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Abstract: This work describes the first global scale assessment of a Global Navigation Satellite
Systems Reflectometry (GNSS-R) experiment performed on-board the Soil Moisture Active Passive
(SMAP) mission for soil moisture and biomass determination. Scattered GPS L2 signals (1227.6 MHz)
were collected by the SMAP’s dual-polarization (Horizontal H and Vertical V) radar receiver and
then processed on-ground using a known replica of the GPS L2C code. The scattering properties over
land are evaluated using the Signal-to-Noise Ratio (SNR), the Polarimetric Ratio (PR), and the width
of the waveforms’ trailing and leading edges. These parameters show sensitivity to the effects of the
Earth’s topography and Above Ground Biomass (ABG) even over Amazonian and Boreal forests.
These effects are shown to be an important factor in precise soil moisture and biomass determination.
Additionally, it is found that PR shows sensitivity to soil moisture content over different land cover
types. In particular, the following values of the PR are found over: (a) tropical forests ~−1.2 dB;
(b) boreal forests ~0.8 dB; (c) Greenland ~2.8 dB; and (d) the Sahara Desert ~3.2 dB.
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1. Introduction

The concept of multistatic scatterometry was proposed by Hall and Cordey in 1988 [1]. GNSS-R
is an Earth Remote Sensing technique that exploits the signals transmitted by the Global Navigation
Satellite Systems and hence can provide a dense global coverage of the Earth’s surface with rapid
revisit time. It was originally proposed in 1993 by Martin-Neira for mesoscale ocean altimetry [2,3]
to improve the spatio-temporal sampling of conventional nadir-looking radar missions. During the
last decades, several ground-based [4], airborne, [5] and balloon [6] experiments have been carried
out to demonstrate the feasibility of this technique for ocean altimetry and scatterometry. At present,
GNSS-R ocean scatterometry applications are quite mature. On the other hand, the bistatic scattering
properties over land surfaces deserve further study to evaluate the performance of this technique for
soil moisture determination and biomass monitoring.

The first space-borne opportunistic measurement of an Earth-reflected GPS signal took place
during the Space-borne Imaging Radar-C (SIR-C) mission in 1994 [7]. The first designed experiment of
GNSS Reflectometry from space took place on-board the United Kingdom UK-DMC in 2003 [8].

The UK-TechDemoSat-1 using a Surrey Satellite Technology Ltd. (SSTL) receiver was launched in
June 2014, providing useful GPS L1 C/A code data sets for the GNSS-R community [9]. Researchers,
have studied the sensitivity of GNSS-R for soil moisture determination [10,11], ocean altimetry [12] and

Remote Sens. 2017, 9, 362; doi:10.3390/rs9040362 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2017, 9, 362 2 of 23

scatterometry [13,14], and sea ice detection [15]. More recently, the 6U cubesat 3Cat-2 [16] developed by
the Universitat Politecnica de Catalunya (UPC) was launched on 15 August 2016, and NASA’s Cyclone
Global Navigation Satellite System (CyGNSS) GPS L1 C/A code-based constellation was recently
launched on 15 December 2016 [17], providing an unprecedented sampling of the Earth’s surface.

In 2000, the use of polarimetric GNSS-R was first proposed by Zavorotny for soil moisture
determination [18]. At present, there are two main approaches for soil moisture determination with
GNSS-R: (i) the first uses tower-based geodetic GNSS receivers and the multipath Signal-to-Noise Ratio
(SNR) to retrieve ground moisture [4,19,20] in a small region around the tower; (ii) the second one uses
specifically designed receivers and two antennas either at Left and Right Hand Circular Polarizations
(LHCP and RHCP) as in [21–23], or at horizontal H and vertical V polarizations as in [24]. The second
technique using an horizontal H-Pol and V-Pol antenna is used in this work. Theoretical [25,26] and
experimental [27] assessments have shown a sensitivity to forest biomass. Recent airborne [21] and
stratospheric balloon [28] flight experiments have been performed using new instruments and circular
polarization antennas (RHCP and LHCP) for geophysical parameter retrieval over land surfaces,
and wetlands. These experiments have shown the capability of GNSS-R techniques for wetlands
monitoring even from high altitude platforms (~27 km) [28] because of the high spatial resolution
provided by the coherent component of the scattered field.

