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Abstract: Recently, graph embedding has drawn great attention for dimensionality reduction in
hyperspectral imagery. For example, locality preserving projection (LPP) utilizes typical Euclidean
distance in a heat kernel to create an affinity matrix and projects the high-dimensional data into
a lower-dimensional space. However, the Euclidean distance is not sufficiently correlated with
intrinsic spectral variation of a material, which may result in inappropriate graph representation.
In this work, a graph-based discriminant analysis with spectral similarity (denoted as GDA-SS)
measurement is proposed, which fully considers curves changing description among spectral bands.
Experimental results based on real hyperspectral images demonstrate that the proposed method is
superior to traditional methods, such as supervised LPP, and the state-of-the-art sparse graph-based
discriminant analysis (SGDA).
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1. Introduction

Remote sensing big data are always in a large spatial scale. Hyperspectral remote sensing
imagery, especially for Earth observation, gives rise to dense spectral sampling, resulting in a large
spectral dimension as well. In hyperspectral image analysis, the wealthy spectral information at the
cost of high spectral dimensionality can better classify the materials in an observed area. However,
high dimensionality leads to the curse of the dimensionality problem, which causes classification
performance to deteriorate, especially when the number of available labeled training samples is
limited [1–6].

Dimensionality reduction is usually applied as a preprocessing step in hyperspectral image
analysis to remove redundant features and preserve useful information in a low-dimensional subspace.
Projection-based strategy is a common technique of dimensionality reduction, of which the essence is to
seek an optimal mapping matrix and then project the original data into a lower dimensional subspace.
This strategy contains both unsupervised technologies such as principal component analysis (PCA) [7],
the maximum-noise-fraction (MNF) transform and supervised approaches like linear discriminate
analysis (LDA), and local Fisher discriminate analysis (LFDA) [8,9]. PCA endeavors to find a linear
transformation through maximizing the variance in the projected subspace, whereas LDA tries to
maximize the trace ratio between-class scatter and the within-class scatter.
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In the past few years, graph theory [10] that describes the geometric structures of data has
been successfully applied to dimensionality reduction. The main idea of graph-based discriminate
analysis (GDA) is a sparse eigenvalue problem, i.e., constructing a block-diagonal affinity matrix
with different labels whose nonzero elements represent the relationship between a pair data points
belonging to the same labeled samples. Depending on the affinity matrix, a series of algorithms such
as local linear embedding (LLE) [11], Laplace Eigenmap (LE) [12], and locality preserving projection
(LPP) [13,14] can be derived for different tasks like data visualization and subspace learning. In [10],
a general graph-embedding (GE) framework was proposed to summarize a lot of existing manifold
learning algorithms. It was noted that the key of GE is to construct a similarity graph that can
reflect the critical information in the original data. Besides aforementioned algorithms, some popular
graph-based algorithms include unsupervised discriminant projection (UDP) [15], Marginal Fisher
analysis (MFA) [10], linear discriminant projection (LDP) [16], sparse preserving projection [17] and
various extensions [18–21].

Unlike PCA and LDA, these graph-embedding algorithms do not assume that the data obey
the Gaussian distribution; thus, they are more suitable for discriminate analysis. The essence of
those graph-based algorithms aforementioned is constructing different similarity graphs. In existing
literature, there are mainly two popular approaches for graph construction. The one is based on
pairwise distance (e.g.,Euclidean distance), the other is based on reconstruction coefficients (e.g., sparse
representation). The former has been successfully used in ISOMAP, supervised LPP (SLPP) [13,14],
etc., and obtains some excellent performance. The latter has attracted a lot of interest because of
the wide application of `p-norm. Recently, sparse graph-based discriminate analysis (SGDA) [22],
collaborative graph-based discriminate analysis (CGDA) [23], and semi-supervised double sparse
graphs (sDSG) [24] have demonstrated their effectiveness.

