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Abstract: In this research, a semi-automated building damage detection system is addressed under
the umbrella of high-spatial resolution remotely sensed images. The aim of this study was to develop
a semi-automated fuzzy decision making system using Genetic Algorithm (GA). Our proposed
system contains four main stages. In the first stage, post-event optical images were pre-processed.
In the second stage, textural features were extracted from the pre-processed post-event optical images
using Haralick texture extraction method. Afterwards, in the third stage, a semi-automated Fuzzy-GA
(Fuzzy Genetic Algorithm) decision making system was used to identify damaged buildings from the
extracted texture features. In the fourth stage, a comprehensive sensitivity analysis was performed
to achieve parameters of GA leading to more accurate results. Finally, the accuracy of results
was assessed using check and test samples. The proposed system was tested over the 2010 Haiti
earthquake (Area 1 and Area 2) and the 2003 Bam earthquake (Area 3). The proposed system
resulted in overall accuracies of 76.88 ± 1.22%, 65.43 ± 0.29%, and 90.96 ± 0.15% over Area 1, Area 2,
and Area 3, respectively. On the one hand, based on the concept of the proposed Fuzzy-GA decision
making system, the automation level of this system is higher than other existing systems. On the
other hand, based on the accuracy of our proposed system and four advanced machine learning
techniques, i.e., bagging, boosting, random forests, and support vector machine, in the detection of
damaged buildings, it seems that our proposed system is robust and efficient.

Keywords: building damage detection; Fuzzy-GA decision making system; machine learning
techniques; optical remotely sensed images; sensitivity analysis; texture analysis

1. Introduction

Detecting damaged buildings after a massive disaster in a robust manner is a critical task,
because it helps relief and rescue teams to manage related works accurately and precisely and then
may reduce losses. Hence, the production of accurate building damage maps after disasters would
help relief and rescue teams in emergency situations. Remote sensing (RS) data is one of the sources
which can be used for generating building damage maps. Due to specific characteristics of the RS data
such as its high temporal frequency and the availability of various sensors with different spatial and
spectral resolutions, it plays an important role in producing building damage maps. Satellite optical
images, as a source of the RS data, have been frequently used to produce damage maps [1]. In this
study, we present a novel semi-automated decision making system based on the fuzzy theory and
genetic algorithm (GA) in order to produce the building damage maps. Our proposed system can be
used as a knowledge extraction tool in future works. Knowledge extraction is a necessary stage in
order to convert a semi-structured problem into a structured one [2].
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1.1. Literature Review

The existing damage detection methods can be discussed from viewpoints of data used and
methodology. From the perspective of data used, researchers employed different sources of RS data,
including Light Detection and Ranging (LiDAR) [3], Synthetic Aperture Radar (SAR) [4–9], and optical
imagery [10–12]. Optical satellite imagery is one of the useful sources in building damage detection
process. Disasters may damage components of a building. A building’s roof is one of these components.
Optical satellite sensors usually observe the roof of buildings. The spectral signature is the outcome of
an optical satellite sensor. The spectral signature of each phenomenon is unique. Therefore, spectral
signatures of a damaged roof and an intact roof are different from each other. For this reason, spectral
signatures obtained from optical satellite sensors or their extracted features are suitable for detecting
damaged buildings [2,13].

From the viewpoint of the methodology, presenting a comprehensive analysis about existing
methods used in damage detection application is a difficult task, because there are many research
studies. Therefore, we attempt to mention the related works to our research. In this study, we propose
a fuzzy decision making system in order to detect damaged buildings from textural features extracted
from post-event optical images. Hence, the literature review is presented in three parts: (1) the use of
optical images for detecting damaged areas, (2) the role of textural features for detecting damaged
areas, and (3) fuzzy systems used for detecting damaged areas.

Some researchers attempted to specify the role of optical images in damage detection application.
Eguchi and Mansouri (2005) focused on investigating and categorizing papers that used RS technology
for detecting buildings damaged after the 2003 Bam earthquake. It was concluded that detecting
regional damages by RS technology is possible [14]. Voigt et al. (2011) presented results concerning
actions of the German Aerospace Center (DLR) after the 2010 Haiti earthquake. It was deduced that
extracting building damage maps even with high spatial-resolution optical satellite images is not an
easy task and needs several human experts [15]. Lu et al. (2012) implemented a building damage
detection method based on mono-temporal very high-spatial resolution optical images. In this paper,
integrating manual and automatic interpretations resulted in a robust building damage map [16].
Tiede et al. (2011) used shadow information extracted from pre- and post-event optical images for
generating a damage map after the 2010 Haiti earthquake. The proposed method was able to create
the damage map of the Carrefour area after 12 h [17]. Lemoine et al. (2013) used aerial optical data
for providing a realistic estimate from damaged buildings. Using the aerial optical data instead of
satellite data was the key objective of the presented study to obtain more accurate results [18]. Based on
the presented research works, it appears that optical data is a suitable source for detecting damaged
buildings. However, owing to the complexity of this problem (i.e., damage detection), the role of
experts is important and undeniable.

Many researches have benefited from textural features extracted from the RS data for identifying
areas damaged after disasters. The ability of textural features in measuring spectral and height
variations in the spatial domain over RS data is the main reason for use of them in the damage detection
problem. Table 1 briefly depicts researches that used textural features in damage detection applications,
especially for building damage detection [1] and road damage detection [19]. The existing researches
can be discussed from three viewpoints. The used feature extraction method is the first viewpoint.
From this perspective, Laws mask [1], Haralick [20], Multivariate variogram [21], 1st statistical [19],
and Gabor filter [22] feature extraction methods were frequently employed to produce textural features
in previous research works. Moreover, from the second viewpoint, textural features were extracted
from different remotely sensed data including optical images, light detection and ranging (LiDAR)
data, and synthetic aperture radar (SAR) data. Based on the literature, textural features extracted from
pre- and/or post-event optical images were widely employed for detecting damaged areas. From the
third viewpoint, researchers utilized textural features for improving the accuracy of the final damage
map. In fact, it seems that textural features positively affect the performance of machine learning
techniques and decision making systems in identifying damaged areas.
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Table 1. A brief presentation from previous research studies that used textural features in damage
detection applications.

