtain the number of
points forming a line. Lines can be detected in the original image by selecting the minimal H(θ, ρ)

that could possibly form a line.

3.3. Accuracy Assessment

Evaluation of extraction results consists of two metrics: area-level and individual windthrown
tree level. The individual tree results were primarily based on count. The latter was used in this study
and two indexes, completeness and correctness, were adopted to assess the accuracy of extraction [43].
Completeness is the ratio between the number of correctly extracted windthrown trees and the total
number of windthrown trees in the reference data. The sum of completeness and omission equals 1.
Correctness is the proportion correctly extracted from the total number of extracted windthrown trees.
The sum of correctness and commission equals 1. These equations are given below:

Completeness =
TP

TP + FN
(4)

Completeness + Omission = 1 (5)
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Correctness =
TP

TP + FP
(6)

Correctness + Commision = 1 (7)

In Equations (4) and (6), TP indicates the number of extracted windthrown trees present in the
reference data, FP is the number of extracted windthrown trees that do not exist in the reference data,
and FN is the number of windthrown trees that were not extracted yet are present in the reference data.

All the aforementioned data analysis and processing were conducted using Mathworks MATLAB
(www.mathworks.com), ESRI ArcGIS (http://www.esri.com/software/arcgis), and EnMAP-Box
(www.enmap.org).

4. Results

4.1. Coarse Extraction

The main purpose of coarse extraction is to isolate the windthrown trees area by distinguishing
regions with and without windthrown trees. According to training strategies for samples at
different spatial resolutions [44–46], we used small polygon blocks to collect train and test samples.
This included two types, windthrown tree areas and non-windthrown tree areas, in different locations
in the digital orthophoto image. The results are shown in Table 2.

Table 2. Training and testing samples.

Class No. Class Type # of Training Samples # of Testing Samples

1 Windthrown tree patches 450 600
2 No windthrown tree patches 1050 190

Total 1500 1700

In order to precisely identify the affected area of windthrown trees during coarse extraction,
the effects of random forest parameters used during binary random classification should be optimized,
because extraction results affect omission rates. As such, binary random forest classification was
performed for the original images using the training samples found in Table 2. Classification
characteristics included three spectrum wave bands (RGB) and six texture wave bands, for a total of
9 input variables. The term mty was assigned a value of 3 (the square root of 9), the optimal value
of ntree was determined based on ntree convergence. During binary random forest classification,
variations in the OOB-error were analyzed, thereby obtaining an optimal value of 200.

Figure 3 shows variations in the OOB-error as a function of ntree. When ntree is above 90,
the OOB-error tends to converge at 2.57%. Thus, the optimal ntree value was set at 90.
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Nine characteristic wave bands were used for classification of objects, namely, red, green, blue,
mean, variance, homogeneity, contrast, entropy, and angular second moment. The results of coarse
extraction are shown in Figure 4 (black area).Remote Sens. 2017, 9, 306  7 of 12 
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To quantify the results of coarse extraction, verification samples (Table 3) were used to obtain a
confusion matrix. Table 3 also shows the customer accuracy, manufactured accuracy, total accuracy,
and Kappa coefficient for the windthrown trees area.

Table 3. Accuracy of coarse extraction.

Customer Accuracy Manufactured Accuracy Total Accuracy Kappa Coefficient

92.66% 95.24% 94.48% 0.86

The customer accuracy, manufactured accuracy, and total accuracy reached as high as
92.66%, 95.24%, and 94.48%, respectively. The Kappa coefficient was 0.86. Compared with the
reference data, binary random forest was able to partially or completely extract an area containing
30 windthrown trees.