This study presents results from a serendipitous GNSS-R experiment performed on-board the
SMAP mission [29] over continental areas. This unique data set, which provides very high-gain GPS
L2C code dual-polarization (H and V) sampling of the Earth’s surface up to high latitudes, is evaluated
to assess the behaviour of different parameters of the so-called reflected waveforms corresponding
to Soil Water Index (SWI), Normalized Difference Vegetation Index (NDVI), Above Ground Biomass
(AGB), and topography. Section 2 describes the methodology and the experiment set-up. Section 3
presents the results, Section 4 provides final discussions, and the main conclusions are highlighted in
Section 5.

2. Description of the GNSS-R Experiment

The SMAP mission was successfully launched on 31 January 2015 into a Sun-Synchronous
Orbit (SSO) with a local time of ascending node (LTAN) of 6:00 h, and an orbit height of ~685 km.
The main mission instruments are an active L-band radar and a passive radiometer which share a
~14 rev/min rotating 6-m aperture reflector antenna scanning a wide 1000 km wide swath (Figures 1
and 2). The dual-polarization reflector (H and V) points to Earth’s surface with an approximately fixed
elevation angle of θe ~55◦. The elevation angle of the collected signals was approximately constant
~55◦ during the complete experiment because the attitude of the SMAP satellite is the same in nominal
operations. Data acquisition used a 50 km cut on (footprint area ~7800 km2) the closest approach to
the specular point, and calibrated using the antenna radiation pattern. This possibly is cutting off
the waveform trailing edge over some regions. Figure 3 shows enough sensitivity from Greenland to
tropical forests. The High-Power Amplifier (HPA) failed on 7 July 2015, preventing the emission of
radar pulses and thus the use of the instrument as an active device. As an experiment of opportunity,
the radar receiver was tuned to the GPS L2 frequency (1227.6 MHz) in order to collect Earth-reflected
GPS signals. Raw data were downloaded to the ground and then a geometric model was used to select
SMAP’s Level L1 A binary data (orbit, attitude, antenna pointing, etc.) extraction from their archive to
only those time periods with potential specular reflections (Figure 2). These data, combined with GPS
orbital information, were used to predict when the SMAP’s antenna pointed to a nominal specular
reflection point. This timing information was then used by a L1 A Block Floating Point Quantization
(BFPQ) for In-phase (I) and Quadrature-phase (Q) conversion, where H-Pol and V-Pol data were
extracted. This converter read in SMAP Level 1A data, and converted the compressed BFPQ numbers
to I and Q 8-bit signed integers. These I/Q data had continuity gaps when the radar transmitter was
supposed to be transmitting. The converter computed the required number of zero-valued samples
to be inserted to provide a temporally continuous data set. These continuous I/Q samples were
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passed to the GPS L2 acquisition software, which searched in Doppler and delay for the L2 Civilian
Medium-length code (L2CM), which repeats every 20 milliseconds. Once this code was found, the
software aligned with the L2C Long code (L2CL), which repeats every 1.5 s. The precise Doppler
and range information was passed on to the DDM processor, creating Delay Doppler Maps (DDMs)
spanning ±10 kHz in Doppler and ±3000 km in range, and centered at the strongest detected signal,
for both the H and V polarization data. After inspection, the data set was seen to be free of potential
effects of Faraday rotation. Two signal peaks were selected because the direct GPS signal was almost
always present in the data: timing between the two signals unambiguously determined which was

the reflected signal used here. Finally, after averaging, power DDM’s 〈|Yref|2〉 were obtained as a
result [18,30]:

〈|Yref|2〉 = Ptλ
2
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where Pt is the transmitted power, DT and DR are the transmitter and receiver antenna directivities at
the point

→
ρ over the Earth’s surface, RT and RR are the distance from the transmitter and the receiver

to point
→
ρ , |χ(τ, f)|2 is the Woodward Ambiguity Function (WAF), and σ0 is scattering coefficient.

The coherent integration time was set to Tcoh = 5 ms and the number of incoherent averaging Ninc = 5
to increase the Signal-to-Noise Ratio (SNR). Lower levels of Tcoh were tested, and it was found that
Tcoh = 5 ms is the optimum for this experiment configuration. The spatial resolution associated to the
waveforms’ peak is linked to the first Fresnel zone (~1 km2) in the case of specular scattering, and
limited by the glistening zone in the case of the non-specular scattering, related to the area of the first
iso-delay ellipse, that is ~1800 km2; plus the degradation due to: (a) the platform’s movement (in
the SMAP’s case this degradation is |→v SMAP| · Tc ·Ninc = 7.48 km/s · 0.005 s · 5 = 0.187 km); (b) the
antenna rotation; this degradation is unique to this scenario, and as a consequence the point at antenna
boresight moves ~18 km during the integration time.
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Figure 1. The Soil Moisture Active Passive (SMAP) mission was successfully launched on 31 January 
2015 into a Sun-Synchronous Orbit (SSO) with a local time of ascending node (LTAN) of 06:00 h, and 
an orbit reference height of ~685 km. The experiment set-up of the Global Navigation Satellite Systems 
Reflectometry (GNSS-R) experiment on-board the SMAP mission is represented in this figure. 
Scattered GPS signals were collected by the SMAP’s radar antenna at an elevation angle   ~55°. The 
gain of the H-Pol and V-Pol antenna was ~36 dB. Data processing was performed on-ground at 
NASA’s Jet Propulsion Laboratory (JPL). 

