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Abstract: The latest MODIS GPP (gross primary productivity) product, MOD17A2H, has great
advantages over the previous version, MOD17A2, because the resolution increased from 1000 m
to 500 m. In this study, MOD17A2H GPP was assessed using the latest eddy covariance (EC) flux
data (FLUXNET2015 Dataset) at eighteen sites in six ecosystems across the globe. The sensitivity of
MOD17A2H GPP to the meteorology dataset and the fractional photosynthetically- active radiation
(FPAR) product was explored by introducing site meteorology observations and improved Global
Land Surface Satellite (GLASS) Leaf Area Index (LAI) products. The results showed that MOD17A2H
GPP underestimated flux-derived GPP at most sites. Its performance in estimating annual GPP
was poor (R2 = 0.62) and even worse over eight days (R2 = 0.52). For the MOD17A2H algorithm,
replacing the reanalysis meteorological datasets with the site meteorological measurements failed
to improve the estimation accuracies. However, great improvements in estimating the site-based
GPP were gained by replacing MODIS FPAR with GLASS FPAR. This indicated that in the existing
MOD17A2H product, the errors were originated more from FPAR than the meteorological data. We
further examined the potential error contributions from land cover classification and maximum light
use efficiency (εmax). It was found that the current land cover classification scheme exhibited frequent
misclassification errors. Moreover, the εmax value assigned in MOD17A2H was much smaller than
the inferred εmax value. Therefore, the qualities of FPAR and land cover classification datasets should
be upgraded, and the εmax value needs to be adjusted to provide more accurate GPP estimates using
MOD17A2H for global ecosystems.
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1. Introduction

GPP, the total photosynthetic uptake of carbon by vegetation, plays a key role in understanding
the carbon balance between the atmosphere and biosphere [1,2]. The magnitude of GPP also defines the
ability to produce critical ecosystem services, notably fuel, food, fiber and materials for the construction
industry [3]. Therefore, quantifying of the spatial-temporal characteristics of GPP has received great
attention in the field of global change studies [4–6].

GPP values can be estimated from satellite remote sensing products [7–9]. The first consistent,
near-real-time GPP dataset allowing the estimation of global vegetation in an eight-day interval at
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1-km resolution is the MOD17A2 MODIS product [10,11]. The MODIS GPP data correlated well with
the GPP records from twelve flux towers across North America, indicating that MOD17A2 is a reliable
data source [12]. Even so, there are still many potential error sources in MODIS GPP products arising
from input data, the parameters describing the biophysical properties of vegetation and the algorithm
itself [13,14]. Firstly, the spatial resolution of meteorological reanalysis data is quite different from
that of MODIS products, which introduces inaccuracies in estimating atmospheric conditions at a
scale that matches heterogeneities in the land surface [15]. Secondly, estimation of the FPAR cannot
be accurately achieved because the MODIS Leaf Area Index (LAI) is poorly correlated with ground
measurements of the vegetation canopy [16]. Thirdly, the land cover classification provided by MODIS
is not always accurate, and the misclassifications are quite common for similar land cover classes [17].
Finally, the use of a constant value attributed to the maximum value for light use efficiency (LUE)
cannot be justified for the same biome type [18]. All sources of error mentioned above (meteorological
data, FPAR product, land cover classification result and LUE value) require separate examination on
an individual basis [19].

The analysis of errors arising from the MODIS GPP product is difficult because of inherent
limitations in directly measuring GPP values. For the present, the eddy covariance (EC) technique is
the frequently-used approach [20–22]. By performing comparisons between MODIS GPP products
and EC flux-derived GPP measurements, much validation work has been conducted to evaluate the
accuracies of previous MOD17A2 products [23,24]. GPP values from MOD17A2 were comprehensively
compared with GPP measurements from flux towers at fifteen research sites across North America
by Heinsch et al. (2006) [25]. Their results showed that MOD17A2 GPP on average overestimated
the site-based GPP by 20–30%. Moreover, the effectiveness of MOD17A2 GPP in Africa was also
evaluated by using site meteorological measurements and flux-derived GPP at twelve flux tower sites.
The results suggested that GPP values from MOD17A2 agreed with those from the flux towers in wet
sites, but were much smaller in dry sites [26].