Different from traditional imagery, hyperspectral remote sensing imagery has a vital feature,
i.e., each pixel is a high-dimensional vector. Such a vector intuitively reveals spectral reflectance of
the objects in different wave bands. In an ideal situation, the same objects have the same spectral
signatures. However, in the real world, hyperspectral imagery data may be interfered with to some
extent because of the sensor or external factors such as atmosphere and illumination. Euclidean
distance is usually used to evaluate the similarity between two vectors, whereas it is easily disturbed
when the vector has some extreme point. Motivated by aforementioned algorithms and the special
intrinsic feature of hyperspectral data, a novel graph-based discriminate analysis via spectral similarity
(denoted as GDA-SS) is proposed in this work. The spectral similarity measurement is based on
spectral characteristics to construct a similarity graph. The proposed method utilizes the absolute
difference of pairwise pixels and sets a threshold to evaluate the similarity. The main contributions in
this work are summarized as follows: (1) GDA-SS takes full advantage of spectral characteristics, which
makes, as many as bands in hyperspectral imagery, more sense; and (2) GDA-SS directly evaluates the
similarity on the spectral bands and applies the proportionality coefficient to represent a discriminant
graph, which makes the similarity clear at a glance.

The remainder of this paper is organized as follows. Section 2 reviews the graph-embedding
dimensionality reduction framework and the similarity graph in SLPP and SGDA. Section 3 primarily
describes the proposed GDA-SS algorithm in detail as well as the feasibility. Section 4 validates
the proposed approach and reports classification results, comparing them to several state-of-the-art
alternatives. Section 5 summarizes this work.

2. Related Work

2.1. Graph-Embedding Dimensionality Reduction Framework

Let a hyperspectral dataset with M samples be denoted as X = {xi}M
i=1 in a Rd×1 feature space,

where d is the number of bands. In the graph theory, an intrinsic graph among the pixels is denoted as
G = {X, W} with W being an affinity matrix, and a penalty graph is represented as Gp = {X, Wp}
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with Wp being a penalty weight matrix. Let C be the number of classes, ml be the number of available
labeled samples in the lth class, and ∑ C

l=1ml = M.
The graph-embedding dimensionality reduction framework [10,25] endeavors to seek a d× K

projection matrix P (with K � d), which results in a low-dimensional subspace Y = PTX. The goal
is to maintain class separability by preserving the relationship of data points in the original space.
The objective function can be mathematically formed as,

P̃ = arg min
PTXLpXTP

∑
i 6=j

∥∥PTxi − PTxj
∥∥2Wi,j

= arg min
PTXLpXTP

tr(PTXLXTP),
(1)

where L is the Laplacian matrix of graph G, L = D−W, D is a diagonal matrix with the ith diagonal
element being Dii = ∑M

j=1 Wi,j, and Lp may be the Laplacian matrix of the penalty graph Gp or a simple
scale normalization constraint [10]. The optimal projection matrix P can be obtained as,

P̃ = arg min
P

|PTXLXTP|
|PTXLpXTP| , (2)

which can be solved as a generalized eigenvalue decomposition problem,

XLXTP = ΛXLpXTP, (3)

where Λ is a diagonal eigenvalue matrix. For a d× K projection matrix P, it is constructed by the
K eigenvectors corresponding to the K smallest nonzero eigenvalues. Note that the performance of
graph-embedding-based dimensionality-reduction algorithms mainly depends on the choice of G.

2.2. Similarity Graph in LPP and SGDA

Recently, various graph-based algorithms are demonstrated to be effective for solving
dimensionality reduction problems in high-dimensional data [26–29]. How to construct the similarity
graph plays a vital role in these algorithms. The performance of these methods largely hinges on whether
the graph can accurately distinguish the similarity and dissimilarity among data points, even when the
data contain noise. In this section, two popular approaches to construct affinity graphs are summarized.

The first approach is pairwise distance. In this part, the most popular metric is Euclidean distance
with Heat Kernel, typically used in LPP [13], i.e.,

sim(xi, xj) = exp
‖xi−xj‖2

2
τ , (4)

where sim(·) represents the similarity function, xi and xj denote data points (vector), and parameter
τ denotes the width of the Heat Kernel.

This metric has been applied in various domains such as face recognition [30] and anomaly
detection [31]. However, it is generally known that the pairwise distance is very sensitive to the
noise and outliers because its measurement just depends on the corresponding two data points. Thus,
the algorithms based on the first strategy may fail to manage noise corrupted data.

The other approach for building graphs is the reconstruction coefficients, typically used in
SGDA [22]. Sparse representation utilizes a few bases to represent each data point, which is successfully
used in data representation. The original formula is expressed as

W = arg min ‖W‖1

s.t. X = XW, diag(W) = 0, (5)

where W is the affinity matrix and ‖·‖ denotes the `1-norm. Because of the classes of the labeled
samples, W can be written as,
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W(1) 0 · · · 0

0 W(2) · · · 0
...

...
. . .