Reference Textural Features Used Remotely Sensed Data

[1] Laws mask Pre- and post-event optical images

[23] Haralick Pre- and post-event optical images

[20] Haralick Pre- and post-event optical images

[21] Multivariate variogram Pre- and post-event optical images and post-event LiDAR data

[22] Gabor Filter Pre- and post-event optical images

[19] 1st statistical features, Gabor
features and Haralick features Pre- and post-event optical images

[24] Multivariate variogram Pre- and post-event optical images

[25] Haralick Pre- and post-event digital elevation models

[26] Haralick Post-event SAR data

[27] 1st statistical features, Gabor
features and Haralick features Pre- and post-event optical images

[28] Haralick Pre- and post-event optical images

After extracting features, it is necessary to use a classifier or machine learning technique or
decision making system for creating a relation between the extracted features and the damage
extent of buildings. To this end, some researchers used advanced and non-parametric classifiers.
Chesnel et al. (2008) utilized the Support Vector Machine (SVM) classifier to partition the feature space
for detecting damaged and undamaged buildings [22]. Li et al. (2010) used the One-Class Support
Vector Machine (OCSVM) classifier to obtain damaged areas from high spatial-resolution optical
images [21]. Dubois and Lepage (2014) employed a multilayer backpropagation perceptron neural
network to detect damaged buildings after the 2010 Haiti earthquake [1]. In addition to advanced
classifiers, based on Table 2, some researchers used fuzzy-based decision making systems in the
damage detection process [2,13]. The fuzzy-based decision making systems are usually employed
in issues where experts want to model their knowledge. Damage detection is one of these issues.
Producing damage maps using experts after disasters in a manual manner proves our claim. To the best
of our knowledge, in the damage detection application, the fuzzy-based decision making systems can
be used for two main procedures including: (1) land use/cover classification [29,30] and (2) modeling
the damage extent of buildings from the extracted features [2,13]. Ural et al. (2011) employed a
fuzzy classifier in order to map buildings and their rubble after the 2010 Haiti earthquake in a robust
manner [30]. Moreover, researches have used Mamdani fuzzy inference systems (MFISs) as a decision
making system for modeling the damage extent of buildings [19,27,28]. In these researches, parameters
of fuzzy inference systems were manually adjusted in a trial and error manner that is a time consuming
task. In these cases, the accuracy of results completely relies on the selected parameters. For this reason,
Janalipour, M. et al. [2,13] used semi-automated Sugeno fuzzy decision making systems in order to
detect damage and changed areas. The use of these systems was a good solution for improving the
automation level of fuzzy systems, but it is a difficult task to extract knowledge from a Sugeno fuzzy
system due to the structure of its rules [31]. Knowledge extraction is an important stage for converting
a semi-structured problem (i.e., the damage detection) into a structured one. For further study on
damage detection methods, we encourage readers to refer to [32–34].

Table 2. A brief presentation from previous research works which used fuzzy inference systems in
damage detection application.

Reference Type of Fuzzy System Automation Level

[19] Mamdani Manually
[28] Mamdani Manually
[27] Mamdani Manually
[35] Mamdani Manually
[13] Sugeno Semi-automated
[2] Sugeno Semi-automated
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1.2. Research Aims

In this study, three important objectives are satisfied. Based on the previous works, researchers
widely used Mamdani fuzzy decision making systems for detecting damaged areas whose parameters
of these systems were manually chosen in a trial and error basis which is a time consuming
task. Moreover, the robustness of outcomes relies on the selected parameters. For this reason,
Janalipour, M. et al. [2,13] proposed a semi-automated Sugeno fuzzy decision making system.
However, for knowledge extraction, the Sugeno fuzzy system is not appropriate due to the structure
of its rules. To this end, it is necessary to employ a semi-automated Mamdani fuzzy system.
However, there is no semi-automated Mamdani fuzzy system. Therefore, it is essential to propose
a semi-automated (or fully-automated) Mamdani fuzzy decision making system to detect damaged
areas. In the first and main objective, we develop a semi-automated Mamdani fuzzy decision making
system using Genetic Algorithm (GA). Based on the previous researches [2,13], sensitivity analysis
plays an important role in identifying the appropriate parameters of a system leading to more accurate
results. In the mentioned researches, a step-by-step sensitivity analysis method was used. However,
it is necessary to simultaneously test all parameters of a system, because it permits us to consider the
relationship between changes of all the parameters. For this reason, in the second objective, we study
the effect of the simultaneous change of all parameters of the system on the final result. To investigate
the robustness and effectiveness of our semi-automated Mamdani fuzzy decision making system,
we compare results of this system with four advanced machine learning techniques including random
forests (RF), bagging, boosting, and support vector machine (SVM)—that is our third objective.

2. Materials and Methods

In this section is included information about study areas and data used and description about our
proposed methodology.

2.1. The First Study Area: The 2010 Haiti Earthquake

Port-au-Prince city is the first study area, where an earthquake occurred on 12 January 2010.
Port-au-Prince is the capital of Haiti. Two areas including Area 1 and Area 2 were chosen
over Port-au-Prince.

The previous research studies proved that ancillary information such as a pre-event vector map
improves the accuracy of damage detection methods [36–38]. On the other hand, the use of the
pre-event map in our proposed system is necessary, because it is difficult to find the footprint of
buildings on post-earthquake optical images. For these reasons, a pre-event building map was injected
into our methodology. There are some old-vector maps in the Haiti area such as [39]. To update the
old-vector map, pre-event Geoeye-1 and IKONOS-2 images were employed. To this end, the old-vector
map was updated as much as possible by an expert. Moreover, in the first study area, an ortho-rectified,
pansharpened and georeferenced post-event Geoeye-1 image acquired on 13 January 2010 with a
spatial resolution of 50 cm and three spectral bands (blue, green, and red) was employed.

2.2. The Second Study Area: The 2003 Bam Earthquake

Bam city is the second study area, a city located in southwestern Iran, where an earthquake
occurred on 26 December 2003. The post- earthquake pansharpened QuickBird image and pre-event
digital vector map of the Bam area were used in this study. The post-earthquake image was acquired
on 3 January 2004 and also has 61 cm spatial resolution and four spectral bands (red, green, blue,
and near infrared). The second study area has about 400 buildings with different damage extent.
The pre-event digital vector map with a scale of 1:500 was produced by the National Cartographic
Center (NCC) of Iran in 1994, which was updated using an expert according to [13].
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2.3. Methodology

Our proposed damage detection system is presented in four main stages according to Figure 1.
In stage “1”, post-event optical images are pre-processed. In stage “2”, Haralick texture features
are extracted from the pre-processed optical images using the pre-event map and related equations.
In stage “3”, a Fuzzy- GA (Genetic Algorithm) based decision making system is developed to estimate
the damage extent of buildings from the extracted texture features. In stage “4”, a comprehensive
sensitivity analysis is performed to achieve the best parameters leading to more accurate results.
Finally, the accuracy of results is firstly assessed and then the building damage map is obtained.
The aforementioned stages are presented in more detail below.
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2.3.1. Stage 1: Pre-Processing

Pre-processing is one of the important stages in building damage detection. Geo-rectification and
pansharpening are two of the important pre-processes, which should be performed on the post-event
optical images. Georeferencing and pansharpening were performed on the post-event optical image
of the Haiti earthquake. Moreover, the mentioned pre-processes were performed on the post-event
optical image of the Bam earthquake according to [13].