For MODIS GPP products, many validation efforts have promoted updates and continuous
improvements to MOD17A2 [27]. Note that the latest MOD17A2H product has essential advantages
over the previous version (MOD17A2) because the resolution increased for the first time from 1000 m to
500 m. The major feature of MOD17A2H is its innovation in two sources of input data: meteorological
data and FPAR products [28]. Firstly, GMAO (Global Modeling and Assimilation Office) reanalysis
data substitutes DAO (Data Assimilation Office) reanalysis data to estimate the actual values of
meteorological elements. Secondly, the latest MODIS FPAR product, MOD15A2H, substitutes the
previous version, MOD15A2, to estimate the actual values of FPAR and to enable improvement in
spatial resolution from 1000 m to 500 m.

It was uncertain whether the improvements of MOD17A2H over MO17A2 could estimate GPP
more accurately, which will attract great attention from researchers around the world. In this context,
the evaluation of MOD17A2H GPP becomes an essential work. Currently, FLUXNET has released the
latest global flux dataset, FLUXNET2015 [29]. It is clear that the latest EC flux dataset can provide
a more accurate reference standard for the validation of MOD17A2H GPP. Therefore, it is of great
significance to verify the latest MOD17A2H product using the latest FLUXNET2015 dataset.

In this study, we evaluated MOD17A2H GPP using the FLUXNET2015 dataset at eighteen sites in
six biome types around the world (Table 1). Not only the eight-day and annual MODIS GPP values
were systematically verified against the flux-derived GPP measurements, but also the role of each
input variable was carefully analyzed. The objectives of this study were to assess the performance
of MOD17A2H on a global scale by comparisons with EC flux-derived GPP measurements and to
explore sources of error among all input parameters (meteorological data, FPAR product, land cover
classification result and LUE value).



Remote Sens. 2017, 9, 418 3 of 20

Table 1. List of FLUXNET eddy covariance tower sites used in this study. Site descriptions include name
(site ID), country, latitude and longitude (lat./lon., decimal degrees), general biome type, mean annual
temperature (MAT, ◦C), mean annual long-term precipitation (MAP, mm) and years of measurements.
ENF: evergreen needleleaf forests; EBF: evergreen broadleaf forests; DBF: deciduous broadleaf forests;
MF: mixed forests; GRA: grasslands; CRO: croplands.

Site Name Country Lat. Lon. Biome Type MAT MAP Data Period

Virasoro(AR-Vir) Argentina −28.24 −56.19 ENF 21.6 1433 2010–2012
Alice Springs(AU-ASM) Australia −22.28 133.25 ENF 22.2 390 2010–2013
Riggs Creek(AU-Rig) Australia −36.65 145.58 GRA 15.4 418 2011–2013
Whroo(AU-Whr) Australia −36.67 145.03 EBF 15.7 411 2011–2013
Lonzee(BE-Lon) Belgium 50.55 4.75 CRO 10.0 800 2004–2014
Vielsalm(BE-Vie) Belgium 50.31 6.00 MF 7.8 1062 2001–2014
Santarem-Km83-Logged Forest(BR-Sa3) Brazil −3.02 −54.97 EBF 26.1 2044 2001–2004
Ontario-Groundhog River(CA-Gro) Canada 48.22 −82.16 MF 1.3 831 2003–2014
Bily Kriz-grassland(CZ-BK2) Czech Republic 49.49 18.54 GRA 6.7 1316 2006–2011
Hainich(DE-Hai) Germany 51.08 10.45 DBF 8.3 720 2001–2012
Soroe-LilleBogeskov(DK-Sor) Denmark 55.49 11.64 DBF 8.2 660 2001–2012
Grignon(FR-Gri) France 48.84 1.95 CRO 12.0 650 2004–2014
Puechabon(FR-Pue) France 43.74 3.60 EBF 13.5 883 2001–2013
Ankasa(GH-Ank) Ghana 5.27 −2.69 EBF 26.0 1900 2011–2012, 2014
Renon/Ritten(IT-Ren) Italy 46.59 11.43 ENF 4.7 809 2001–2013
Sardinilla Pasture(PA-SPs) Panama 9.31 −79.63 GRA 26.5 2350 2007–2009
Curtice Walter-Berger cropland(US-CRT) USA 41.63 −83.35 CRO 10.1 849 2011–2013
Walnut Gulch Kendall Grasslands(US-Wkg) USA 31.74 −109.94 GRA 15.6 407 2004–2014