...
0 · · · 0 W(C)

 , (6)

where W(i) is the sparse representation matrix whose size is Mi ×Mi for the samples in the ith class
using the Mi samples just belonging to Ci.

3. Proposed GDA-SS

In this section, the proposed method, i.e., GDA-SS, is introduced in detail. GDA-SS is motivated
by simple spectral operations as illustrated in Figure 1. The training samples are randomly
chosen to construct a similarity graph using the proposed spectral similarity measurement; then,
graph-embedding dimensionality reduction framework is applied to project the samples into lower
dimensional subspace. Because each spectral vector reveals the spectral information in a certain
wavelength range, the proposed approach can translate the characteristic into a similarity graph well.

Figure 1. The flowchart and the motivation of the proposed GDA-SS.

3.1. GDA-SS

Considering xi, xj is in the same class as the hyperspectral data, the difference of these two samples
can be written as

xsub =
∣∣xi − xj

∣∣ , (7)

where |·| denotes the absolute value. It is obvious that the subtraction can reveal the difference between
two spectral pixels. After that, the subtraction needs a threshold to constrain the similarity distance.
In fact, pixels may be disturbed by a sensor noise to some degree. Thus, in order to take the edge off
the noise, a ratio of average subtraction is applied to measure the similarity. That is, the threshold Td is
represented as

Td = avg(xsub)× η, (8)

where avg(·) denotes the average value of elements in xsub, and η is an adjustment parameter.
In experiments, the average value is replaced by that from a set of pair-wise differences in the same class.
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When the threshold Td is confirmed, the similarity can be calculated by comparing xsub with Td.
The number of elements whose values are less than Td is counted. Then, the similarity between xi and
xj is determined as

sim(xi, xj) =
∑(xsub < Td)

d
, (9)

which is the ijth element in matrix W, and d is the number of bands. To make the W even more sparse,
the elements in W less than another given threshold Ts are set to zero. According to the difference in
individual classes, separate threshold Tl

s can be set,

Tl
s = max(Wl)× γ, (10)

where Wl denotes pair-wise similarity of samples in the lth class, and γ is a sparsity-controlling parameter.

3.2. Analysis on GDA-SS

For a hyperspectral image, spectrum is the important characteristic, which makes the pixel-level
classification a reality. However, each pixel may be interfered with by noise (such as some inevitable
random noise). In this way, the parameters are very important for adjusting the data-dependent
features. The benefit of this proposed approach is that spectral similarity between two pixels is
calculated by chosen bands not all the bands, through thresholding the spectral difference. With the
chosen bands, trivial spectral variations and additive noise can be alleviated, resulting in better
representation of spectral similarity.

In GDA-SS, there are two important parameters, i.e., η and γ, controlling the spectral similarity
and sparseness, respectively. We illustrate three-class synthetic data (here, three classes are chosen
from the University of Pavia data that will be introduced in Section 4) to demonstrate the sensitivity
of these two parameters. The typical support vector machine (SVM) [32,33] is employed to measure
the classification accuracy. The signal-to-noise ratio (SNR) of 20 dB and 30 dB Gaussian noise [34]
and infinite (here, Inf means that no additional noise is used) is simulated. Figure 2 illustrates the
graph matrix learned by GDA-SS with the pre-setting parameters. When the dimensionality is reduced
to 25, the best classification accuracies are 98.25%, 99.25%, and 99.50%, respectively, and we obtain
corresponding controlling parameters, i.e., η and γ, as shown in Figure 2. Note that when the SNR is
smaller, the resulting parameter η is larger. This is because too much noise can affect the threshold
Td. Under the situation, η needs to change for suiting the situation. In general, the higher SNR needs
larger η because Equation (9) requires a litter higher tolerance. As for parameter γ, its function (role) is
to control the sparseness of graph matrix. Compared to Figure 2a,c, even though the γ value is the
same, the η value is significantly different, which results in the sparsity in Figure 2a being worse than
that in Figure 2c. It demonstrates that controlling parameters γ and η can adaptively tune the sparsity,
and when the SNR is larger, the sparsity may be worse.