Figure 1. The Soil Moisture Active Passive (SMAP) mission was successfully launched on 31 January
2015 into a Sun-Synchronous Orbit (SSO) with a local time of ascending node (LTAN) of 06:00 h, and
an orbit reference height of ~685 km. The experiment set-up of the Global Navigation Satellite Systems
Reflectometry (GNSS-R) experiment on-board the SMAP mission is represented in this figure. Scattered
GPS signals were collected by the SMAP’s radar antenna at an elevation angle θe ~55◦. The gain of
the H-Pol and V-Pol antenna was ~36 dB. Data processing was performed on-ground at NASA’s Jet
Propulsion Laboratory (JPL).
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converted to I/Q for GPS L2C DDM generation. 
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Figure 2. Signal processing chain to convert SMAP Level 1A “high rate” data to Delay Doppler Maps
(DDMs). The SMAP orbit, attitude, and antenna pointing are used to predict times when specular
reflections will be visible. These “high rate” data is filtered by these times, and only relevant portions
converted to I/Q for GPS L2C DDM generation.

Waveforms corresponding to the Doppler central frequency were obtained for further assessment
over land and cryosphere. Averaged waveforms with the associated RMS at each lag are represented
in Figure 3 for both polarizations and different terrain types. To describe the shape of the waveforms
quantitatively and to account for the power differences and spreading of the signal, the following
parameters are used: Signal-to-Noise Ratio (SNR), Polarimetric Ratio (PR), and waveforms’ trailing
and leading edges width.

The SNR is estimated as in [31], and defined as [3]:

SNR =
〈|Yref|2〉
〈|Ynoise|2〉

=
〈|Yref|2〉

kBTB
, (2)

where kB is the Boltzmann constant, T is the equivalent noise temperature of the down-looking chain,
and B is the signal bandwidth.

The Polarimetric Ratio (PR) is computed to properly evaluate the fluctuations of the dielectric
properties of scatterers, since theoretically it can cancel out the effects of soil surface roughness without
biomass [18], although it does not do so perfectly for arbitrary scattering media. The PR at linear
polarization is high when soil moisture content is weak and reversely. On the other hand, at circular
polarization the ratio increases with the moisture [18]. It is estimated as the ratio of the peak of the
reflected signal power waveform at H-Pol over the peak of the reflected signal power waveform at
V-Pol, after proper compensation of the noise power floor and the antenna radiation pattern:

PR =
〈|Yref

H |
2〉

〈|Yref
V |

2〉
. (3)

The theoretical definition of the PR is provided in [32] as:

PR = σH/σV, (4)

where σH and σV are the bistatic radar cross-sections of H and V respectively.
Over land surfaces, there are two contributions to the waveforms: coherent and incoherent

scattered fields in different proportions. In this scenario, the Kirchhoff Approximation in the Physical
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Optics Approximation (KPO) provides a reasonable theoretical framework to analyze the results in
regions without biomass. The incoherent bistatic scattering coefficient as provided by the KPO is [33]:

σ0,inc
qp = (|a0|kl/2)2e−q2

zσ
2

∞

∑
n=1

(q2
zσ

2)

n!n
e−

(q2
x+q2

y)l
2

4n , (5)

where k = 2π
λ , l is the surface correlation length, σ is the surface height standard deviation, and

→
q is

the bistatic scattering coefficient. In the specular direction, the coefficient a0 can be computed for the
co-polar component H:

a0,H = −2RH(θinc)cos θinc, (6)

and for the co-polar component V:

a0,V = 2RV(θinc)cos θinc, (7)

where θinc is the incidence angle, and RH and RV are the Fresnel reflection coefficients at H-Pol and
V-Pol respectively:

RH =

√
1− sin2 (θinc)−

√
εr − sin2 (θinc)√

1− sin2 (θinc) +
√
εr − sin2 (θinc)

, (8)

and

RV =
εr

√
1− sin2 (θinc)−

√
εr − sin2 (θinc)

εr

√
1− sin2 (θinc) +

√
εr − sin2 (θinc)