2. Materials and Methods

2.1. Materials

2.1.1. MOD17A2H GPP Algorithm

Based on the rationale originally described by Monteith (1972) [30], the MOD17A2H GPP
algorithm can be expressed as:

GPP = ε × FPAR × PAR (1)

where FPAR is the fraction of PAR (MJ·m−2·d−1), and PAR can be calculated from the total shortwave
solar radiation (SWRad, MJ·m−2·d−1):

PAR = 0.45 × SWRad (2)

The magnitude of LUE ε (gC·m−2·d−1·MJ−1) in Equation (1) is calculated as:

ε = εmax × Ts × VPDs (3)

where εmax (gC·m−2·d−1·MJ−1) is the maximum LUE specified by the Biome Properties Look-Up
Table (BPLUT) based on biome type, and Ts and VPDs are the attenuation scalars influenced by daily
minimum temperature (Tmin, ◦C) and daytime vapor pressure deficit (VPDavg, Pa), respectively [31–33].

The MODIS images from 2001–2014 were downloaded from the NASA Land Processes Distributed
Active Archive Center [34]. Based on the geographical coordinates of the flux tower sites, 5 km × 5 km
cut-outs centered over every site location were extracted to represent: (1) land cover classification
(MCD12Q1, Collection 5.1, annual product with 500-m spatial resolution); (2) FPAR (MOD15A2H,
Collection 6, eight-day product with 500-m spatial resolution); and (3) GPP (MOD17A2H, Collection 6,
eight-day product with 500-m spatial resolution).

2.1.2. GMAO Meteorological Reanalysis Data

The MODIS GPP Collection 6 (MOD17A2H, C6) data used in this paper implement Global
Modeling and Assimilation Office (GMAO) Reanalysis data for direct meteorological inputs.
The current version of GMAO is an hourly time step dataset with 0.5 latitude degree by 0.625 longitude
degree resolution. For every flux tower site, hourly meteorological data including air temperature
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(Tair, ◦C), specific humidity (SH, kg·kg−1), surface pressure (Pres, Pa) and SWRad (W·m−2) during
2001–2014 were downloaded from NASA Goddard Space Flight Center [35]. Through data
preprocessing, key parameters including the daily average air temperature (Tavg, ◦C), daily minimum
air temperature (Tmin, ◦C), daytime average VPD (VPDavg, Pa) and daily total SWRad (MJ·m−2·d−1)
were obtained at a 0.5◦ × 0.625◦ spatial resolution. Using a spatial nonlinear interpolation scheme
developed by Zhao et al. (2005) [12], we further interpolated the GMAO data down to the 500-m
MOD17A2H pixel spatial resolution. In order to make comparisons between reanalysis meteorological
data and observed meteorological data, the same spatial nonlinear interpolation method was also
employed to interpolate the GMAO data to EC flux tower locations [36].