As another pre-process, based on previous research works [2], the correlation between
corresponding textural features extracted from spectral bands (i.e., red, blue, and green) is high.
Hence, numerous and correlated features result, which increase the computational cost of the proposed
method. For this reason, a grayscale image is produced from red, blue, and green bands using
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Equation (1) (please see [40] for further study about Equation (1)). Textural features are extracted from
the grayscale band.

E = 0.2989× Rr + 0.5870× Rg + 0.1140× Rb (1)

where, Rr, Rg, Rb, and E are the reflectance value of the red, green, blue, and resulting grayscale
bands, respectively.

2.3.2. Stage 2: Feature Extraction

Extracting textural features is the main process of the feature extraction stage. The potential
of textural features in measuring variations of digital numbers in the spatial domain enables us to
use them in satellite image processing, especially after natural hazards. Natural hazards suddenly
cause damage of objects of the earth’s surface leading to reflectance changes in the spatial domain.
Therefore, the textural features extracted from remotely sensed optical data are widely used for
detecting damaged areas. Based on previous works presented in the literature review section, different
texture extraction methods have been used in damage detection applications. In most of the previous
works [20,23], Haralick features were widely chosen for extracting textural features. For this reason,
these features are also used in our study. For further study on the Haralick texture extraction method,
please see [41,42].

In this study, in order to detect damaged buildings from textural features, variance, homogeneity,
and contrast features were chosen, which can be calculated from Equation (2), Equation (3),
and Equation (4), respectively. The selection of these features was based on three reasons. First of all,
three texture features with three linguistic terms and Gaussian membership functions (MFs) generate
24 unknown parameters regarding MFs in a Mamdani fuzzy inference system which should be
simultaneously set. It seems that the number of unknown parameters is sufficient to test an
optimization algorithm and the selection of them by an expert is a difficult task. For the second
reason, based on equations of the mentioned features, it appears that correlation among the selected
features is low. Finally, the performance of our decision making system and advanced machine
learning techniques would be investigated in similar conditions (i.e., with three texture features).
Hence, the selection of the mentioned texture features is within the path of objectives of this study.

Variance =
G−1

∑
i=0

(i− µ )2P(i, j) (2)

Homogenity =
G−1

∑
i=0

G−1

∑
j=0

P(i, j)

1 + (i− j)2 (3)

Contrast =
G−1

∑
i=0

G−1

∑
j=0

(i− j)2 × P(i, j) (4)

where, µ is the mean value of gray-levels in an area selected for producing texture features. Moreover,
P and G are the probability matrix and the number of image gray-levels, respectively.

There are two important points about extracting textural features in this study. For the first point,
for preserving the negative effects of non-building pixels on extracted textural features, building pixels
are specified by the pre-event map and are only used to extract textural features. For the second point,
to compare the three mentioned texture features, they should be standardized. Hence, Equation (5) is
employed to standardize the extracted textural features.

xi =
Di − Dmin

i
Dmax

i − Dmin
i

, i = 1 : 3 (5)

where, xi is the ith standardized texture feature; Dmin
i and Dmax

i are the minimum and maximum
values of the ith texture feature; and Di is an arbitrary value of the ith texture feature.
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2.3.3. Stage 3: Decision Making

After extracting textural features, it is necessary to employ a decision making system [43] or a
machine learning technique to provide a relation between the extracted features and the damage extent
of buildings. In this study, a decision making system based on MFIS and GA is used to provide the
mentioned relation. MFIS was firstly proposed by Zadeh [44]. In a MFIS, initially, crisp input values
are converted into fuzzy values by input MFs. This is called “fuzzification”. In fact, fuzzification
is a mapping process that is performed using membership functions. In this process, membership
functions act as connectors among crisp and fuzzy spaces. Then, using fuzzy values, the inference
system and existing rules in the fuzzy rule base, fuzzy output values are generated. Finally, the fuzzy
output values are transformed into crisp output values by a defuzzification method [31].

In general, a MFIS is a function of three main parameters according to Equation (6) including:
parameters of membership functions (C1), rules (C2), and parameters of the inference system (C3).
Therefore, in designing a MFIS, two essential tasks must be performed by an expert: (1) designing rules
of the fuzzy rule base and parameters of the inference system, and (2) designing and selecting type
and parameters of input and output MFs. In this study, we focus on the second task, because the
number of rules in our study is minor and can be easily selected and also an expert could select the
small parameters of the inference system.

Mamdani Fuzzy System = F(C1, C2, C3) (6)

For expressing the importance of the second mentioned task, an example is employed here.
Please note that this example is also used as a MFIS in our damage detection method. A MFIS with
three inputs and one output (its MF type is Gaussian) is presented in Figure 2. Suppose three rules
similar to Equations (7) to (9) have been designed by an expert. Based on these equations, we can
express that C1 is a function of some unknown parameters (Equation (10)).

I f

(
X1 is exp

(
−(X1 −m1)

2

2σ2
1

)
and X2 is exp

(
−(X2 −m4)

2

2σ2
4

)
and X3 is exp

(
−(X3 −m7)

2

2σ2
7

))

Then Z is exp

(
−(Z −m10)

2

2σ2
10

) (7)

I f

(
X1 is exp

(
−(X1 −m2)

2

2σ2
2

)
and X2 is exp

(
−(X2 −m5)

2

2σ2
5

)
and X3 is exp

(
−(X3 −m8)

2

2σ2
8

))

Then Z is exp

(
−(Z −m11)

2

2σ2
11

) (8)

I f

(
X1 is exp

(
−(X1 −m3)

2

2σ2
3

)
and X2 is exp

(
−(X2 −m6)

2

2σ2
6

)
and X3 is exp

(
−(X3 −m9)

2

2σ2
9

))

Then Z is exp

(
−(Z −m12)

2

2σ2
12

) (9)

C1 = F(m1, σ1, . . . , m12, σ12) (10)

where, X1, X2, and X3 are input linguistic variables 1 to 3, respectively and Z is the output linguistic
variable. Moreover, mi and σi are the mean and standard deviation of a Gaussian membership function.