, (9)

where εr is the dielectric constant. For the cross-polar components HV and VH, a0 = 0 [33]. Therefore,
upon substitution of (5), (6) and (7) in (4), the Polarimetric Ratio is found to be independent of the
surface roughness:

PR =
RH

RV
. (10)

In the case of the coherent component of the scattered field [33] (p. 1008), the PR is obtained as
the ratio of the H reflectivity over the V reflectivity as:

PR =
ΓH

ΓV
=
|RH|2e−(2σkcosθinc)

2

|RV|2e−(2σkcosθinc)
2 , (11)

Equation (11) shows that in the case of the coherent scattering, the PR is also theoretically
independent of the soil surface roughness because the surface height standard deviation is independent
of the signal polarization.

The width of both edges was defined as the lag difference between the 30% and the 100% of
the maximum power of the waveform (Figure 4). Finally, it is highlighted that the generated SMAP
GNSS-R dataset provided a unique opportunity for research in GNSS-R, despite this mission being
designed for a different goal, because the SMAP’s radar receiver allowed the collection of reflected
GNSS signals al L2, through the use of a high gain antenna ~36 dB. The observables (SNR, PR, and
trailing and leading edges) will be used to analyze the reflected waveforms (Figure 3). In this figure,
significant differences are seen among different areas. One of the most surprising results is the large
spreading of the waveforms over Greenland and the large SNR over the Sahara Desert. These points
will be further discussed in Section 3.
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Figure 3. One-day (~100 samples) averaged power waveforms [T 	= 5 ms and N  = 5] over selected 
target areas: (a) H-Pol Amazon; (b) V-Pol Amazon; (c) H-Pol boreal forests; (d) V-Pol boreal forests; 
(e) H-Pol Greenland; (f) V-Pol Greenland; (g) H-Pol Sahara; and (h) V-Pol Sahara. 

Figure 3. One-day (~100 samples) averaged power waveforms [Tcoh = 5 ms and Ninc = 5] over selected
target areas: (a) H-Pol Amazon; (b) V-Pol Amazon; (c) H-Pol boreal forests; (d) V-Pol boreal forests;
(e) H-Pol Greenland; (f) V-Pol Greenland; (g) H-Pol Sahara; and (h) V-Pol Sahara.
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3. Earth Surface Effects on GNSS-R Relevant to Land Applications

The potential of spaceborne GNSS-R for land applications is evaluated, first at a global scale and
then at a regional scale. The results are displayed in a 0.1◦ latitude/longitude grid with a 1◦ pixel size
used in the spatial averaging, performed with steps of 0.1◦. The total number of observations over
land surfaces is ~35,000 per month (~70,000 considering direct and reflected signals), and the maps are
constructed using a mean value of ~25 ± 4 measurements per pixel. There are more data availability
over target areas at larger latitude than over the equator because of the SMAP’s orbit parameters (polar
orbit). On the other hand, the area of the selected pixel size gradually reduces from the equator to the
poles. The lat/lon grid was selected to homogenize the number of measurements per pixel. In the close
up over Africa, the selected spatial averaging size was 2◦, also performed with steps of 0.1◦. The pixel
size was selected to be larger than that of global averaged maps because of the of lower data availability.
The waveforms’ parameters (SNR, PR, and trailing & leading edges) are geo-located over the specular
points on the Earth’s surface. Four different relatively “homogeneous” areas are considered to study
statistically the waveforms’ properties associated with different scattering mechanisms. In particular,
the coordinates of these regions are: (a) tropical forests: latitude = (−3, 3)◦ by longitude = (15, 25)◦;
(b) boreal forests: latitude = (50, 70)◦ by longitude = (90, 140)◦; (c) Greenland: latitude = (75, 83)◦ by
longitude = (−53, −31)◦; and (d) Sahara Desert: latitude = (19, 28)◦ by longitude = (−7, 27)◦. Four
different three-months seasons (January–March, April–June, July–September, and October–December)
have been selected to analyze the effect of seasonal variations at a regional scale on soil moisture and
vegetation water content.