4.2. Fine Extraction

The results of coarse extraction are shown in Figure 4. It is evident in the figure that trunks,
branches, scatters, and other objects were successfully extracted. In order to extract individual
windthrown trees from Figure 4, small patches need to be removed first. Geometric characteristics
were used as a filtering standard, because windthrown trees exhibit an obvious linear shape, while
other objects are not nearly as linear. After connecting areas of windthrown trees and filling gaps
with the morphological closing operation, area, and area-perimeter ratios were used to filter small
scatters and block objects. An area-perimeter ratio was computed to identify elongated features and
the resulting value was closer to one for rounded polygons and closer to zero for elongated polygons.
We assumed that windthrown trees had an area larger than 4.5 m2 and an area-perimeter ratio smaller
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than 0.3. Subsequently, all polygons that had an area smaller than 4.5 m2 and an area-perimeter
ratio larger than 0.3 were omitted. After filtering, a skeletonization algorithm was used to simplify
windthrown tree areas into skeletal lines, as shown in Figure 5. When compared with the reference
data shown in Figure 2, it can be seen that common causes of interference were effectively removed.
Meanwhile, the linear characteristics of windthrown trees were more apparent and trunks showed
a consistent width, which reduced the effects of trunk diameter on extraction. The fine extraction of
individual windthrown trees benefited from the use of a Hough transform.Remote Sens. 2017, 9, 306  8 of 12 

 

 
Figure 5. Skeletal lines representing windthrown trees. 

On the basis of skeletal lines, the Hough transform was used to detect individual windthrown 
trees. The transform was also used to determine the fewest number of points needed along the 
skeleton to form a windthrown tree—i.e., the number T of intersection points for sine curves in the 
Hough spatial domain. Only lines containing more than T points were identified as windthrown 
trees. In order to select the optimal value for T, the designed threshold increased from 20 with a step 
length of 10, to investigate the relationship between threshold (T), the number of correctly extracted 
trees, the extraction error, and the omitted error. 

As shown in Figure 6, the number of correct extractions decreased with increasing T. 
Specifically, it decreased smoothly between 0–50, showing a high number of extractions, and began 
to decrease drastically when T was above 50. Similarly, the number of extraction errors also 
decreased with increasing T, yet reached a minimal level when T was above 50. The number of 
omitted extractions increased as T increased and rose dramatically when T was above 50. At larger 
thresholds, shorter windthrown trees could not be detected, resulting in increased omission. In 
contrast, there were multiple small segments at smaller thresholds, causing a large commission 
error. Therefore, the optimal T value was set to 50—i.e., 5 m in terms of tree length (with an image 
resolution of 0.1 m). This number is consistent with the average trunk length of windthrown trees 
found in the study area. Due to canopy obstruction, one tree was extracted into two parts. It was 
assumed that trees were windthrown in the same direction. When the distance between two trees 
was less than 1.5 m, they were considered to be one tree. Consequently, the extraction of individual 
trees was achieved based on the constraints of T >50 and a connection distance >1.5 m, as shown in 
Figure 7. Red represents the individual extracted trees after application of the Hough transform. 

 
Figure 6. The relationship between threshold T and the number of correct extractions, extracted 
errors, and omitted extractions. 

0

5

10

15

20

25

30

35

20 30 40 50 60 70 70 90

N
um

be
r o

f s
am

pl
es

Threshold T

TP FP FN

Figure 5. Skeletal lines representing windthrown trees.

On the basis of skeletal lines, the Hough transform was used to detect individual windthrown
trees. The transform was also used to determine the fewest number of points needed along the
skeleton to form a windthrown tree—i.e., the number T of intersection points for sine curves in the
Hough spatial domain. Only lines containing more than T points were identified as windthrown trees.
In order to select the optimal value for T, the designed threshold increased from 20 with a step length
of 10, to investigate the relationship between threshold (T), the number of correctly extracted trees,
the extraction error, and the omitted error.

As shown in Figure 6, the number of correct extractions decreased with increasing T. Specifically,
it decreased smoothly between 0–50, showing a high number of extractions, and began to decrease
drastically when T was above 50. Similarly, the number of extraction errors also decreased with
increasing T, yet reached a minimal level when T was above 50. The number of omitted extractions
increased as T increased and rose dramatically when T was above 50. At larger thresholds, shorter
windthrown trees could not be detected, resulting in increased omission. In contrast, there were
multiple small segments at smaller thresholds, causing a large commission error. Therefore, the
optimal T value was set to 50—i.e., 5 m in terms of tree length (with an image resolution of 0.1 m).
This number is consistent with the average trunk length of windthrown trees found in the study area.
Due to canopy obstruction, one tree was extracted into two parts. It was assumed that trees were
windthrown in the same direction. When the distance between two trees was less than 1.5 m, they
were considered to be one tree. Consequently, the extraction of individual trees was achieved based on
the constraints of T >50 and a connection distance >1.5 m, as shown in Figure 7. Red represents the
individual extracted trees after application of the Hough transform.
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5. Discussion

5.1. Extraction Assessment

Results for the studied area included an omission of 24.3% and a commission of 7.5% (Table 4).
The reported completeness and correctness were 75.7% and 92.5%, respectively. One of the regions
indicated in Figure 7a was not included in the extraction. Due to subtle spectral characteristics,
windthrown trees were not extracted completely during either coarse or fine extraction. Error-prone
extraction occurred for branches and other objects featuring a similar geometry.