According to Figure 2 and the designed rules, 24 unknown parameters of MFs (Equation (11))
must be set by an expert. From our viewpoint, the procedure of selection of 24 unknown parameters
in a continuous-space is an optimization problem. For this reason, in this study, Genetic Algorithm
(GA), as an optimization algorithm, is employed to select unknown parameters [45,46]. The ability
of GA in selecting optimum answers was the main reason for the selection of this algorithm. In fact,
in this research, MFIS and GA are integrated to select appropriate parameters of MFs leading to the
best result. In the following, concepts of GA and its integration with the MFIS are presented.

Unknown Parameters =
[

m1 σ1 · · · m12 σ12

]
1×24

(11)
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Genetic Algorithm (GA) is based on the mechanism exhibited by nature incorporating the
robustness of biological systems as presented by Charles Darwin [47]. This algorithm is one of
the powerful artificial intelligence algorithms, which selects the optimal answer using a random
searching method in the search-space.

To find the optimal unknown parameters regarding MFs of a fuzzy inference system using GA,
five main steps are employed in GA. The employed steps are presented below:

The first step: initial parameters regarding MFs of the fuzzy system are generated in a random
manner. Suppose the number of the population is equal to k and the generated parameters are:

positions =


m1

1 σ1
1 . . . m1

12 σ1
12

...
... . . .

...
...

mk
1 σk

1 · · · mk
12 σk

12


k×24

=

 the 1st population
...

the kth population

 (12)

After generating the initial parameters, it is necessary to use a cost function to calculate the
efficiency of each population. It should be considered that the fitness function and objective function
terms are also used instead of the cost function one. The cost function is at the heart of our proposed
system. The integration of the fuzzy system and GA is the main task of this function. Moreover,
the cost function is responsible for assessing population. In this study, to obtain the cost of population,
some training and check samples according to Equations (13) and (14) are considered. The duty of
training samples is to learn the fuzzy-GA system. Furthermore, check samples are employed to prevent
an over-learning problem.

training samples =

 x1
t1 x1

t2 x1
t3 zt

1

...
...

...
...

xs
t1 xs

t2 xs
t3 zt

s


s×4

=
[
Xtrain

1 Xtrain
2 Xtrain

3 Ztrain] (13)

check samples =

 x1
c1 x1

c2 x1
c3 zc

1

...
...

...
...

xu
c1 xu

c2 xu
c3 zc

u


u×4

=
[

Xcheck
1 Xcheck

2 Xcheck
3 Zcheck

]
(14)

where, xh
t1, xh

t2, xh
t3 are values of textural features regarding the hth training sample. Moreover, zt

h is
the damage extent of the hth training sample. xh

c1, xh
c2, xh

c3 are values of textural features regarding the
hth check sample. Moreover, zc

h is the damage extent of the hth check sample. Furthermore, s and u
are the number of training samples and the number of check samples, respectively.



Remote Sens. 2017, 9, 349 9 of 24

To estimate the cost of each population for training samples (Equation (15)), at first, the parameters
of the MFs are updated using the population (Equation (16)). For population r, the updated MFIS is
represented by Equation (17). Then, using the updated MFIS and Equation (18), the damage extent of
training samples is obtained from Equation (19). Finally, the cost of population r (costr

train) obtained
from the training samples is calculated from Equation (20). The cost of check samples is also estimated
in the same way.

Coststrain =

 cost1
train
...

costk
train


k×1

(15)

Cr
1 = F

(
mr

1, σr
1, . . . , mr

12, σr
12
)

; 1 ≤ r ≤ k (16)

Mamdani Fuzzy Systemr = F
(
Cr

1, C2, C3
)

(17)

Ẑ = Mamdani Fuzzy System
(
Xtrain

1 , Xtrain
2 , Xtrain

3
)

(18)
Ẑ1

...
Ẑs

 =

 Mamdani Fuzzy Systemr (x1
t1, x1

t2, x1
t3
)

...
Mamdani Fuzzy Systemr (xs

t1, xs
t2, xs

t3
)


s×1

(19)

costr
train = 1

s ×
√

s
∑

i=1

(
zts − Ẑs

)2, r = 1, . . . , k (20)

where, Cr
1 and Mamdani Fuzzy Systemrare parameters of MFs obtained from population r and the

fuzzy inference system updated from Cr
1, respectively.

The second step: In this step, new MF parameters are obtained from crossover function and
population generated by the previous step. Crossover is one of the important functions in GA,
which is responsible for generating new children (parameters of fuzzy systems) from their parents.
To generate new children, the number of uses of crossover function (ncrossover) should be specified.
To this end, at first, parameter α is calculated from the crossover rate and the number of population
(population) using Equation (21). Then, the number of uses of crossover function is obtained from
Equation (22). For generating new MF parameters from the crossover function, first, two random
parents (like mi and ni) are chosen. Afterwards, new children are achieved from Equation (23).
Since unknown parameters were defined in specific ranges, there are two conditions according to
Equations (24) and (25) for undefined values. Finally, by using Equations (15) to (20), costs of the new
children are calculated and inserted into Equation (26) [47].

α = crossover rate×population
2 (21)

ncrossover = max{n ∈ Z|n ≤ α} (22)

positionscrossover

=


γ1 × positions(m1, :) + (1− γ1)× positions(n1, :)
γ1 × positions(n1, :) + (1− γ1)× positions(m1, :)

...
γncrossover × positions(mncrossover , :) + (1− γncrossover )× positions(nncrossover , :)
γncrossover × positions(nncrossover , :) + (1− γncrossover )× positions(mncrossover , :)


(2×ncrossover)×24

=


m1

1 σ1
1 · · · m1

12 σ1
12

m2
1 σ2

1 · · · m2
12 σ2

12
...

...
. . .