3.1. Global Scale

The global one-year averaged maps (1 September 2015 to 1 September 2016) provided in this
study are useful for the global scale study. Signal-to-Noise Ratio (SNR) values are presented for H-Pol
and V-Pol respectively in Figure 5a,b over the Earth’s land surface. High SNR peaks correspond to
bare soil regions with high soil moisture content such as the Pampas of Argentine, the Great Lakes
regions in the US, Northern India, or the Northern Yakutia region in Russia. There are also high power
peaks over regions such as the Sahara Desert despite the low soil moisture values. This effect will be
investigated at a regional scale. In regions with significant amount of AGB, the SNR values are lower
despite high values of soil moisture content because of the effect of signal attenuation (Figure 5a,b).
The PR values (Figure 5c) show good correlation (Pearson linear correlation factor r ~−0.6) to soil
moisture content by comparing them to SMAP’s radiometer data (Figure 5d). It appears higher PR
values are associated with larger waveform spreading (Pearson linear correlation factor r ~0.4). These
results are clearly illustrated in Figures 5c and 6a–d. In regions with higher PR and little vegetation



Remote Sens. 2017, 9, 362 8 of 23

(Greenland, Australia, the Sahara Desert, the Gobi Desert, the Arabian Desert, and the Kalahari Desert)
waveform spreading is larger than regions with higher values of above ground vegetation (Amazonian
and Boreal forests), and lower waveform spreading.

Figure 5. SMAP over-land power waveform analysis using one-year averaged values: (a) Signal-to-
Noise Ratio H-Pol [dB]; (b) Signal-to-Noise Ratio V-Pol [dB]; (c) Polarimetric Ratio [dB]; (d) Global
distribution of time-averaged retrieved surface soil moisture based on SMAP radiometer observations
and application of the multi-temporal dual-channel algorithm by Piles et al [34,35]. Volumetric soil
moisture measured for the first few centimeters (in fact the penetration depth depends on the soil
mineralogical content and the moisture).
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Figure 6. SMAP over-land power waveforms shape analysis: (a) leading edge width H-Pol [m];  
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Figure 6. SMAP over-land power waveforms shape analysis: (a) leading edge width H-Pol [m];
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For a given elevation angle, the level of signal depolarization depends on the surface roughness,
and the scatterer type through the scattering coefficient σ0. Therefore, the SMAP data set, which has
an approximately constant elevation angle of θe~55◦, is useful to analyze the GNSS-R sensitivity to
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changes in the dielectric constant. Figure 5c shows the good sensitivity of the PR for different levels
of Above Ground Biomass (ABG), from ~100 ton/ha for boreal forests to ~350 ton/ha for tropical
rainforests (Figure 7a). The transitions zones from arid to dense vegetation areas are well represented
in Africa and Asia from the North to the South. Over dense vegetation areas, the PR takes negative
values, which suggests that the vertical stalks scatter more vertically polarized waves. These maps
show that this observable depends on dielectric and scattering property changes over biomass and
wetlands (see Amazon river and lakes regions). This is the reason that explains the behaviour in
Figure 8a,b where there are two types of waveforms: those with higher power levels corresponding
to areas over the Amazon river and riparian forest, and those corresponding only to tropical forests
with lower power level because of signal attenuation [11,36]. The attenuation due to vegetation is
Lcanopy = eτ

canopy/cosθinc , where τcanopy is the nadir optical depth of the vegetation layer [11]. Over
the Amazon river and riparian forests the SNR ranges from ~15 dB to ~30 dB depending on the
proportions of land signal contamination. The highest power waveforms’ peaks are even stronger
than over Greenland because of the specular reflection over smooth and calm water. However,
the averaged waveform shows a higher peak power over Greenland than over the Amazon region and
a dissymmetric shape (Figure 3). In South America, when the specular point moves away from the
tropical forests, the spreading of the waveforms increases, also showing detectability to the Amazon
river with a higher PR value (Figure 5). Furthermore, it is also observed that the spreading of the
trailing edge is larger than the leading edge. This aspect over tropical rainforests will be further
evaluated at a regional scale.
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The topography [11] is a key parameter to take into consideration, in addition to the effects of
biomass, because the scattering coefficient σ0 is proportional to the probability that a facet could
forward scatter the electromagnetic field to the receiver in a specular way. AGB over some areas
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of the Himalayas is ~200 ton/ha [37], so that both effects (topography and biomass) are merged.
Looking at the East mountains of Greenland and the Andes mountains (Figure 7b), neither with
appreciable vegetation (Figure 7a), it can be seen that topography contributes to the GNSS signals
depolarization (Figure 5c). The effect of topography is further analyzed using the information on
the waveforms leading and trailing edges width (Figure 6). Similar measurements of waveform
spreading were obtained for H-Pol and V-Pol. At regional scale H-Pol is selected for further study.
Similar antenna gain and rate of change of the radar cross-section with the positioning vector, at both
polarizations. These observables are used here for the first time (to the authors’ knowledge) for land
surfaces applications. In particular, the width of both edges is assessed as a function of the surface
type. It is shown that there is a dependence on changes in topography but also in dielectric properties.
The width is lower for larger values of biomass and surface topography. This result deserves attention
since, in this case, a lower spreading of the waveforms does not mean a higher signal coherence. In
the latter case, it means that the area that contributes to the signal in the specular direction is reduced.
In the former case, the interpretation is that the effects of attenuation are very strong away from the
nominal specular reflection point so that the spreading of the waveform is lower as compared to
bare soil.

