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Abstract: Satellite remote sensing provides significant information for the monitoring of natural
disasters. Recently, on a global scale, floods have been increasing both in frequency and in magnitude.
In order to map the inundation area, flooding events are investigated using unique RGB composite
imagery based on the MODIS surface reflectance (MOD09GA) data obtained from the Terra satellite,
which is used to visualize and analyze these events. This study proposes using an RGB combination
of MODIS band 6 (1.64 µm), band 5 (1.24 µm), and band 2 (0.86 µm) data from the visible and the
near-infrared spectral ranges to map flood events. The flooding events that were investigated in this
study occurred on 25 October 2015 along the Pampanga River in the Philippines, and on 28 July 2016
along the Poyang and Dongting Lakes in China. In the case of the Pampanga River, the inundated
areas were estimated with surface reflectance (R) thresholds of 0.0 ≤ R6 ≤ 0.102, 0.0 ≤ R5 ≤ 0.138,
and 0.03 ≤ R2 ≤ 0.148 for MODIS bands 6, 5, and 2, respectively, which were determined using
Otsu’s method. The total inundated area was estimated to be 487.75 km2. This estimate was indirectly
compared with the results obtained from SENTINEL-1A Synthetic Aperture Radar (SAR) data.
The total inundated area on 26 October 2015 for the case of the Pampanga River was estimated to be
486.37 km2 using histogram analysis based on Otsu’s method. For the flooding case in China, the
total estimated inundated area using MODIS RGB imagery on 28 July 2016 and SAR on 3 August
2016 was 1148.25 km2 and 1110.096 km2, respectively. In addition, RGB imagery results using
MODIS 6-5-2 bands were supported by the refractive index retrieval along the inundation area.
A threshold of 1.6 for the real part of the complex refractive index allows for the discrimination
between the flooded and non-flooded areas using the Hong and ASH approximations. This study
shows that the RGB composite techniques using advanced sensors with more bands and higher
spatio-temporal resolutions, and supported by the refractive index retrieval method, are useful for
estimating flood events.
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1. Introduction

The recent increase in the number of natural disasters has become a global issue, because of the
damages to the hydrological and ecological environment and human-made infrastructure, and the
threats to human lives. Satellite remote sensing techniques provide valuable support for monitoring
these disasters and for post-event crisis management.

To obtain detailed and valuable information for flood monitoring, satellite missions, such as
TerraSAR-X, Radarsat-2, and the Cosmo-SkyMed constellation, with Synthetic Aperture Radar (SAR)
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data, have been used to support flood emergency situations [1–6]. Many studies have demonstrated
the effectiveness of SAR data in mapping wetlands [7,8], because it has the advantage of observations
during the night and day, and under cloud cover [9,10]. However, these methods also have a
disadvantage: SAR data largely depends on the accuracy of the determined thresholds that are
usually static in space and time, despite the significant variability of the backscatter. This may lead to
the misidentification of pixels [11].