(a) 20 dB (b) 30 dB (c) Inf

Figure 2. Visualization of various graph weights: (a) η = 0.9, γ = 0.8; (b) η = 0.7, γ = 0.9; and (c) η = 0.3,
γ = 0.8.
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4. Experimental Results

4.1. Hyperspectral Data

In experiments, real hyperspectral data sets have been used to test the proposed method. The first
dataset (http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes)
employed in the experiment was acquired using National Aeronautics and Space Administration’s
(NASA) Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor over Salinas Valley, Central
Coast of California, in 1998. The image includes 512× 217 pixels with a high spatial resolution of 3.7 m
and 204 bands after 20 water absorption bands are removed. It mainly contains vegetables, bare soils,
and vineyard fields. There are also 16 classes, and the number of training and testing samples are
listed in Table 1, where 5% of the labeled samples in each class are randomly chosen to be training
samples and the rest for testing samples.

Table 1. SVM class-specific accuracy (%), overall accuracy (OA) and average accuracy (AA) of different
techniques for the Salinas dataset.

Class Train Test LDA SLPP SGDA GDA-SS

1 Brocoli-green-weeds-1 100 1909 99.75 100 99.63 99.90
2 Brocoli-green-weeds-2 186 3540 99.79 99.97 99.97 99.97
3 Fallow 99 1877 99.75 99.68 99.84 99.79
4 Fallow-rough-plow 70 1324 99.64 99.32 99.09 98.94
5 Fallow-smooth 134 2544 98.54 98.47 98.43 98.43
6 Stubble 198 3761 99.77 99.28 99.31 99.34
7 Celery 179 3400 99.80 99.82 99.71 99.74
8 Grapes-untrained 564 10,707 84.38 86.79 89.33 89.93
9 Soil-vinyard-develop 310 5893 98.19 99.64 99.63 99.78

10 Corn-senesced-green-weeds 164 3114 97.99 96.82 97.11 97.69
11 Lettuce-romaine-4wk 53 1015 98.31 97.04 99.21 98.72
12 Lettuce-romaine-5wk 96 1831 99.74 99.73 99.89 99.89
13 Lettuce-romaine-6wk 46 870 98.69 98.74 98.16 98.51
14 Lettuce-romaine-7wk 54 1016 96.45 95.18 92.52 95.28
15 Vinyard-untrained 363 6905 60.66 63.50 71.06 70.33
16 Vinyard-vertical-trellis 90 1717 99.39 99.20 99.30 99.30

OA 90.85 91.94 93.26 93.40
AA 95.68 95.83 96.39 96.59

The second experimental dataset was collected by the Reflective Optics System Imaging
Spectrometer (ROSIS) sensor over the city of Pavia, northern Italy. The one is a Pavia University
scene, which covers a spatial coverage of 610× 340 pixels. The dataset has 103 spectral bands prior to
water-band removal with a spectral coverage from 0.43- to 0.86-µm and a spatial resolution of 1.3 m.
Approximately 42,776 labeled pixels with nine classes are from the ground truth map. In this dataset,
8% of the labeled samples are randomly selected for training and the rest for testing. More detailed
information of the number of training and testing samples are summarized in Table 2.

4.2. Parameter Tuning

The classical SVM is employed to validate the aforementioned dimensionality-reduction methods,
including LDA, SLLP, SGDA, and GDA-SS. A fivefold cross-validation strategy is employed for tuning
parameters in classification tasks.

Figure 3 illustrates the sensitivity of the proposed GDA-SS as functions of two parameters (i.e.,
η and γ) in the objective functions (e.g., Equations (8) and (10)). In the experiment, η is chosen from
0.1 to 1.3, where the interval is 0.2 and γ is chosen from 0 to 0.9, where the interval is 0.1. Noted
that the parameter η can be chosen as greater than 1 due to considering that the data may be pure.
However, η cannot be greater; if so, the measurement may contain more errors. It is obvious that when
the parameter γ is chosen as 0, the similarity matrix is theoretically no longer “sparse”. Optimal η and

http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
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γ are determined for GDA-SS from the results in Figure 3. For example, according to the validation
classification accuracy, the best η of GDA-SS is 0.7 and the one of γ is 0.9 for the Salinas data; and
for the University of Pavia dataset, η is set to 0.3 and γ is set to 0.7. It is worth mentioning that a
nonzero value of γ verifies that the “sparseness” ratio can have an impact on the dimensionality
reduction process.