Finally, this reconstructed SNR at Left Hand Circular Polarization is also shown here for reference
(Figure 9) as [32]:

SNRLHCP =

(√
SNRH +

√
SNRV

2

)2

(12)

Figure 9 shows high peaks power associated with bare regions with high soil moisture values,
lakes regions and also over the Sahara Desert (black rectangles in Figure 9). On the other hand, lower
power levels are observed over tropical or boreal forests due to the larger signal attenuation.
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3.2. Regional Scale

This section provides a regional scale analysis (Figure 10) with focus on Africa-Congolian
tropical rainforests, Sahara and Kalahari Desert (Figures 11–13), Northern Asia Boreal forests
(Figures 14–16), and the Greenland ice sheet (Figures 17 and 18). These three regions have been
selected because they provide a wide overview of different scattering properties over the Earth’s
surface. The information provided by the seasonal variations of the PR, SNR, and the spreading of
the waveforms is complemented with maps of Soil Water Index (SWI) from METOP-ASCAT [38], and
Normalized Difference Vegetation Index (NDVI) from MODIS [39]. Additionally, the effect of larger
AGB on tropical rainforests as compared to boreal forests is derived from the lower levels of SNR for
higher AGB, the lower PR, and the lower spreading of the waveforms, as compared to different terrain
types (Figure 10).
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Figure 15. Regional study over Norther Asia. Polarimetric Ratio (a) Summer; (b) Winter.
Signal-to-Noise Ratio (c) Summer; (d) Winter. Trailing edge width (e) Summer; (f) Winter. Soil
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Figure 18. Regional study over North America and Greenland. Polarimetric Ratio (a) Summer;
(b) Winter. Signal-to-Noise Ratio (c) Summer; (d) Winter. Trailing edge width (e) Summer; (f) Winter.
Soil Water Index (g) Summer; (h) Winter. Normalized Difference Vegetation Index; (i) Summer;
(j) Winter.
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3.2.1. Africa: Arid Deserts and Congolian Rainforests

Over bare soil, the scattering is mainly related to surface scattering, being driven by the soil
moisture and surface roughness. However, the high spatial variability of the SNR over the Sahara
Desert could be explained by both surface (Rocky Mountains, boulder and graves zones, and sand seas)
and subsurface scattering contributions as Camps suggested for first time in [11]. Volume scattering
could occur under dry conditions allowing the GNSS signals to penetrate the subsurface [40–42]
for rich sand content areas. This could explain the large SNR values over the Sahara despite the
low soil moisture (Figure 11c,d). On the other hand, the large waveform spreading (Figure 11e,f)
over the Sahara Desert is difficult to be attributed to this geophysical effect because of the low
penetration depth around (~2 m) for 0% of volumetric moisture content at L band. The effect of the
sand seas (that continuously reshape the surface) on the scattering coefficient, should be considered as
a plausible reason, particularly the dunes, which show the characteristics of the sand and the long-term
wind [43]. Additionally, almost negligible seasonal variations over the Sahara are observed since SWI
(Figure 10g,h) and NDVI are nearly constant during the year in this region (Figure 11i,j).

Seasonal fluctuations over Africa are found in the latitude ranges from ~9◦ to ~15◦, and
from ~−20◦ to ~−10◦, where the geophysical parameters changes are large from Summer to Winter
(SWI in Figure 11g,h, and NDVI in Figure 11i,j). Seasonal variations of the Polarimetric Ratio
(PRSummer ~1 dB in Figure 12a vs. PRWinter ~4 dB in Figure 12b) are anti-correlated to changes in
SWI, and NDVI. On the other hand, seasonal variations at H-Pol in the SNR (SNRSummer ~22 dB
in Figure 12c & SNRSummer ~13 dB in Figure 13c vs. SNRWinter ~18 dB in Figure 12d & SNRWinter