Despite the limitations of optical satellites, which are mainly due to the effects of cloud cover,
a flood detection method using visible (VIS) and near-infrared (NIR) bands was investigated [12].
One of the benefits of using these satellites is the ability to visualize flooded areas, separately, without
including the non-flooded areas. Much of the pioneering work on the remote sensing of floods using
band 0.8–1.1 µm of Landsat-1 [13–18] was accomplished for flooding in Iowa [19,20], Arizona [21],
Virginia [20], and along the Mississippi River [22–24]. The Advanced Very High Resolution Radiometer
(AVHRR) has also been successfully used for studying very large river floods [25–28], displaying
three-band color composites for visual analysis, because flood and standing water absorbs infrared
wavelengths of energy and appears as blue or black in the RGB composite imagery [29]. Flood
monitoring based on the land surface temperature and Normalized Difference Vegetation Index
(NDVI) [30,31] is also studied, because the NDVI tends to have a positive value in an area containing
a dense vegetation canopy, and is low for standing water in both VIS and IR spectral bands.
The normalized difference water index (NDWI) generally serves to distinguish water areas from
non-water areas. It typically uses the difference between green and near-infrared bands [32]. Various
studies have applied this method using other wavelength bands, such as short-wave infrared (SWIR)
and mid-infrared (MIR) bands [33,34]. However, NDWI is sometimes ineffective in extracting water
features in the case of urban areas, because the reflectance pattern of urban features is similar to
that of water in the green band [35]. To compensate for this weakness, Xu suggested a new NDWI
method (modified NDWI) that uses green and MIR bands [36]. Many of the studies for flood detection
in non-water areas have applied both NDWI and modified NDWI to generate inundation hazard
models and maps, and to calculate the flooded areas [35,37,38]. The Moderate Resolution Imaging
Spectrometer (MODIS) onboard the Aqua and Terra satellites [39,40] is a useful instrument for mapping
inundation areas, regardless of the optical sensors’ major disadvantage related to cloud cover. Different
techniques for the use of MODIS data have been discussed, considering both their advantages and
drawbacks [41–43]. These techniques usually have high frequency temporal measurements as far as
the inundation extent is concerned. However, they are not ideal for detecting the flooded area on a fine
scale, due to their low spatial resolution, which ranges from 250 m to 1 km. Despite these limitations,
various approaches that use the MODIS data, such as spectral indices, have been employed to prevent
the hazards of a flooding event [44–46].

The reflectance of terrestrial surfaces is often characterized mathematically, by the bidirectional
reflectance distribution function (BRDF), which depends on the incident and reflected viewing
directions, and the refractive index (n̂ = n + i·k, i =

√
−1) of the surface itself. In the VIS and

NIR spectral regions, the vertical profiles of the soil moisture, temperature, and organic matter,
are not significant for modeling [47]. Accordingly, red-green-blue (RGB) composite imagery based
on the surface reflectances are useful because, physically, the surface reflection like absorption,
transmission, emission, and scattering, requires a priori knowledge of the complex refractive index of
a medium [48,49].

In this study, we provide a new RGB-composite technique that combines appropriate bands
for mapping the inundation area based on knowledge of spectral bands and empirical experience.
We investigated the flooding of the Pampanga River in the Philippines (Figure 1a), and the Poyang
and Dongting Lakes in China (Figure 1b). In the case of the Pampanga River, a riverside flooding
event occurred on 25 October 2015 due to Typhoon Koppu. Figure 2 shows the true color images
of the Pampanga River area on 16 September 2015 at 02:20 UTC in the pre-flooding stage, and on
25 October 2015 at 02:25 UTC in the post-flooding stage. The case of the Poyang and Dongting Lakes
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occurred due to the heavy rainfall during the monsoon season and Typhoon Chaba. Figure 2c,d show
the true color images using the surface reflectance values of the MODIS 1-4-3 bands , obtained
on 27 March and 28 July 2016, respectively. We physically validated the proposed method for
flood estimations using the refractive index retrieval derived by the Hong (Equation (6)) and ASH
(Equation (8)) approximations using MODIS data, SENTINEL-1A Synthetic Aperture Radar (SAR)
data for the same events.
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Figure 2. MODIS true color images combining bands 1, 4, and 3. Panels (a,b) show the Pampanga 
River area, highlighting the surface conditions before (16 September 2015 at 02:20 UTC) and after (25 
October 2015 at 02:25 UTC) the flooding event, respectively. Panels (c,d) show the Poyang and 
Dongting Lakes focusing on the surface conditions before (27 March 2016 at 03:00 UTC) and after (28 
July 2016 at 02:40 UTC) the flood event, respectively. 