Table 2. SVM class-specific accuracy (%), overall accuracy (OA) and average accuracy (AA) of different
techniques for the University of Pavia dataset.

Class Train Test LDA SLPP SGDA GDA-SS

1 Asphalt 530 6101 93.39 91.51 92.17 95.33
2 Meadows 1492 17,157 96.36 95.68 96.96 97.65
3 Gravel 168 1931 58.74 64.16 62.40 70.53
4 Trees 245 2819 90.86 90.49 94.08 93.33
5 Painted Metal Sheets 108 1237 99.48 99.60 99.76 99.84
6 Bare Soil 402 4627 78.99 76.92 88.48 92.33
7 Bitumen 106 1224 75.41 66.26 76.88 79.33
8 Self-Blocking Bricks 295 3387 86.11 82.70 87.95 91.23
9 Shadows 76 871 99.37 99.77 95.14 99.89

OA 90.51 89.09 92.56 94.02
AA 86.52 85.23 88.73 91.05
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Figure 3. Parameter tuning of η and γ for the proposed GDA-SS using two experimental datasets.
(a) Salinas; (b) Pavia University.
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To demonstrate the effect of the dimensionality of the projected subspace on the performance
of the proposed methods, Figure 4 illustrates the classification accuracy as a function of the
reduced-dimensionality K for LDA, SLPP, SGDA and GDA-SS. SLPP is chosen for comparison because
all of the methods are supervised. It is obvious that the performance tends to be stable when the
dimensionality is larger than a certain value. For the Salinas dataset, a reduced dimension of 25 appears
to be sufficient, whereas approximately 10 is enough for the University of Pavia dataset. Based on
the curves in Figure 4, for a low dimensionality, classification accuracy is often not high, while that
of GDA-SS is always better than LDA, SLPP, and SGDA. For the Salinas data, when the reduced
dimensionality is more than 25, the performance of SGDA tends to decline, whereas GDA-SS tends
to be stable. Furthermore, when the reduced dimensionality is smaller than 7, the proposed GDA-SS
is superior to SGDA. Thus, this result further confirms that the proposed strategy is able to find a
transform that can effectively reduce the dimensionality while enhancing class separability.
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Figure 4. Classification accuracy versus reduced-dimensionality K for methods using the experimental
datasets. (a) Salinas; (b) Pavia University.

4.3. Classification Performance

In order to further evaluate the performance of GDA-SS, we compare the proposed method
with the traditional LDA, SLPP and the state-of-the-art SGDA in each optimal dimensionality,
respectively. Tables 1 and 2 list the class-specific accuracy, overall accuracy and average accuracy for
the experimental datasets. From the results of each method, the traditional LDA and SLPP are usually
a little worse than state-of-the-art SGDA since `1-norm can better capture the data structure. However,
the proposed GDA-SS with sparse-controlling parameter γ can be better than SGDA. For example,
in Table 2, GDA-SS (i.e., 94.02%) yields over 1% higher accuracy than SGDA (i.e., 92.56%). Meanwhile,
the γ, which is set to 0.7, verifies that the similarity is “sparse”.
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Figures 5 and 6 further illustrate the thematic maps. We produce ground-cover maps of the entire
image scene for these images (including unlabeled pixels). However, to facilitate easy comparison
between methods, only areas for which we have ground truth are shown in these maps. These maps
are consistent with the results listed in Tables 1 and 2, respectively. Some areas in the classification
maps produced by GDA-SS are obviously less noisy than these of SGDA, e.g., the regions of Bare soil
and Bricks in Figure 6. Figure 7 further shows the comparisons between the proposed GDA-SS and
these traditional methods with different numbers of training samples. For the Salinas data, the training
size is changed from 0.01 to 0.05 (note that 0.05 is the ratio of number of training samples to the total
labeled data). It is obvious that the classification performance of the proposed GDA-SS is competitive
to the state-of-the-art SGDA. For the University of Pavia data, the improvement always keeps as 1%.

(a) (b) (c)

(d) (e) (f)

Weeds1 Weeds2 Fallow Fallow rough plow
Fallow smooth Stubble Celery Grapes

Soil Corn Lettuce 4wk Lettuce 5wk
Lettuce 6wk Lettuce 7wk Vinyard untrained Vinyard trellis

Figure 5. Thematic maps resulting from classification for the Salinas dataset with 16 classes.
(a) pseudo-color image; (b) ground truth map; (c) LDA: 90.85%; (d) SLPP: 91.94%; (e) SGDA: 93.26%;
(f) GDA-SS: 93.40%.