2.1.3. GLASS LAI Data

FPAR is a critical component of the MOD17A2H GPP algorithm. In this study, we introduced
the GLASS LAI product to assess the influences of FPAR on the effectiveness of MO17A2H GPP.
In previous studies [37–39], it had been proven that the GLASS LAI product could provide better
estimates of LAI than existing MODIS and CYCLOPES LAI datasets. For each EC flux tower site, the
GLASS LAI subsets (eight-day interval at a spatial resolution of 0.05◦ ×0.05◦) during 2001–2014 were
downloaded from the Generation and Applications of Global Products of Essential Land Variables
website [40]. We interpolated the GLASS LAI product down to the 500-m MOD15A2H pixel spatial
resolution using a spatial nonlinear interpolation method (the same as the GMAO data). Based on the
Beer’s law approach, we converted GLASS LAI (m2·m−2) to GLASS FPAR by following equation:

FPAR = 1 − e(−K)×LAI (4)

where K is the light extinction coefficient of canopy, which is set to 0.5 [41].

2.1.4. EC Flux Data

The performance of MOD17A2H GPP on eighteen EC flux tower sites, including evergreen
needleleaf forests (ENF), evergreen broadleaf forests (EBF), deciduous broadleaf forests (DBF), mixed
forests (MF), croplands (CRO) and grasslands (GRA), was evaluated in this study (Table 1). These
eighteen sites are Virasoro (AR-Vir), Alice Springs (AU-ASM), Riggs Creek (AU-Rig), Whroo (AU-Whr),
Lonzee (BE-Lon), Vielsalm (BE-Vie), Santarem-Km83-Logged Forest (BR-Sa3), Ontario- Groundhog
River (CA-Gro), Bily Kriz-grassland (CZ-BK2), Hainich (DE-Hai), Soroe-LilleBogeskov (DK-Sor),
Grignon (FR-Gri), Puechabon (FR-Pue), Ankasa (GH-Ank), Renon/Ritten (IT-Ren), Sardinilla Pasture
(PA-SPs), Curtice Walter-Berger cropland (US-CRT) and Walnut Gulch Kendall Grasslands (US-Wkg).
The detailed information for each site is available at the FLUXNET-Fluxdata website [42].

From the FLUXNET-Fluxdata website, we downloaded the newest FLUXNET2015 dataset to
obtain site meteorological data and GPP measurements during 2001–2014 for each flux tower site.
The daily meteorological data (Tavg, Tmin, PAR and VPDavg) were calculated from the half-hourly
site meteorological measurements, and the daily GPP values were calculated from the half-hourly
flux-derived GPP. We then obtained the eight-day site-based GPP by accumulating the daily
calculations to ensure that our data remained consistent with the 8-day interval of the MOD17A2H
GPP products.

2.2. Methods

2.2.1. Experimental Design

To distinguish the impacts of meteorological data and FPAR on MOD17A2H GPP, we conducted
the following four groups of experiments to recalculate GPP under dissimilar circumstances: (1) GMAO
meteorology data and MOD15A2H FPAR were chosen as meteorology inputs and FPAR inputs,
respectively (MOD_GMAO GPP) (the same as the standard MOD17A2H algorithm); (2) using site
meteorological data as meteorology inputs and MOD15A2H FPAR as FPAR inputs (MOD_Tower GPP);



Remote Sens. 2017, 9, 418 5 of 20

(3) GMAO meteorology data were used as meteorology inputs, and GLASS FPAR were introduced as
FPAR inputs (GMAO_GLASS GPP); (4) using site meteorological data and GLASS FPAR to estimate
GPP (Tower_GLASS GPP). At last, the four types of GPP estimates were compared with GPP values
measured by EC flux tower sites (Flux_Tower GPP), respectively.

2.2.2. Analytical Methods

Three statistical indices, including the coefficient of determination (R2), bias and root mean square
error (RMSE, %), were calculated to assess accuracies and uncertainties. The value of R2 denoted the
amount of variation in the measurements that could be predicted by the estimates, and the value of
bias expresses the differences between the estimates and the measurements. The value of RMSE was
computed by:

RMSE (%) =
1
M

×
√

1
n
×

n

∑
i=1

(E i − Mi)
2 × 100 (5)

where M was the mean value of the measurements and Ei and Mi are the estimated and measured
values, respectively.