2. Data and Methods 

2.1. Data and Procedure 

The MODIS instruments, which were onboard the TERRA launched in 1999, have 36 spectral 
bands ranging from 0.4 μm to 14.4 μm [50,51]. The nadir spatial resolution of bands 1 to 2, 3 to 7, and 
8 to 36, are 250 m, 500 m, and 1 km, respectively. The MODIS surface reflectance data at 500 m 
resolution (MOD09GA) are used for masking the cloud and sea area. MOD09GA consists of seven 
bands in the VIS and NIR ranges, and we describe the information of each band as follows; MODIS 
band 1 (0.65 μm) corresponds to red light. Accordingly, the absorption of red lights in vegetation at 
this band results in being able to distinguish between vegetation and soil. Band 2 (0.86 μm), with 
strong absorption by water, is useful for separating water from dry soil or vegetated surfaces. 
Consequently, water appears dark, while soil and vegetation appear bright [52]. Band 3 (0.47 μm), 
corresponding to blue light, is useful for monitoring sediment in water and the water depth. Band 4 
(0.56 μm) matches the wavelength of the green for vegetation. The sensitivity to moisture at Band 5 
(1.24 μm), 6 (1.64 μm), and 7 (2.13 μm) are useful for monitoring the soil moisture and vegetation, 
and to differentiate the cloud and snow. The reflectance information of clay, sand, grass, snow, and 
water are shown with the MODIS spectral response function in Figure 3. 

Figure 2. MODIS true color images combining bands 1, 4, and 3. Panels (a,b) show the Pampanga
River area, highlighting the surface conditions before (16 September 2015 at 02:20 UTC) and after
(25 October 2015 at 02:25 UTC) the flooding event, respectively. Panels (c,d) show the Poyang and
Dongting Lakes focusing on the surface conditions before (27 March 2016 at 03:00 UTC) and after
(28 July 2016 at 02:40 UTC) the flood event, respectively.

2. Data and Methods

2.1. Data and Procedure

The MODIS instruments, which were onboard the TERRA launched in 1999, have 36 spectral
bands ranging from 0.4 µm to 14.4 µm [50,51]. The nadir spatial resolution of bands 1 to 2, 3 to 7,
and 8 to 36, are 250 m, 500 m, and 1 km, respectively. The MODIS surface reflectance data at 500 m
resolution (MOD09GA) are used for masking the cloud and sea area. MOD09GA consists of seven
bands in the VIS and NIR ranges, and we describe the information of each band as follows; MODIS
band 1 (0.65 µm) corresponds to red light. Accordingly, the absorption of red lights in vegetation at this
band results in being able to distinguish between vegetation and soil. Band 2 (0.86 µm), with strong
absorption by water, is useful for separating water from dry soil or vegetated surfaces. Consequently,
water appears dark, while soil and vegetation appear bright [52]. Band 3 (0.47 µm), corresponding to
blue light, is useful for monitoring sediment in water and the water depth. Band 4 (0.56 µm) matches
the wavelength of the green for vegetation. The sensitivity to moisture at Band 5 (1.24 µm), 6 (1.64 µm),
and 7 (2.13 µm) are useful for monitoring the soil moisture and vegetation, and to differentiate the
cloud and snow. The reflectance information of clay, sand, grass, snow, and water are shown with the
MODIS spectral response function in Figure 3.



Remote Sens. 2017, 9, 313 5 of 19
Remote Sens. 2017, 9, 313 5 of 18 

 

 
Figure 3. Reflectance values of clay, sand, loam, grass, snow, and water. These values range from 0.4 
μm to 2.6 μm. MODIS spectral response functions corresponding to these values are also shown. The 
spectral data are obtained from NASA Jet Propulsion Laboratory [53].  
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distortion from clouds, and guaranteed observations regardless of it being day or night [4]. However, 
SAR has a long observation period and is mainly used for historical analysis. One of the C-band SAR 
satellites, SENTINEL-1A, was launched in 2014 by the European Space Agency (ESA). We used Level-
1, Ground Range Detected (GRD) data from SENTINEL-1A [54]. For SAR data, pre-processing was 
carried out to convert the intensity to a backscattering coefficient (σ଴), and the Lee filter (7 × 7) method 
was applied to reduce the noise. Figure 4a,b show the VV(vertical transmitting, vertical receiving)-
polarized backscattering coefficients (σ଴) observed from SENTINEL-1A around the Pampanga River 
in the Philippines on 26 October 2015 at 21:46 UTC and around the Poyang and Dongting Lakes in 
China on 3 August 2016 at 10:27 UTC, respectively. 