In Table 3, the standardized McNemar’s test [35] is employed to testify the improvement.
The Z values of McNemar’s test larger than 2.58 mean that two classification results are statistically
different at a 99% confidence level. According to our experimental results, the Z values between
GDA-SS and SGDA, SLPP, and LDA are always larger than 2.58, which confirms that the proposed
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GDA-SS is able to highly discriminate between the different classes. For example, even though the
classification accuracy of SGDA and GDA-SS is close for the Salinas data, the Z value between these
two methods is 4.91, which indicates that the improvement is significant.

(a) (b) (c)

(d) (e) (f)

Unlabeled Asphalt Meadows Gravel Trees
Metal sheets Bare soil Bitumen Bricks Shadows

Figure 6. Thematic maps resulting from classification for the University of Pavia dataset with nine
classes. (a) pseudo-color image; (b) ground truth map; (c) LDA: 90.51%; (d) SLPP: 89.09%; (e) SGDA:
92.56%; (f) GDA-SS: 94.02%.

Table 3. Statistical significance from the Standardized McNemar’s Test about the difference
between methods.

Salinas Z/Significant? University of Pavia Z/Significant?

GDA-SS vs. SGDA

4.91/yes 12.33/yes

GDA-SS vs. SLPP

16.87/yes 35.17/yes

GDA-SS vs. LDA

18.56/yes 33.55/yes
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Figure 7. Classification performance of methods with different numbers of training sample sizes using
the experimental datasets. (a) Salinas; (b) Pavia University.

4.4. More Robustness Test of GDA-SS

Additional discussion on graph construction with distance similarity is presented. For graph-
based dimensionality reduction methods, the most important part is to construct an informative graph.
Here, several distance-similarity approaches, including cosine, Jaccard, and correlation coefficient,
are employed to evaluate the spectral similarity measurement under the framework of GDA-SS in
Table 4. Compared with the proposed one, these traditional distance-similarity metrics provide worse
performance, although all the accuracy values are higher than 90%. The experiment verifies that the
proposed method is more effective in measuring spectral similarity.

Table 4. Classification evaluation on graph construction with different distance-similarity metrics.

Distance Datasets Salinas Univesity of Pavia

Proposed 93.40 94.02
Cosine 91.92 91.13
Jaccard 92.01 90.83

Correlation 91.91 91.18
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Furthermore, considering that hyperspectral spectra contain noise, aforementioned dimension
reduction methods are compared after noise filtering techniques are applied. Here, two commonly-used
filtering methods (i.e., local average filter and wavelet de-noising) are employed as preprocesses for
these experimental datasets. In Table 5, it shows that denoising has no obvious impact on these
algorithms for the University of Pavia dataset. However for the Salinas dataset, the accuracies of SGDA
and LDA are slightly improved, and GDA-SS still maintains a high accuracy, which demonstrates that
GDA-SS is less sensitive to noise.

Table 5. Classification results after applying noise filtering techniques.

Salinas University of Pavia

No Average Wavelet No Average Wavelet
Filter Filter De-Noising Filter Filter De-Noising

GDA-SS 93.40 93.41 93.40 94.02 94.08 94.05
SGDA 93.26 93.46 93.41 92.56 92.93 92.76
SLPP 91.94 91.95 91.74 89.09 89.08 89.02
LDA 90.85 92.24 92.24 90.51 89.51 89.59

5. Conclusions

In this paper, a graph-based discriminant analysis via spectral similarity (GDA-SS) framework
was proposed. In this method, spectral similarity using chosen band information was incorporated
into the affinity matrix, and similarity measurement is less affected by trivial spectral variation and
noise. The controlling parameters η and γ were validated to be effective for constructing affinity
matrix, from the perspectives of spectral similarity and sparseness. The results of real hyperspectral
images demonstrated that the proposed GDA-SS is superior to the traditional LDA, SLPP, and the
state-of-the-art SGDA, even under small-sample-size situations. Moreover, the computational cost of
GDA-SS is much lower than SGDA because only simple arithmetic operations are involved during
graph construction. This makes it potentially more suitable to solve big data problems.