3. Results

3.1. GPP Validation

3.1.1. Eight-Day GPP

The eight-day Flux_Tower GPP were compared with the results of MOD_GMAO GPP,
MOD_Tower GPP, GMAO_GLASS GPP and Tower_GLASS GPP (Figure 1, Table 2). In general, the
MOD_Tower GPP algorithm (R2 = 0.52) did not result in obvious improvements in fitting the
Flux_Tower GPP when comparing with the MOD_GMAO GPP algorithm (R2 = 0.52). However, the
GMAO_GLASS GPP algorithm (R2 = 0.63) and the Tower_GLASS GPP algorithm (R2 = 0.65) made
considerable improvements, and the Tower_GLASS GPP algorithm exhibited the best estimating
effectiveness. It should be noted that all of the above four algorithms underestimated the
Flux_Tower GPP to varying degrees. The degrees of underestimation by the MOD_GMAO GPP
(−11 gC·m−2·8-d−1), MOD_Tower GPP (−13 gC·m−2·8-d−1) and Tower_GLASS GPP (−11 gC·m−2·8-d−1)
algorithms were larger than that by the GMAO_GLASS GPP algorithm (−8 gC·m−2·8-d−1).
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Figure 1. Scatter plots of the eight-day MOD_GMAO GPP vs. the Flux_Tower GPP (a), MOD_Tower
GPP vs. the Flux_Tower GPP (b), GMAO_GLASS GPP vs. the Flux_Tower GPP (c) and Tower_GLASS
GPP vs. the Flux_Tower GPP (d). Significance levels: ** p < 0.01. GMAO, Global Modeling and
Assimilation Office.
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Table 2. Biome-based comparison of eight-day GPP derived from the site estimates with those
derived from the MODIS algorithms (MOD_GMAO GPP, MOD_Tower GPP, GMAO_GLASS GPP
and Tower_GLASS GPP). ENF: evergreen needleleaf forests; EBF: evergreen broadleaf forests; DBF:
deciduous broadleaf forests; MF: mixed forests; GRA: grasslands; CRO: croplands.

Biome Type Comparison R2 Mean (SD)
(gC·m−2·8-d−1)

Bias
(gC·m−2·8-d−1) RMSE (%) n

ENF

MOD_GMAO vs. Flux_Tower 0.71 ** 19 (20) vs. 30 (27) −11 52

920
MOD_Tower vs. Flux_Tower 0.72 ** 19 (19) vs. 30 (27) −11 52

GMAO_GLASS vs. Flux_Tower 0.75 ** 21 (22) vs. 30 (27) −9 47
Tower_GLASS vs. Flux_Tower 0.76 ** 20 (21) vs. 30 (27) −10 47

EBF

MOD_GMAO vs. Flux_Tower 0.14 ** 29 (20) vs. 40 (24) −11 54

1058
MOD_Tower vs. Flux_Tower 0.21 ** 26 (17) vs. 40 (24) −14 51

GMAO_GLASS vs. Flux_Tower 0.52 ** 35 (24) vs. 40 (24) −5 39
Tower_GLASS vs. Flux_Tower 0.73 ** 31 (19) vs. 40 (24) −9 33

DBF

MOD_GMAO vs. Flux_Tower 0.75 ** 23 (25) vs. 39 (42) −16 63

1104
MOD_Tower vs. Flux_Tower 0.77 ** 19 (20) vs. 39 (42) −20 68

GMAO_GLASS vs. Flux_Tower 0.86 ** 27 (28) vs. 39 (42) −12 49
Tower_GLASS vs. Flux_Tower 0.89 ** 23 (23) vs. 39 (42) −16 55