(a) (b)

Figure 4. Backscattering coefficients of VV-polarizations observed from SENTINEL-1A (a) around the 
Pampanga River in the Philippines on 26 October 2015 at 21:46 UTC and (b) around the Poyang and 
Dongting Lakes in China on 3 August 2016 at 10:27 UTC. 

The research procedure (referred to in Figure 5) adopted in this study can be summarized as 
follows. 

Figure 3. Reflectance values of clay, sand, loam, grass, snow, and water. These values range from
0.4 µm to 2.6 µm. MODIS spectral response functions corresponding to these values are also shown.
The spectral data are obtained from NASA Jet Propulsion Laboratory [53].

SAR data has frequently been used for flood detection due to its high resolution, minimal
distortion from clouds, and guaranteed observations regardless of it being day or night [4]. However,
SAR has a long observation period and is mainly used for historical analysis. One of the C-band
SAR satellites, SENTINEL-1A, was launched in 2014 by the European Space Agency (ESA). We used
Level-1, Ground Range Detected (GRD) data from SENTINEL-1A [54]. For SAR data, pre-processing
was carried out to convert the intensity to a backscattering coefficient (σ0), and the Lee filter
(7 × 7) method was applied to reduce the noise. Figure 4a,b show the VV(vertical transmitting,
vertical receiving)-polarized backscattering coefficients (σ0) observed from SENTINEL-1A around
the Pampanga River in the Philippines on 26 October 2015 at 21:46 UTC and around the Poyang and
Dongting Lakes in China on 3 August 2016 at 10:27 UTC, respectively.
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The research procedure (referred to in Figure 5) adopted in this study can be summarized
as follows.
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First, the surface reflectance values for VIS and NIR radiation were downloaded from the MODIS
surface reflectance. Second, the separation of the flooded areas from the non-flooded areas was
performed based on the distribution and threshold values of the surface reflectivity estimated using
Otsu’s method, which is a simple and effective method for determining the threshold values, in order
to extract objects from their background using binarization for the distribution of the histogram.
The goodness of these thresholds was evaluated by measuring the separability of the gray-level
classes [55]. Third, the three MODIS bands best suited to flooding detection were selected. Fourth,
one-to-one matching of surface reflectivity values in the selected bands and RGB color saturations
was performed. Finally, the flooded area in the RGB composite image was visualized and analyzed.
The flooded area was indirectly compared using results obtained from the SENTINEL-1A SAR sensor.
In addition, the model was physically validated using decomposed surface reflectivities and refractive
indexes estimated from decomposed surface reflectivities.

2.2. RGB Composite Technique

The physical basis of the RGB color model is the tri-chromatic theory, in which three separate
lights (red, green, and blue) can match any visible band [56]. The RGB space may be visualized as a
cube with three axes corresponding to red, green, and blue. In the RGB space, according to Grassman’s
first law of color mixture, a color can be matched by units of red, green, and blue in an n-bit display
system, as follows [57]:

Ci,j,k = Rc(ri) + Gc

(
gj) + Bc(bk) , 0 ≤ i, j, k < 2n (1)

where RC, GC, and BC are the units measured in any form that quantifies light power, Ci,j,k is the
color, and ri, gj, and bk represent the color saturation in red, green, and blue colors, respectively.
The subscripts i, j, and k are the different contributions of RGB color saturation from 0 to 2n, respectively.