...
...

m2×ncrossover−1
1 σ2×ncrossover−1

1 · · · m2×ncrossover−1
12 σ2×ncrossover−1

12
m2×ncrossover

1 σ2×ncrossover
1 · · · m2×ncrossover

12 σ2×ncrossover
12



(23)
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σi =

{
0.01 i f σi < 0
0.5 i f σi > 0.5

(24)

mi =

{
0 i f mi < 0
1 i f mi > 1

(25)

Costscrossover =

 cost1

...
cost2×ncrossover


(2×ncrossover)×1

(26)

where, γ1 is a random number between −0.1 and 1.1. σi and mi are the variance and mean of the ith
variable achieved from the crossover function, respectively.

The third step: In this step, one of the parameters of a population is changed using the mutation
function. The mutation is another important function in GA. The mutation function has an undeniable
role in solving the local minimum problem in GA. To generate new children by the mutation function,
the number of uses of the mutation function (nmutation) should be specified. To this end, at first,
parameter β is calculated from the mutation rate and the number of population using Equation (27).
Then, the number of uses of the mutation function is obtained from Equation (28). For each use
of the mutation function, one random population is selected. Afterwards, a new child is achieved.
Equation (29) depicts all new children achieved from the mutation function. Undefined values of
variables are corrected using Equations (24) and (25). Finally, using Equations (15) to (20), costs of the
new children are calculated and inserted into Equation (30).

β =
mutation rate× population

2
(27)

nmutation = max{n ∈ Z|n ≤ β} (28)

positionsmutation =


m1 σ1 + sigma× rand1 . . . m12 σ12
...

... . . .
...

...
m1 + sigma× randnmutation σ1 · · · m12 σ12


nmutation×24

(29)

Costsmutation =

 cost1

...
costnmutation


(nmutation)×1

(30)

where, randi is a random number. Moreover, sigma is calculated from Equation (31). Variables σi and
mi are defined respectively in a range of [0.01–0.5] and [0–1]. Because the range of the variable σi is
lower than the variable mi, sigma values of Equation (31) regarding these variables are different:

sigma =

{
0.049 f or variable σi
0.1 f or variable mi

(31)

The fourth step: In this step, using elitism operator, GA is able to preserve the best answer of
iterations. To this end, at first, all population and costs obtained from the previous steps are inserted in
two pools according to Equations (32) and (33). Afterwards, they are sorted in descending order by
Equation (34) (i.e., a population with the minimum cost value is the best answer). Finally, we select k
population with minimum cost values as the best answers from the sorted population (Equation (35)).
With the elitism operator, it is possible to preserve the best solutions and GA can be converged on the
best solution. In fact, with deep insight into this step, we can conclude that the artificial intelligence of
GA exists in the fourth step.

all poistions = [positions; positionscrossover; positionsmutation](nmutation+2×ncrossover+k)×24 (32)
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Costs = [Coststrain, Costscrossover, Costsmutation] (33)

all poistions = sort(all poistions, Costs) (34)

positions = all poistions(1 : population, :) (35)

The fifth step: The second, third and fourth steps should be repeated to obtain the best solution.
The first row of Equation (35) is the best solution with the minimum cost value.

2.3.4. Stage 4: Damage Map and Accuracy Assessment

In order to assess the accuracy of the final damage maps, the confusion matrix and statistical
descriptors extracted from this matrix are considered. To generate a confusion matrix, it is necessary
to employ training, test, and check samples. To this end, the damage extent of some buildings was
specified as training, test, and check samples. More information about these samples is presented in
Section 3.2. After generating the confusion matrix, statistical descriptors are employed to specify the
accuracy of results. For this purpose, some statistical descriptors, including overall, user, and producer
accuracies extracted from the confusion matrix, are used to display the accuracy of the proposed
system. Based on a sample confusion matrix presented in Table 3, the overall, user, and producer
accuracies are calculated from Equations (36) to (38), respectively.

Overall_Accuracy =
a + d

a + b + c + d
(36)

User_accuracy_class1 =
a

a + c
(37)

Producer_accuracy_class1 =
a

a + b
(38)

Table 3. A sample confusion matrix.

References

Class 1 Class 2

Class 1 a b
Class 2 c d

Sensitivity Analysis

A sensitivity analysis should be carried out to confirm the stability and the reliability of the
proposed system’s results with respect to changes of its parameters [48–50]. In this study, the sensitivity
of the Fuzzy-GA is assessed against any changes in GA’s parameters: (a) the number of iterations;
(b) the number of population; (c) the mutation rate; and (d) the crossover rate. In the previous
works [2,13], a step-by-step sensitivity analysis method was used. However, step-by-step sensitivity
analysis methods are unable to consider simultaneous changes of parameters of a system [51]. For this
reason, in this study, a grid-partitioning based sensitivity analysis method was performed to study the
effect of change of parameters on the accuracy of the final results [52]. In this method, the mentioned
parameters of GA are changed in a limited and meaningful range to achieve accurate results. The range
of parameters was adjusted based on experimental results and our knowledge about GA.

3. Results

3.1. Feature Extraction Considerations

In the feature extraction stage, variance, homogeneity, and contrast features were extracted
by producing the probability matrix (P) for a distance of 1 pixel, orientation angles of 0, 45, 90,
and 135 degrees and a window size of 3 × 3. Our experimental results showed that increasing the
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window size and the distance parameter negatively affects the accuracy of the building damage
detection methods. For this reason, the mentioned parameters were chosen for producing textural
features. The textural features were finally calculated from the average of features obtained on all
orientation angles.

3.2. The Number of Training, Test and Check Samples Used over Area 1, Area 2, and Area 3

Training, check, and test samples must be used in modeling and validation processes of the
Mamdani fuzzy system. To this end, two different sources were employed to extract these samples
from the Haiti and Bam areas. The Haiti building damage atlas (the first source) was used to collect
the mentioned samples over the Haiti area (Area 1 and Area 2). In this atlas, buildings were classified
as undamaged (D1), substantial to heavy damage (D3), very heavy damage (D4), and destruction (D5).
Moreover, according to [13], the damage extent of buildings over the Bam area was specified using the
visual interpretation of an expert on pre- and post-event high-spatial resolution images (the second
source). Table 4 shows the number of training, check, and test samples selected over Area 1, Area 2,
and Area 3.

Table 4. The number of training, check and test samples selected over Area 1, Area 2, and Area 3.