~17 dB in Figure 13d), and the trailing edge width (TESummer ~460 m in Figure 12e & TESummer ~340 m
in Figure 13e vs. TEWinter ~390 m in Figure 12f & TEWinter ~440 m in Figure 13f) are correlated to
changes in SWI and NDVI. This could be explained since the larger scattering coefficient over the
soil, associated with larger SWI, increases the SNR and waveforms spreading, while the larger NDVI
attenuates H-Pol signals more than V-Pol signals (Figure 5a,b). The spreading of the waveforms in
the latitude range from ~9◦ to ~15◦ (Figure 11e,f) is similar to that over the Sahara Desert, with very
low levels of NDVI. However, as it is shown over the equatorial region, the spreading is significantly
reduced because of the effect of the Congolian forests with an AGB ~350 ton/ha. This suggests that
the canopy height (Figure 7a) plays a more important role than the NDVI in the shape of the reflected
waveforms. In fact, the SNR is larger over the Sahara and Kalahari Desert than over Congolian forests
despite the larger SWI, because the larger signal attenuation due to the larger AGB (Figure 7a). In
regions with lower levels of canopy height, the Polarimetric Ratio is more sensitive to changes in NDVI
(Figures 7a, 12a,b, and 13a,b).

3.2.2. Asia: Arid Deserts and Boreal Forests

The evaluation over the Northern Asia region is useful to study separately the effects of SWI and
AGB (Figures 14–16). The comparison between Figures 14 and 15 shows the effects of higher AGB
on the waveforms’ parameters, for relatively homogeneous SWI conditions at latitudes higher than
~55◦ (Figure 15g). SWI data from ASCAT could have some limitations for high vegetation density
because measurements are derived using a radar operating at a high frequency ~5.2 GHz (C-band).
The trailing edge width is lower (Figure 15e,f) over regions with higher canopy height (Figure 14),
and rapidly increases over the Gobi Desert or over the highest latitudes in Siberia. On the other hand,
the highest PR values (Figure 15a,b) and SNR values (Figure 15c,d) are associated to regions with larger
values of the trailing edge width (Figure 15e,f). As is shown in Figure 15g−j, NDVI is not associated
with SWI over Northern Asia in Winter or Summer. Canopy height (Figure 14) is a key parameter.
The spreading of the waveforms, the PR, and SNR values show approximately a similar trend in
Summer (Figure 15a,c,e) and Winter (Figure 15b,d,f), but different absolute values. The main difference
is the smaller waveforms’ spreading in areas with higher values of AGB. Additionally, the SNR is
lower in Winter (Figure 16), particularly over areas with lower AGB values, because of the effect of
snow on the surface at these latitudes. This additional signal attenuation explains the lower spreading
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of the signals in Winter, since a smaller region around the nominal specular point contributes to the
power waveforms. Finally, it is found that PR is lower in Summer over Northern Siberia (in agreement
with Figure 12) because of the high soil moisture level in Summer (Figure 15g) and snow conditions in
Winter (Figure 15h).

3.2.3. North America and Greenland: Lakes Region and Ice Cap

GNSS-R applications can be extended to the study of snow and ice [44–46]. The signal wavelength
(λ) at L2 is λ ~24 cm, which is much longer than that radiometers operating at different frequency
bands such as AMSR-E and AMSR-2. The wavelength is larger than the grain size and even the
snowpack thickness. As a consequence, the medium can be assumed to be homogeneous so that
the scattering is determined by the local density fluctuations. At this frequency, ice has a very low
absorption coefficient and the refractive index is small. The penetration depth and the scattering
coefficient depend on frequency and snow properties. In the case of dry snow, the penetration depth is
expected to be around hundreds of meters and therefore the GNSS-R technique is potentially optimum
for subsurface studies [47]. On the other hand, the penetration depth of GNSS signals over sea ice
is <1 m [48].

Extended regions of Antarctica and Greenland are affected by melting effects (e.g., Figure 17).
A recent study [49] additionally shows areas alternatively frozen and thawed in Greenland’s inner
ice cap (magenta line in Figure 17). Greenland is a focus region of this study (Figure 18). Firstly, it
is noted that over bare soil the scattering is significantly determined by soil moisture and surface
roughness. However, over dry ice, volume scattering [50], and scattering at different layers [44] could
occur allowing the GNSS signals to penetrate the subsurface. The larger waveform spreading over
Greenland (Figure 18e,f) could be attributed to this geophysical reason. The effect of subsurface
scattering is to increase the waveforms’ peak power (Figure 18c,d) and the signals’ spreading [50], in
agreement with Figure 3e,f. At the same time, in the frame of this work, the large SMAP’s antenna gain
~36 dB partially compensates the signal attenuation. Therefore, the sensitivity to penetrating signals as
seen by SMAP is large as compared to satellites with smaller antennas. Figure 18 shows high values of
SNR ~(18, 22) dB, PR ~(3, 5) dB, and trailing edge width ~(500, 600) m over areas in the inner ice cap.
However, the waveforms parameters (SNR, PR, and trailing edge) take alternatively low and high
values over these areas. On the other hand, the parameters levels are qualitatively similar to those over
outer Greenland (see melting effects in Figure 17). Additionally, the width of the waveforms’ trailing
edge over Greenland increases from Summer (Figures 10 and 18e) to Winter (Figures 10 and 18f) when
the weather is colder and the amount of dry ice increases, and therefore the penetration depth would
be larger. This waveform data is consistent with the waveforms spreading being due to subsurface
scattering effects.