In this study, the 8-bit computing colors are applied and n = 8. In 8-bit computing, the color
can range from 0 to 255 (= 28). Accordingly, yellow (255, 255, 0), cyan (255, 0, 255), and magenta
(0, 255, 255) can be analyzed as secondary colors, because the mixture of three-band observations
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determines an RGB color. Meanwhile, black (0, 0, 0) indicates no contribution and gray indicates an
equal contribution from the three channels [57].

In this study, the key idea of RGB imaging is the one to one mapping of the satellite-observed
surface reflectance (R) to a three-dimensional RGB color cube. The appropriate selection of
Robservation bands in satellite sensors plays a key role in RGB image analysis. This combination
requires knowledge of spectral bands and empirical experience of band combinations. Therefore, the
color saturations in each of the red, green, and blue RGB colors can be rewritten as a function of R,
within a range of maximum and minimum values of R at bands 1, 2, and 3 of the sensor onboard the
satellite, as follows:

ri = 255 · Ri − Ri,MIN

Ri,MAX − Ri,MiIN
, at band i (2)

gj = 255 ·
Rj − Rj,MIN

Rj,MAX − Rj,MIN
, at band j (3)

bk = 255 ·
Rk − Rk,MIN

Rk,MAX − Rk,MIN
, at band k (4)

where Ri, Rj, and Rk are the surface reflectivities observed at bands i, j, and k of the MODIS sensor in
this study, respectively.

In general, the gamma corrections for an image in 8-bit computing can be expressed as follows:

Color saturation = 255 ·
[

R− RMIN
RMAX − RMIIN

] 1
Γ

(5)

where Equations (2)–(4) are the specific form of gamma corrections with Γ = 1 to the color saturation.
In this study, we use Γ = 1.

2.3. Refractive Index Retrieval

Consequently, the RGB imagery depends on the appropriate selection and combination of
observing bands, based on the knowledge of spectral bands and empirical experiences. To estimate the
refractive index, many free-space experimental systems have been developed using the polarization
ratio RH/RV [58,59]. Recently, RH/RV on a specular surface as a function of one polarization RV or
RH , was derived from the generalized Fresnel equations [60], by taking the first term in the Taylor
series of the logarithmic ratio ln RH/ ln RV at the incidence angle θ [61], as follows:

RH
RV

= Rtan2 θ
V (6)

where RV and RH are polarized reflectances. The usefulness of Equation (6) was shown in a variety
of applications, including in the detection of Asian dust (Hwangsa) [62], the validation of an IR
sea-surface emissivity model [63], surface roughness retrieval [64,65], the estimation of global soil
moisture [66], sea ice studies [67,68], and wind speed retrieval [69–71].

Recently, a squared form of Azzam’s relationship (r̂H = r̂V ·(r̂V − cos2θ)/(1− r̂V ·cos2θ)) [72–74]
has been derived, as follows [75]:

RH
RV

=
(
√

RV − cos 2θ)
2
+ 2(
√

RV − Re(r̂V) · cos 2θ)

(1−
√

RV · cos 2θ)
2
+ 2(
√

RV − Re(r̂V) · cos 2θ)
(7)

where r̂V = Re(r̂V) + i·Im(r̂V), Re(r̂V) and Im(r̂V) are the real and imaginary part of r̂V , respectively.
RV = |r̂V |2, and RH = |r̂H |2.
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Equation (7) requires a priori knowledge of the refractive index value because of the term of r̂V ,
which is a complex value. However, for a non-absorbing material (k = 0), a squared form of Azzam’s
relationship (Equation (7)) is simplified to an ASH approximation, as follows [75]:

RH
RV

=

( √
RV + cos 2θ

1 +
√

RV · cos 2θ

)2

(8)

A method which can be used to estimate the refractive index based on the decomposition of
unpolarized surface reflectivity [76] was presented using Equation (6) and no preference for either
polarization [77], as follows:

R =
RV + RH

2
(9)

where RV and RH can be numerically determined using Equations (6) or (8), and (9) for a given angle
and a measured reflectivity.