Training Samples Check Samples Test Samples

D1 D3 D4 D5 D1 D3 D4 D5 D1 D3 D4 D5

Area 1 172 15 30 83 66 5 13 40 185 8 36 100
Area 2 380 22 196 102 118 10 61 35 530 43 268 142
Area 3 25 - 56 115 14 - 30 74 23 - 38 93

3.3. Considerations for Implementing the Fuzzy System

For implementing the fuzzy system, in this study, its parameters were adjusted according to
Table 5. Based on the opinion of an expert about the number of linguistic terms and results presented
to [2,13], it seems that a number of three MFs for each input or output variable are appropriate for
building damage detection. Moreover, according to the previous works [2,13], the Gaussian MF is
efficient and robust for damage detection application, therefore this function was also utilized in
this study. Furthermore, 12 fuzzy rules were designed by an expert, which were employed over
three selected areas. In addition, Min, Max, Min and Max operators were chosen for “and”, “or”,
“aggregation” and “implication” methods, respectively.

Table 5. Parameters of Mamdani fuzzy inference system selected in this study.

Parameter Name Fuzzy Parameters Selected

Number of MF for each input 3
Number of MF for each output 3

Type of input MF Gaussian Function
Type of output MF Gaussian Function

Number of iterations Flexible
Defuzzification method Centroid

“and” method Min
“or” method Max

Implication method Min
Aggregation method Max

Number of Rules 12

3.4. Sensitivity Analysis on Fuzzy-GA Parameters

In order to perform the sensitivity analysis of results with respect to GA parameters, including
the number of iteration (it), the number of population (pop), the mutation rate (Pm) and the crossover
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rate (Pc), these parameters were varied in a limited range. Tables 6–8 depict the overall accuracy of
our proposed system obtained from variations of GA parameters over Area 1, Area 2, and Area 3,
respectively. The range of values of parameters was selected based on experimental results and our
knowledge about GA. Here, our description is presented on the range of the selected values. In general,
low mutation rates are selected in GA, because increasing the mutation rate leads GA into a random
search method. For this reason, mutation rates 0.1, 0.2, and 0.3 were chosen in this study. In contrast
with the mutation rate, the selection of high values for the crossover rate guaranties optimized solutions
to be achieved in a speedy manner. Hence, crossover rates 0.7, 0.8, and 0.9 were selected. Furthermore,
based on the diagram of convergence of GA (see Section 3.5), it seems that GA is approximately
converged after the 100th iteration. Therefore, the sensitivity of results with respect to iterations 100,
200, and 300 was tested. Finally, based on the previous works [53], the effect of population 50, 150,
and 250 on the accuracy of the proposed damage detection system was investigated.

Table 6. Overall accuracies achieved from variations of GA parameters over Area 1.

pop→ 50 50 50 150 150 150 250 250 250 it ↓
0.1 76% 73% 73% 77% 79% 79% 77% 79% 79% 100
0.2 76% 77% 74% 79% 77% 72% 79% 78% 77% 100
0.3 76% 75% 74% 76% 80% 77% 79% 73% 79% 100
0.1 73% 75% 75% 77% 76% 78% 77% 79% 79% 200
0.2 74% 77% 79% 77% 79% 77% 79% 79% 79% 200
0.3 77% 77% 78% 77% 73% 77% 79% 79% 77% 200
0.1 79% 78% 70% 75% 77% 77% 75% 73% 80% 300
0.2 77% 79% 77% 78% 79% 78% 78% 79% 77% 300
0.3 77% 79% 77% 77% 80% 78% 71% 71% 79% 300

Pm ↑ 0.7 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9 ← Pc

Table 7. Overall accuracies achieved from variations of GA parameters over Area 2.

pop→ 50 50 50 150 150 150 250 250 250 it ↓
0.1 65% 65% 65% 64% 66% 66% 64% 64% 64% 100
0.2 64% 67% 66% 64% 66% 66% 66% 66% 64% 100
0.3 65% 67% 66% 66% 66% 66% 66% 66% 66% 100
0.1 65% 65% 66% 65% 67% 66% 65% 65% 63% 200
0.2 65% 64% 67% 65% 65% 66% 66% 65% 66% 200
0.3 63% 65% 64% 67% 66% 66% 65% 66% 65% 200
0.1 66% 67% 66% 66% 65% 64% 66% 66% 65% 300
0.2 65% 67% 67% 65% 65% 65% 64% 65% 66% 300
0.3 65% 65% 66% 67% 67% 65% 66% 65% 65% 300

Pm ↑ 0.7 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9 ← Pc

Table 8. Overall accuracies achieved from variations of GA parameters over Area 3.

pop→ 50 50 50 150 150 150 250 250 250 it ↓
0.1 91% 91% 92% 90% 89% 90% 91% 90% 91% 100
0.2 91% 90% 90% 90% 91% 90% 91% 92% 92% 100
0.3 92% 90% 90% 89% 90% 92% 92% 90% 92% 100
0.1 90% 90% 90% 91% 91% 91% 90% 91% 91% 200
0.2 93% 92% 91% 91% 92% 92% 91% 91% 92% 200
0.3 92% 90% 90% 91% 92% 92% 91% 92% 91% 200
0.1 92% 90% 90% 91% 91% 90% 91% 91% 91% 300
0.2 92% 91% 90% 92% 92% 92% 91% 92% 90% 300
0.3 92% 91% 89% 91% 92% 90% 92% 91% 91% 300

Pm ↑ 0.7 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9 ← Pc
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3.5. Results of Optimized Fuzzy System

In this section, results of optimized fuzzy systems, including the diagram of convergence of GA
and optimized parameters regarding MFs, are presented. Figure 3 depicts the cost value of the best
population with the minimum cost at 300 iterations over Area 1 and Area 3. Figure 3 shows that
300 iterations are appropriate for converging GA in this research. Moreover, in order to illustrate
the importance of GA in selecting parameters of the fuzzy system, changes of MFs of input “2” and
input “3” in an experiment are presented in Figure 4. Based on Figure 4, it is easily observed that vast
variations must be applied on MF parameters to achieve optimized results. Therefore, it seems that
selecting these parameters by an expert is not an easy task.
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3.6. Accuracy Assessment by Confusion Matrix

According to Section 3.5, to produce a confusion matrix, it is necessary to specify the number of
classes and their definitions. In this study, we consider two damage classes including “damaged” and
“undamaged” regarding each building. The “damaged” class includes very heavy damage (D4) and
destruction (D5) whose definitions of D4 and D5 were presented in European Macroseismic Scale 1998
(EMS 98) [54]. To the best of our knowledge, substantial to heavy damage class (D3) which is related
to cracks on the buildings facades would not be detected by our optical data used [54]. Therefore,
“undamaged” class includes negligible to slight damage (D1) and D3. The confusion matrix of training,
test and check samples as well as some statistical descriptors such as user and producer accuracies are
presented to Table 9. Moreover, the range of overall accuracy of the generated damage maps with 90%
confidence level is presented in Table 10.