MF

MOD_GMAO vs. Flux_Tower 0.73 ** 22 (24) vs. 33 (30) −11 53

1196
MOD_Tower vs. Flux_Tower 0.73 ** 17 (18) vs. 33 (30) −16 65

GMAO_GLASS vs. Flux_Tower 0.81 ** 24 (25) vs. 33 (30) −9 45
Tower_GLASS vs. Flux_Tower 0.81 ** 18 (18) vs. 33 (30) −15 59

GRA

MOD_GMAO vs. Flux_Tower 0.41 ** 14 (14) vs. 19 (24) −5 98

1058
MOD_Tower vs. Flux_Tower 0.43 ** 14 (12) vs. 19 (24) −5 98

GMAO_GLASS vs. Flux_Tower 0.56 ** 15 (17) vs. 19 (24) −4 83
Tower_GLASS vs. Flux_Tower 0.64 ** 14 (15) vs. 19 (24) −5 80

CRO

MOD_GMAO vs. Flux_Tower 0.34 ** 20 (20) vs. 30 (40) −10 94

1150
MOD_Tower vs. Flux_Tower 0.32 ** 18 (19) vs. 30 (40) −12 98

GMAO_GLASS vs. Flux_Tower 0.35 ** 25 (23) vs. 30 (40) −5 89
Tower_GLASS vs. Flux_Tower 0.34 ** 22 (21) vs. 30 (40) −8 92

All

MOD_GMAO vs. Flux_Tower 0.52 ** 21 (21) vs. 32 (33) −11 24

6486
MOD_Tower vs. Flux_Tower 0.52 ** 19 (18) vs. 32 (33) −13 24

GMAO_GLASS vs. Flux_Tower 0.63 ** 24 (24) vs. 32 (33) −8 23
Tower_GLASS vs. Flux_Tower 0.65 ** 21 (20) vs. 32 (33) −11 23

Significance levels: ** p < 0.01.

From the perspective of individual sites, the four algorithms (MOD_GMAO GPP, MOD_Tower
GPP, GMAO_GLASS GPP and Tower_GLASS GPP) underestimated the Flux_Tower GPP more
obviously (Figure 2). The Flux_Tower GPPs were underestimated by above four algorithms at 15 of
the 18 sites. For the remaining three sites (AU-ASM, AU-Whr and US-Wkg), GMAO_GLASS GPP and
the Tower_GLASS GPP algorithms still underestimated the site-based GPP. In detail, AR-Vir, BR-Sa3
and PA-SPs suffered the highest degree of underestimation by the four algorithms (Figure 2a,g,p,
respectively), and CA-Gro, CZ-BK2 and FR-Pue suffered the lowest degree of underestimation
(Figure 2h,I,m, respectively). With respect to the estimating effectiveness of the four algorithms,
the MOD_GMAO GPP, MOD_Tower GPP, GMAO_GLASS GPP and Tower_GLASS GPP algorithms
fitted relatively effectively for one site (US-Wkg), two sites (AU-Rig and AU-Whr), ten sites (AU-ASM,
BE-Lon, BE-Vie, CA-Gro, CZ-BK2, DK-Sor, FR-Gri, FR-Pue, IT-Ren and PA-SPs) and four sites (AR-Vir,
DE-Hai, GH-Ank and US-CRT), respectively. None of the four algorithms successfully fitted the
Flux_Tower GPP for BR-Sa3 (Figure 2g). The GMAO_GLASS GPP algorithm had a relative advantage
in terms of bias (−14 gC·m−2·8-d−1).