Table 4. Results of accuracy evaluation.

Data
Index

Commission (%) Omission (%) Completeness (%) Correctness (%)

Experimental area 7.5 24.3 75.7 92.5
Verification area 16 16 84 84
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5.2. Feasibility Verification

To verify the feasibility of the proposed method, windthrown tree extraction was conducted on
the verification area. The results are shown in Figure 7b and Table 4. The calculated completeness
was 84%, with a correctness of 84%. These results support the feasibility of the proposed method
for extraction of windthrown trees with small diameters. Economic forests have the characteristic
of large spacing between planting sites, which is not obvious when covered by canopy or after a
hurricane. Thus, the proposed method could be used to determine the number of downed trees in an
economic forest.

5.3. Comparison with Conventional Methods

As mentioned previously, over-classification is a common problem occurring in concentrated
areas, creating difficulties for the extraction of individual windthrown trees [14]. Lindbergand and
Nyström reduced interference from other objects by executing binary classification based on height
and then extracted fallen trees using template matching. They reported a correctness of 32% and 38%,
respectively [18,19]. The interference of objects with a similar geometry (e.g., river boundaries and
shrub rows) also poses a challenge as it cannot be effectively removed using only height or geometric
characteristics. However, this study conducted binary random forest classification with spectrum
and texture features and extracted trees based on geometry, which increased correctness results by
60.5% and 54.5%, respectively. Blanchard and Muecke reported extraction completeness results of
73% and 75.6%, respectively. The main reason for the high completeness is that windthrown trees
have larger diameters [14,15]. However, the reported completeness for trees with diameters smaller
than 300 mm was only 43% in a study conducted by Mattias and Nyström. Tomoharu Inoue reported
they identified 80% to 90% of fallen trees that were >30 cm in diameter, but missed many that were
narrower [21]. In order to reduce the effects of trunk diameter on the results in this paper, windthrown
trees were simplified to skeletal lines using a skeletonization algorithm, which completeness reached
75.7%. The major contribution of our investigation is the development and demonstration of an
efficient and highly automated method for individual windthrown trees detection. In the present study,
a coarse-to-fine extraction strategy was proposed and demonstrated for individual windthrown trees
in a rubber tree plantation under open canopy, which improved extraction accuracy for small-diameter
windthrown trees.

6. Conclusions

The major contribution of our investigation is the development and demonstration of an efficient
and highly-automated method for individual windthrown tree detection. In the present study,
a coarse-to-fine extraction strategy was proposed and demonstrated in a rubber tree plantation
under an open canopy. First, the windthrown area was extracted using binary random forest
classification. A skeletonization algorithm was then used to simplify downed trees into skeletal
lines. Finally, individual trees were extracted after applying a Hough transform. The proposed method
achieved high extraction accuracy with a measured completeness of 75.7% and a correctness of 92.5%.
These results are significantly higher than previously reported for the template matching method
and are comparable to the accuracy of height and slender feature models. The proposed method
effectively reduces commission errors and could therefore be used to extract trees with a small trunk
diameter. Application of this method is also highly feasible and offers a versatile option for generalized
windthrown tree extraction. Most of the previous methods are based on ALS data, however this
paper is based on UAV data as the data source which is easier to acquire and costs less than ALS data.
Meanwhile, compared with report of fallen trees identified by eye based on UAV images, the novel
approach for coarse-to-fine windthrown tree extraction can also achieve equal accuracy.
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This study utilized two relatively concentrated tree areas to develop a new approach. In the
future, we will try to extract windthrown trees in a larger area using this approach and attempt to
extract other forests that are not economical.
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