3.7. Damage Map Resulting

In this subsection, final building damage maps regarding Area 1, Area 2, and Area 3 extracted from
the proposed method are presented. Figure 5 shows the building damage maps of the mentioned areas.

Table 9. Confusion matrix of training, check, and test samples over Area 1, Area 2, and Area 3.
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Table 10. Overall accuracy of the proposed method obtained on Area 1, Area 2, and Area 3.

Area 1 (with 90%
Confidence Level)

Area 2 (with 90%
Confidence Level)

Area 3 (with 90%
Confidence Level)

Overall accuracy (%) 76.88 ± 1.22 65.43 ± 0.29 90.96 ± 0.15
Remote Sens. 2017, 9, 349 16 of 16 
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Figure 1. Building damage maps resulting from the proposed method on (a) Area 1, (b) Area 2,  
(c) Area 3. 

  

Figure 5. Building damage maps resulting from the proposed method on (a) Area 1, (b) Area 2,
(c) Area 3.
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4. Discussion

In this section, a comprehensive discussion about the obtained results is presented. Moreover,
sources of error of the proposed method are specified. Furthermore, the accuracy and precision of
Fuzzy-GA are compared with advanced machine learning techniques.

Based on the convergence diagram of GA presented to Figure 3, it is concluded that GA has been
fully converged. Figure 3 shows that the selected parameters regarding GA were appropriate for
providing a robust fuzzy system. Moreover, based on Figure 3, Fuzzy-GA succeeded in decreasing
the cost value of training and check samples over the selected areas. It should be considered that
the reduction of cost value directly improves the accuracy of the final results. These results show
that the change of parameters of MFs in a fuzzy system is very important in obtaining an accurate
result. Furthermore, based on Figure 4, in order to obtain more accurate results, vast variations should
be performed on parameters of MFs (i.e., mean (mi) and variance (σi) of Gaussian MF). Owing to
employing an optimization algorithm (i.e., GA) in our study, the selection of the optimized parameters
was carried out in a semi-automated way. However, it seems that adjusting these parameters in a
manual way is not an easy task.

In this part, conclusions obtained from the sensitivity analysis stage are presented. Based on
sensitivity analysis results (i.e., Tables 6–8), it was found that the selected parameters are appropriate
for extracting an accurate damage map. Moreover, based on the outcomes, the accuracy of the final
damage maps varies over a specific range. For example, overall accuracies of 90%, 91%, and 92% were
achieved a lot over Area 3. In fact, in this study, it seems that the optimum answer is defined for a
limited continuous range of variables. For this reason, increasing or decreasing the parameters of GA
in the defined ranges does not follow a predictable procedure. Hence, based on these results, it appears
that step-by-step sensitivity analysis methods presented to [2,13] are not proper for performing the
sensitivity analysis in optimization-based decision making systems.

Based on the description presented in the previous paragraph on the range of optimum answers,
it is better to present the overall accuracy of the obtained damaged maps in a (a± b)% form. In this
form, a is the most probable overall accuracy and [a− b, a + b] is the most probable range of overall
accuracy. Based on Table 10, overall accuracies obtained on Area 1, Area 2, and Area 3 were equal to
76.88± 1.22%, 65.43± 0.29% and 90.96± 0.15%, respectively. Based on these results, the study area and
its characteristics completely affect the accuracy of the damage detection method. For example, Area 2
is a complex urban region. In this area, different types of buildings, including buildings connected
with trees, buildings with small area, and gabled roof buildings, are observed. It should be considered
that a complex area could spread many uncertainties and errors over the final damage maps (we will
present the source of errors in the following). For this reason, the overall accuracy of the proposed
system over Area 2 was lower than the other areas. In general, based on our visual observations from
high-spatial resolution satellite images, Area 1 and Area 2 are more complex than Area 3. For this
reason, the accuracy of our proposed system over Area 3 was higher than Area 1 and Area 2.

There have been many damage detection methods implemented in the Haiti and
Bam areas [4,13,55,56]. However, it is a difficult issue to present a fair and comprehensive judgment
between the existing methods over study areas and our proposed method, because based on our
experimental results, study area and its characteristics affect the accuracy of damage detection methods.
Results achieved on Area 1, Area 2, and Area 3 completely confirm our claim. In this part, we compare
our achieved results with the outcomes of [13], because Area 3 of our study is similar to the selected
area of the mentioned paper. Janalipour and Mohammadzadeh (2016) employed a Nuero-fuzzy
decision making system in order to create a relation between geometrical features obtained from
post-event satellite image and the damage extent of buildings [13]. They reported an overall accuracy
of 76% for detecting damaged buildings. While, in our study, the use of Fuzzy-GA and Haralick
textural features resulted in an overall accuracy of 90.96 ± 0.15%. Therefore, as a result, Fuzzy-GA
and Haralick textural features outperformed Nuero-fuzzy and the geometrical features in detecting
damaged buildings.
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In this part, outcomes of Fuzzy-GA decision making system are compared with four advanced
machine learning techniques, including bagging, boosting, random forests (RF) [57] and support vector
machine (SVM), from viewpoints of accuracy and precision. It should be considered that results of the
mentioned techniques and our decision making system were achieved with similar textural features.
Hence, we can compare them with respect to each other. Based on [58], precision measures the degree
of consistency among overall accuracies obtained in the selected areas (Tables 6–8) and accuracy
shows the degree of closeness of measurements to true value. Based on the presented definitions
and the form of presentation of overall accuracy (i.e., (a± b)%), a and b can be used respectively
as an accuracy measure and a precision creation. Based on Table 11, from the perspective of the
accuracy, the Fuzzy-GA decision making system was more successful than bagging, boosting, and RF
and SVM machine learning techniques. For example, over Area 3, overall accuracies of Fuzzy-GA,
bagging, boosting, RF and SVM were respectively equal to 90.96%, 89.05%, 87.47%, 88.03% and 89.03%.
To compare results of machine learning techniques with our proposed system from the viewpoint
of precision, it should be considered that b is a function of precision. A machine learning technique
with the lowest b is more precise than other ones. Because values of b for our proposed system are
lower than the corresponding values for the advanced machine learning techniques, it appears that
Fuzzy-GA decision making system is more precise than bagging, boosting, RF and SVM machine
learning techniques.