The following solution is used to determine the refractive index from polarized reflectivities [78],
along with a variety of inversion methods such as spectroscopic ellipsometry [79,80] and
Kramers-Kronig phase shift analysis [81,82]:

n =

√√√√B2 − A2 + sin2 θ +

√
(A2 + B2 − sin2 θ)

2
+ (2AB)2

2
and k =

AB
n

, (10)

where B = (a−b) sin θ cot 2θ
ab+(1−a2) cos2 θ−1 , A =

√
−B2 − 2aB cos θ − cos2 θ, a = RV+1

RV−1 , and b = RH+1
RH−1 . The refractive

index of soil ranges from 1.39 + 0.0053i to 1.42 + 0.05i [83] in the optical band from 0.5 µm to 1.1 µm.
The refractive index of water ranges from 1.339 + 1.86 × 10−9 i at 0.4 µm, to 1.296 + 2.89 × 10−9 i at
2.2 µm [81].

3. Results and Discussion

3.1. RGB Composite Technique

We tested an RGB combination of bands 1, 2, 3, 4, 5, 6, and 7 because of the spectral sensitivity, in
order to distinguish water from soil/vegetation. This particular combination delineates the inundated
and adjacent areas with a color contrast. We assume that the land surface is quasi-specular for
computational efficiency, but the land surface is simulated as a linear combination of three Bidirectional
Reflectance Distribution Function (BRDF) kernels [84]. Physically, the reflectance from a specular
surface is larger than from a rough surface. The structure of the soil-water mixed layer is neglected
and all of the constituents are regarded as evenly distributed. For monitoring floods, the distributions
of reflectance at each band were described using the histograms in Figure 6. True color images of
the Pampanga River make it easy to distinguish flooded and non-flooded areas (Figure 2). Bimodal
distributions of the surface reflectance histograms were more suitable for the separation of the flooded
areas from the non-flooded areas for MODIS band 2 (0.86 µm), band 5 (1.24 µm), and band 6 (1.64 µm)
data. Thus, in the case of the Pampanga River, threshold values from Otsu’s method were determined
as 0.0 ≤ R6 ≤ 0.102, 0.0 ≤ R5 ≤ 0.138, and 0.03 ≤ R2 ≤ 0.148 for MODIS bands 6, 5, and 2, respectively.
We also derived the threshold values for the case of the Poyang and Dongting Lakes, which are
0.0 ≤ R6 ≤ 0.103, 0.0 ≤ R5 ≤ 0.105, and 0.0 ≤ R2 ≤ 0.133 for MODIS bands 6, 5, and 2, respectively.
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Figure 6. Surface reflectance histograms for MODIS bands (a) 1 to (g) 7 on 25 October 2015 around the
Pampanga River basin, Philippines. Clear bimodal distributions appear in the histograms for bands 2,
5, and 6.

Then, the observed surface reflectance values in these bands were matched to color saturations in
each of the red, green, and blue RGB colors as a function of R, using Equations (2)–(4), respectively.

Figure 7 shows the RGB 6-5-2 composite image before and after flooding, respectively, showing
the contrast between water and non-water (vegetation and land) areas. In these images, water ranges
in color from dark blue to navy blue, vegetation appears sky-blue, bare ground is ivory for RGB 6-5-2,
and clouds are white. RGB 6-5-2 delineates the flooded area in the map, and is more useful for setting
the threshold value to derive flood areas than other bands, because near-infrared bands show clear
bimodal distribution in a histogram, as shown in Figure 6.
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Figure 7. RGB 6-5-2 images showing the Pampanga River in the Philippines (a) before the flooding on
16 September 2015 at 02:20 UTC and (b) after the flooding on 25 October 2015 at 02:25 UTC. The satellite
data used is the same as that used in Figure 2. RGB 6-5-2 images of the Poyang and Dongting Lakes
in China (c) before flooding on 27 March 2016 at 03:00 UTC and (d) after flooding on 28 July 2016 at
02:40 UTC.