Acknowledgments: This work was supported by the National Natural Science Foundation of China under
Grant Nos. NSFC-91638201, 61571033, and partly by the Higher Education and High-Quality and World-Class
Universities under Grant No. PY201619.

Author Contributions: All authors conceived and designed the study. Fubiao Feng carried out the experiments.
All authors discussed the basic structure of the manuscript, and Fubiao Feng finished the first draft. Wei Li,
Qian Du, and Bing Zhang reviewed and edited the draft.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Prasad, S.; Li, W.; Fowler, J.E.; Bruce, L.M. Information Fusion in the Redundant-Wavelet-Transform Domain
for Noise-Robust Hyperspectral Classification. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3474–3486.

2. Du, B.; Zhang, L.; Zhang, L.; Chen, T.; Wu, K. A Discriminative Manifold Learning Based Dimension
Reduction Method for Hyperspectral Classification. Int. J. Fuzzy Syst. 2012, 14, 272–277.

3. Gao, L.; Li, J.; Khodadadzadeha, M.; Plaza, A.; Zhang, B.; He, Z.; Yan, H. Subspace-Based Support Vector
Machines for Hyperspectral Image Classification. IEEE Geosci. Remote Sens. Lett. 2015, 12, 349–353.

4. Li, W.; Tramel, E.W.; Prasad, S.; Fowler, J.E. Nearest Regularized Subspace for Hyperspectral Classification.
IEEE Trans. Geosci. Remote Sens. 2014, 52, 477–489.

5. Li, W.; Chen, C.; Su, H.; Du, Q. Local Binary Patterns and Extreme Learning Machine for Hyperspectral
Imagery Classification. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3681–3693.

6. Gu, Y.; Liu, T.; Jia, X.; Benediktsson, J.A.; Chanussot, J. Nonlinear Multiple Kernel Learning with
Multiple-Structure-Element Extended Morphological Profiles for Hyperspectral Image Classification.
IEEE Trans. Geosci. Remote Sens. 2016, 54, 3235–3247.



Remote Sens. 2017, 9, 323 13 of 14

7. Prasad, S.; Bruce, L.M. Limitations of Principal Component Analysis for Hyperspectral Target Recognition.
IEEE Geosci. Remote Sens. Lett. 2008, 5, 625–629.

8. Li, W.; Prasad, S.; Fowler, J.E.; Bruce, L.M. Locality-Preserving Dimensionality Reduction and Classification
for Hyperspectral Image Analysis. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1185–1198.

9. Li, W.; Prasad, S.; Fowler, J.E. Hyperspectral Image Classification Using Gaussian Mixture Model and
Markov Random Field. IEEE Geosci. Remote Sens. Lett. 2014, 11, 153–157.

10. Yan, S.; Xu, D.; Zhang, B.; Zhang, H.J.; Yang, Q.; Lin, S. Graph Embedding and Extensions: A General
Framework for Dimensionality Reduction. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29, 40–51.

11. Roweis, S.T.; Saul, L.K. Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science 2000,
290, 2323–2326.

12. Belkin, M.; Niyogi, P. Laplacian eigenmaps and spectral techniques for embedding and clustering.
In Proceedings of the Neural Information Processing Systems: Natural and Synthetic, Vancouver, BC,
Canada, 3–8 December 2001; Volume 14, pp. 585–591.

13. He, X.; Niyogi, P. Locality Preserving Projections. In Advances in Neural Information Processing System;
Thrun, S., Saul, L., Schölkopf, B., Eds.; MIT Press: Cambridge, MA, USA, 2004.

14. Zhai, Y.; Zhang, L.; Wang, N.; Guo, Y.; Cen, Y.; Wu, T.; Tong, Q. A Modified Locality Preserving Projection
Approach for Hyperspectral Image Classification. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1059–1063.

15. Yang, J.; Zhang, D.; Yang, J.; Niu, B. Globally maximizing, locally minimizing: unsupervised discriminant
projection with applications to face and palm biometrics. IEEE Trans. Pattern Anal. Mach. Intell. 2007,
29, 650–664.

16. Cai, H.; Mikolajczyk, K.; Matas, J. Learning linear discriminant projections for dimensionality reduction of
image descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33, 338–352.

17. Qiao, L.; Chen, S.; Tan, X. Sparsity Preserving Projections with Applications to Face Recognition.
Pattern Recognit. 2010, 43, 331–341.