Table 11. Overall accuracies of Fuzzy-GA, bagging, boosting, RF, and SVM machine learning techniques
obtained on Area 1, Area 2, and Area 3.

Area 1 (%) Area 2 (%) Area 3 (%)

Fuzzy-GA 76.88 ± 1.22 65.43 ± 0.29 90.96 ± 0.15
Bagging 74.5 ± 2.0 56.03 ± 1.2 89.05 ± 0.6
Boosting 71.33 ± 2.2 62.79 ± 2.9 87.47 ± 1.0

RF 73.07 ± 1.4 55.92 ± 1.4 88.03 ± 0.5
SVM with a radial basis function (RBF) kernel 72.53 ± 1.6 60.52 ± 1.2 89.03 ± 0.6

As mentioned, an urban area with a complex structure could spread many uncertainties and
errors on outcomes. In this part, reasons of some misclassifications that occurred in the study areas
are discussed. Table 12 depicts post-event optical image, variance feature, and damage map of nine
miss-classified buildings. Building No. 1 is connected to a tall building. According to Table 12,
parts from building No. 1 were covered with the shadow of the tall building. This is sufficient for
texture extraction methods to produce high texture values in the roof of building No. 1. For this reason,
this building was incorrectly classified as damaged class. The root of error of building No. 2 is similar
to building No. 1 but with the difference that the overlapped shadow with this building resulted from a
tall tree. This type error was frequently observed over Area 2 which is a complex urban area. Moreover,
based on the Haiti building damage atlas, building No. 3 was classified as undamaged class by experts.
While our visual interpretation showed that this is a damaged building. Hence, the proposed method
correctly performed its task. Building No. 4 is an inclined damaged one. Based on the definition
of inclined buildings [59] and Table 12, textural features are unable to detect these damage types.
Therefore, the class of this building was incorrectly assigned as unchanged category. The use of LiDAR
data may be an appropriate solution for detecting inclined damaged buildings.
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in order to identify damaged buildings using their textural features. For improving the automation 
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concerning membership functions. The proposed system was tested over two areas of the 2010 Haiti 
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its automation level is higher than other existing decision making systems [19,27,28]. Moreover, 
based on the statistical descriptors and results of bagging, boosting, RF, and SVM machine learning 
techniques, it seems that Fuzzy-GA decision making system is more accurate and precise than the 
mentioned techniques for building damage detection. Furthermore, based on outcomes of the 
sensitivity analysis stage, it seems that results of our proposed system are robust enough for 
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The high spectral variation of pixels of undamaged building roofs over satellite optical images is
a critical issue for texture-based damage detection methods, because the behavior of texture features of
these buildings is similar to damaged ones. This issue was the main reason for classifying building
No. 5 as a damaged one. Building No. 6 is a gabled roof one, in which parts of the roof of this building
were destroyed. The texture extraction method correctly identified the damaged parts. However,
it seems that the Fuzzy-GA decision making system was the main reason for classifying this building
as undamaged category incorrectly. The class of building No. 7 is undamaged. The spectral variation
of pixels of building No. 7 is very high. For this reason, our proposed system classified building
No. 7 as damaged category. Based on our interpretation, the texture extraction method and Fuzzy-GA
decision making system are two sources of error for the misclassification of building No. 8. Finally,
the damage extent of building No. 9 is totally pancaked. The proposed system was unsuitable in
the detection of the damage class of this building, because the variation of the digital numbers of the
building roof was not high enough for assigning it to the damaged class. The use of a normalized
digital surface model may be an appropriate way for identifying totally pancaked damaged buildings.

5. Conclusions

In this study, a semi-automated Mamdani based fuzzy decision making system was developed
in order to identify damaged buildings using their textural features. For improving the automation
level of the Mamdani fuzzy system, a genetic algorithm was used to find its optimized parameters
concerning membership functions. The proposed system was tested over two areas of the 2010 Haiti
earthquake and one area of the 2003 Bam earthquake. Based on the concept of our proposed system,
its automation level is higher than other existing decision making systems [19,27,28]. Moreover,
based on the statistical descriptors and results of bagging, boosting, RF, and SVM machine learning
techniques, it seems that Fuzzy-GA decision making system is more accurate and precise than
the mentioned techniques for building damage detection. Furthermore, based on outcomes of the
sensitivity analysis stage, it seems that results of our proposed system are robust enough for building
damage detection. Based on the results of the sensitivity analysis stage, the overall accuracy of
76.88 ± 1.22%, 65.43 ± 0.29% and 90.96 ± 0.15% was obtained on Area 1 (the Haiti earthquake), Area 2
(the Haiti earthquake), and Area 3 (the Bam earthquake), respectively. According to these results,
the study area and its characteristics directly affect the accuracy achieved from the proposed method.

Based on the presented discussions, there are some major error sources: (1) high spectral variation
of digital numbers over the roofs of undamaged buildings, (2) the shadow of tall buildings and trees
connected with undamaged buildings, (3) inability of optical data in detecting inclined and pancaked
damaged buildings.

As a future work, based on limitations of this study, it will be necessary to propose a damage
detection method for integrating optical and LiDAR data. Moreover, due to the importance of
the automation level of the damage detection method, it is important to present an automatic and
accurate fuzzy decision making system in these future works. As another future work, the robustness
of the Fuzzy-GA decision making system can be assessed over SAR data for detecting damaged
areas. Moreover, the Fuzzy-GA decision making system can be adapted for applications that use
hyperspectral bands. Because we are dealing with a high dimensional feature space, it is very important
to select the appropriate bands using efficient feature selection methods such as [60,61]. Finally,
owing to our proposed method which depends on a pre-event updated map, proposing an efficient
building extraction method such as [62,63] for obtaining building footprints from pre-event optical
images is very important to consider as a research study.
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Abbreviations

The following abbreviations are used in this manuscript:

LiDAR Light Detection and Ranging
SAR Synthetic Aperture Radar
OA Overall Accuracy
EMS 98 European Macroseismic Scale 1998
GA Genetic Algorithm
Fuzzy-GA Fuzzy Genetic Algorithm
RS Remote Sensing
SVM Support Vector Machine
RF Rnadom Forests
OCSVM One-Class Support Vector Machine
MF Membership Function
MFIS Mamdani Fuzzy Inference System
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