Over North America, it is found that during Summer there are regions with high SNR values
corresponding to areas with lakes and high SWI (Figure 18g). During Winter, these power peaks are
lower because of the effect of snow over the surface that reduces the scattering coefficient.

4. Final Discussion

A serendipitous GNSS-R experiment performed with the SMAP radar receiver has provided a
rather unique data set. The use of the Polarimetric Ratio (PR) at H-Pol and V-Pol from a GNSS-R
spaceborne mission has been evaluated for the first time. This work provides an advance in the
understanding of GNSS-R scatterometry over land surfaces and cryosphere enabled by the high gain
of the radar antenna (~36 dB) and the use of two orthogonal polarizations. Additionally, the second
added value of this work is the analysis of waveform spreading due to the scattering process over
the Earth’s surface, showing the ability to detect different levels of AGB over Amazonian and Boreal
forests, differentiating from deserts and the cryosphere. Values of soil moisture as provided by the
SMAP’s radiometer, and SWI and NDVI maps have been used here to help in the interpretation of the
GNSS-R observables. It is found that despite the good correlation between PR and the soil moisture
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values, the GNSS-R signatures simultaneously contain information about AGB, soil moisture, and
topography, making it difficult to separate the contributions. These issues need to be addressed to
potentially provide accurate soil moisture measurements (key-factor for studies of the water cycle that
is a continuous sequence involving water in the atmosphere, on the continents, and in the ocean), and
biomass measurements (key-factor for evaluation of the carbon cycle).

5. Conclusions and Future Opportunities

A GNSS-R experiment has been performed from the NASA’s SMAP satellite after tuning the
radar receiver to the GPS L2 frequency (1227.6 MHz). Delay Doppler Maps (DDMs) were computed
on-ground using a clean-replica of the open-access L2C code. Upon investigation, it was determined
that the optimum coherent integration time for this experiment was Tcoh = 5 ms. The high gain of
the SMAP’s antenna allowed it to receive strong signals from a variety of scenes. First results have
been presented to investigate the characteristics of the reflected waveforms over land surfaces and
cryosphere. The main observations from this study are: (a) the Polarimetric Ratio (PR) provided
by this data set and the soil moisture content provided by the SMAP’s radiometer show a Pearson
linear correlation factor r ~−0.6; (b) the Signal-to-Noise at H-Pol (SNRH) shows different mean
levels for different terrain types: SNRH,Lakes ~25 dB, SNRH,Sahara ~18 dB, SNRH,Greenland = 17 dB,
SNRH,Boreal Forests ~13 dB, SNRH,Tropical Forests ~12 dB; (c) the waveforms’ parameters show sensitivity
to seasonal fluctuations over regions with seasonal changes of geophysical parameters expressed by
NDVI, and SWI; (d) the spreading of the waveforms’ leading and trailing edge reduces for higher
values of AGB (from ABGBoreal ~100 ton/ha to AGBTropical ~350 ton/ha); (e) the AGB shows a more
pronounced effect in GNSS-R signatures (PR, SNR, leading & trailing edges width) than NDVI; (f) the
GNSS signals are depolarized upon scattering over areas with rough topography or high levels of AGB;
and (g) the large spreading of the waveforms over the Greenland’s ice cap suggests that the GNSS
signals penetrate the subsurface significantly, which opens the possibility of cryosphere monitoring
using GNSS-R sensors from space.

While the GNSS-R experiment on SMAP was helpful in providing high SNR polarimetric data,
the sampling characteristics are not optimal for process studies. On the other hand, the unprecedented
improved spatio-temporal sampling provided by the NASA’s CyGNSS suggests the possibility to use
its data to study soil moisture and vegetation water content variability in the tropical latitudinal bands.
A careful assessment should be performed of the potential synergies between CyGNSS and SMAP
GNSS-R data sets to evaluate how the SMAP’s high SNR polarimetric data could help elucidate some
of the scattering mechanisms not observable with the CyGNSS lower antenna gain.
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