18. Kokiopoulou, E.; Saad, Y. Enhanced graph-based dimensionality reduction with repulsion Laplaceans.
Pattern Recognit. 2009, 42, 2392–2402.

19. Zhang, L.; Qiao, L.; Chen, S. Graph-optimized locality preserving projections. Pattern Recognit. 2010,
43, 1993–2002.

20. Zhang, L.; Chen, S.; Qiao, L. Graph optimization for dimensionality reduction with sparsity constraints.
Pattern Recognit. 2012, 45, 1205–1210.

21. Peng, X.; Zhang, L.; Yi, Z.; Tan, K.K. Learning Locality-Constrained Collaborative Representation for Robust
Face Recognition. Pattern Recognit. 2014, 47, 2794–2806.

22. Ly, N.; Du, Q.; Fowler, J.E. Sparse Graph-Based Discriminant Analysis for Hyperspectral Imagery. IEEE Trans.
Geosci. Remote Sens. 2014, 52, 3872–3884.

23. Ly, N.; Du, Q.; Fowler, J.E. Collaborative Graph-Based Discriminant Analysis for Hyperspectral Imagery.
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2688–2696.

24. Chen, P.; Jiao, L.; Liu, F.; Zhao, J.; Zhao, Z.; Liu, S. Semi-supervised double sparse graphs based discriminant
analysis for dimensionality reduction. Pattern Recognit. 2017, 61, 361–378.

25. Cheng, B.; Yang, J.; Yan, S.; Fu, Y.; Huang, T.S. Learning With `1-Graph for Image Analysis. IEEE Trans.
Image Process. 2010, 19, 858–866.

26. He, W.; Zhang, H.; Zhang, L.; Philips, W.; Liao, W. Weighted Sparse Graph Based Dimensionality Reduction
for Hyperspectral Images. IEEE Geosci. Remote Sens. Lett. 2016, 13, 686–690.

27. Li, W.; Du, Q. Laplacian Regularized Collaborative Graph for Discriminant Analysis of Hyperspectral
Imagery. IEEE Trans. Geosci. Remote Sens. 2016, 54, 7066–7076.

28. Tan, K.; Zhou, S.; Du, Q. Semi-supervised Discriminant Analysis for Hyperspectral Imagery with
Block-Sparse Graph. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1765–1769.

29. Li, W.; Liu, J.; Du, Q. Sparse and Low-Rank Graph for Discriminant analysis of Hyperspectral Imagery.
IEEE Trans. Geosci. Remote Sens. 2016, 54, 4094–4105.

30. He, X.; Yan, S.; Hu, Y.; Niyogi, P.; Zhang, H.J. Face recognition using Laplacianfaces. IEEE Trans. Pattern
Anal. Mach. Intell. 2005, 27, 328–340.

31. Zhao, R.; Du, B.; Zhang, L. A robust nonlinear hyperspectral anomaly detection approach. IEEE J. Sel. Top.
Appl. Earth Obs. Remote Sens. 2014, 7, 1227–1234.



Remote Sens. 2017, 9, 323 14 of 14

32. Platt, J. Advances in Large Margin Classifiers. In Probabilistic Outputs for Support Vector Machines and
Comparison to Regularized Likelihood Methods; Smola, A., Ed.; MIT Press: Cambridge, MA, USA, 1999.

33. Li, C.H.; Kuo, B.C.; Lin, C.T.; Huang, C.S. A Spatial-Contextual Support Vector Machine for Remotely Sensed
Image Classification. IEEE Trans. Geosci. Remote Sens. 2012, 50, 784–799.

34. Chen, G.; Qian, S.E. Denoising of Hyperspectral Imagery Using Principal Component Analysis and Wavelet
Shrinkage. IEEE Trans. Geosci. Remote Sens. 2011, 49, 973–980.

35. Villa, A.; Benediktsson, J.A.; Chanussot, J.; Jutten, C. Hyperspectral image classification with independent
component discriminant analysis. IEEE Trans. Geosci. Remote Sens. 2011, 49, 4865–4876.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Graph-Embedding Dimensionality Reduction Framework
	Similarity Graph in LPP and SGDA

	Proposed GDA-SS
	GDA-SS 
	Analysis on GDA-SS

	Experimental Results
	Hyperspectral Data
	Parameter Tuning
	Classification Performance
	More Robustness Test of GDA-SS

	Conclusions