In the true color image, band 3, which corresponds to the blue light, was not found to be useful
for analyzing the land surface. Instead, MODIS band 2 was a better indicator of the land surface. It is
worth noting that water shows strong absorption in band 2.

3.2. SAR Technique

Figure 8a,b present the backscattering coefficient images of VV-polarized SNTINEL-1A data
around the Pampanga River basin and the Poyang and Dongting Lakes, respectively, within the same
spatial limits. Figure 8c,d show that the histograms of σ0 were more suitable for the separation of the
flooded areas from the non-flooded areas for SENTINEL-1A VV data. Otsu’s method was applied to
determine the threshold values in both cases. The estimated threshold values were 0.0497 for Figure 8a
and 0.0496 for Figure 8b.
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Figure 8. Backscattering coefficient images of VV-polarized SENTINEL-1A data (a) on 25 October 2015
around the Pampanga River basin, Philippines and (b) on 3 August 2016 at 10:27 UTC around the
Poyang and Donting Lakes in China. Backscattering coefficient histograms (c) for case (a) and (d) for
case (b). Otsu’s method was applied to determine the threshold values in both cases.

3.3. Comparison with SAR Analysis

First, we distinguish water features from non-water areas, using the Otsu’s method in each RGB
and SAR image. The calculation of the flooded areas in both images is conducted using the derived
threshold values. The values of the results and thresholds are clarified in Section 3.1.

Figure 9 shows images of estimation and indirect verification of flood areas in small parts of
Figure 7b,d. In Figure 9a, the total number of MODIS pixels in the flooded area was about 1951.
The total flood area was estimated as being 487.75 km2 using 0.5 km MODIS spatial resolution data.
In Figure 9b, the total number of pixels in the flooded area is about 4,863,657 and the flood area was
estimated as being 486.37 km2 with 0.01 km SENTINEL-1A SAR spatial resolution of data, using the
same histogram analysis applied to the RGB composite imagery. The results from RGB analysis and
SAR analysis are in good agreement, with a 1.42 km2 difference in the estimated flood area, which is
reasonable uncertainty. It should be noted that there was a one day time gap between the RGB analysis
and SAR analysis. Similar estimations have been done in the case of the Poyang and Dongting Lakes,
as described in Figure 9c,d. The results from RGB analysis and SAR analysis are in good agreement,
with a 38 km2 difference in the estimated flood area, which is again within reasonable uncertainty.
Note that there was a six day time gap between RGB analysis and SAR analysis.
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3.4. Refractive Index Retrieval Results

In this study, the error analysis of Equations (6) and (8) is performed for the flooding event.
To support the result of an RGB combination, the refractive index is retrieved and validated for soil
and water in these spectral bands.

Figure 10 shows the error of polarized reflectivities between the Fresnel equation, the Hong
approximation, and the ASH approximation for soil and water in the VIS bands. In this case, the
refractive index of the soil at 0.56 µm and water at 0.4 µm is found to be n̂ = 1.405 + 0.01i [83] and
n̂ = 1.339 + 1.86× 10−9i [81], respectively. Soil has a relatively larger value for the imaginary part of
the refractive index than water in this wavelength. However, the analytical approximation exhibits
a good agreement with the Fresnel equation from nadir to about 60◦ for soil and water. The Hong
approximation shows agreement at around nadir and 45◦ viewing angles.

Figure 11 shows the error of the retrieved refractive indexes from the Fresnel equation, Hong
approximation (Equation (6)), and ASH approximation (Equation (8)) for soil and water. In the case of
the Fresnel equation, the error originates from the inversion method (Equation (10)), which greatly
depends on the incidence angle, in good agreement with previous work [85]. In order to retrieve
n (refractive index value for soil and water in VIS band), the analytical approximation is used and
shows accurate results for simulating the Fresnel equation from nadir to about 55◦, with an error
of approximately 20%. The Hong approximation only appears to be accurate at around nadir and
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45◦ viewing angles. The retrieval uncertainty in this case is primarily due to the inversion method
(Equation (10)).
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The real values of the refractive index for dry silica, calcite, soil, pure water, and seawater are
1.48 [86,87], 1.60 [86,88], 1.4 [83], and 1.33 [81], respectively. In this case, the incidence angles of
MODIS data range from nadir to 30◦. Figure 12 shows the result of part of the surface refractive index
using the new combination of RGB 6-5-2bands. Figure 12a,b show the decomposed components
of surface reflectivity for V- and H-polarizations, respectively. As mentioned previously, these
bands were selected from a histogram analysis for RGB imagery flood detection, because they show
high sensitivity to water absorption. Thus, the error of retrieved n due to the inversion methods is
approximately 40% for the Hong approximation, and within 10% for the ASH approximation. As for
the ASH approximation, the n value in the inundation area is retrieved from 1.6 to 2.0, as shown
in Figure 12c. This value is relatively higher than that of the soil-water mixture. However, for the
Hong approximation, the estimated n value in the inundation area ranges from 1.3 to 1.6, as shown
in Figure 12d. In contrast, the values for vegetation and bare soil are greater than 1.6. This result is
congruent because water is known to have a relatively lower value than that of soil. Accordingly, the
refractive indexes of the flood area are generally less than 1.6 in the NIR wavelength, because of the
high portion of water in the soil-water mixture. The larger error in the analytical approximation may
be caused by several assumptions that were made, including the assumption of a specular surface,
which ignores the effects of surface roughness, and the uncertainty of the refractive index inversion
method. Figure 12e,f show the n values for bands 5 and 6, respectively. These results were useful for
understanding the flood events using the new RGB composite imagery, as the color saturation of the
RGB image was based on the surface reflectivities, which in turn depend on the refractive index values
of the surfaces.
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Figure 12. Retrieved V-and H-polarized reflectivities and refractive index over the flood area in the
Pampanga River at band 2 using the Hong and ASH approximations. (a) RV , (b) RH , (c) n(ASH),
(d) n(Hong), (e) n(Hong) at band 5, and (f) n(Hong) at band 6. Hong and ASH indicate Hong
approximation and ASH approximation, respectively.
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4. Conclusions

According to the recent increase in the frequency and magnitude of natural hazards such as
flooding events, satellite remote sensing has become more valuable for disaster monitoring and relief
efforts from the beginning to post-crisis of an event through space. For flood detection, much of the
pioneering work on satellite remote sensing, including VIS and NIR sensors such as AVHRR and
MODIS, has been done during the past three decades. Estimations of flooded areas serve as important
input information for the models used for determining the extent of natural disasters and for making
decisions regarding the recovery plans for the damaged areas. In particular, MODIS onboard the Aqua
and Terra satellites is very useful for mapping the inundation area. In this study, the suitability of RGB
composite image techniques for flood mapping based on the MODIS data is assessed for the flood area
with a flood event at Pampanga River in the Philippines, in 2015. Methodologically, the RGB composite
imagery of the MODIS 6-5-2 bands among many combinations of bands is suggested, because of their
spectral sensitivity to distinguish water and soil/vegetation. The total flood area was estimated as
being 499.5 km2 and is compared to the SAR analysis results of 483.3 km2, within a reasonable level of
uncertainty. In addition, the RGB estimation is supported by the retrieval of the refractive index in the
inundation area. The n value of the refractive index in the inundation area is estimated from 1.3 to 1.6
using the Hong approximation, and from 1.6 to 2.0 using the ASH approximation. The error in the
estimated value may be caused by several assumptions that were made, including the assumption of a
specular surface, which ignores the effects of surface roughness and the uncertainty of the refractive
index inversion method.

Consequently, this study provides a useful RGB imagery technique for mapping flood events
using a physical validation based on the refractive index. The technique can be applied to a variety of
spectral ranges from ultraviolet to microwave wavelengths.
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