The eight-day GPP values of MOD_GMAO GPP, MOD_Tower GPP, GMAO_GLASS GPP and
Tower_GLASS GPP were also compared with the Flux_Tower GPP at different biome types (Table 2).
As the analyses of individual sites showed, all above algorithms underestimated the Flux_Tower GPP
for all six biome types. In detail, deciduous broadleaf forests (DBF) suffered the highest degree of
underestimation, mainly because the four algorithms seriously underestimated the Flux_Tower GPP
of DE-Hai (Figure 2j) and DK-Sor (Figure 2k). In contrast, the degree of underestimation was low
for grasslands (GRA). This could be largely attributed to the fact that the four algorithms effectively
estimated the Flux_Tower GPP of CZ-BK2 (Figure 2i) and US-Wkg (Figure 2r). With respect to the
estimating effectiveness of the four algorithms, the GMAO_GLASS GPP and Tower_GLASS GPP
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algorithms were superior to the MOD_GMAO GPP and MOD_Tower GPP algorithms across all six
biome types. The GMAO_GLASS GPP algorithm provided the smallest values of bias for all biomes,
and the Tower_GLASS GPP algorithm exhibited the highest values of R2 for most biomes, except
croplands (CRO); for croplands, no algorithm fitted the Flux_Tower GPP more effectively than the
GMAO_GLASS GPP algorithm because it provided the highest value of R2 (0.35) and the lowest values
of both bias (−5 gC·m−2·8-d−1) and RMSE (89%).
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Figure 2. (a–r) Time series of eight-day GPP derived from the tower estimates (i.e., Flux_Tower GPP)
and four different experimental groups (i.e., MOD_GMAO GPP, MOD_Tower GPP, GMAO_GLASS GPP
and Tower_GLASS GPP) at all eighteen sites. The full name for each site is listed in Table 1. The units
of the mean and bias are gC·m−2·8-d−1, and the RMSE is expressed as a percentage. Significance levels:
** p < 0.01.
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3.1.2. Annual GPP

The Flux_Tower GPP werecompared with the calculations from MOD_GMAO GPP, MOD_Tower
GPP, GMAO_GLASS GPP and Tower_GLASS GPP during 2001–2014. (Figure 3, Table 3). The annual
average value of the Flux_Tower GPP and the above four algorithms across all the sites was
1460 gC·m−2·y−1, 976 gC·m−2·y−1, 869 gC·m−2·y−1, 1126 gC·m−2·y−1 and 987 gC·m−2·y−1,
respectively. The Flux_Tower GPP for AR-Vir, BR-Sa3, GH-Ank and PA-SPs were especially severely
underestimated (Figure 3a,b) by the MOD_GMAO GPP and MOD_Tower GPP algorithms, which
led to large biases (−484 gC·m−2·y−1 for MOD_GMAO GPP and −591 gC·m−2·y−1 for MOD_Tower
GPP). With respect to the estimating effectiveness, the GMAO_GLASS GPP algorithm showed the
greatest performance because it yielded the highest value of R2 (0.79) and the lowest values of bias
(−334 gC·m−2·y−1) and RMSE (32%).
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The flux derived GPP values (Flux_Tower GPP) at various biome types were also compared with
the calculations of the four algorithms (MOD_GMAO GPP, MOD_Tower GPP, GMAO_GLASS GPP
and Tower_GLASS GPP) over several years (Table 3). In the case of ENF, the Tower_GLASS GPP
algorithm exhibited a significant correlation (R2 = 0.91) and relatively underestimated the Flux_Tower
GPP less (bias = −458 gC·m−2·y−1). For EBF and GRA, the GMAO_GLASS GPP was the most
effective algorithm and exhibited significant correlations (R2 = 0.91, R2 = 0.95) and the smallest
biases (−222 gC·m−2·y−1, −173 gC·m−2·y−1) and RMSEs (21%, 33%). Similarly, for DBF and MF, the
GMAO_GLASS GPP algorithm also outperformed the other algorithms because of its most significant
correlations (R2 = 0.56, R2 = 0.61), smallest biases (−530 gC·m−2·y−1, −411 gC·m−2·y−1) and RMSEs
(31%, 36%). None of the algorithms showed significant correlations for croplands (CRO); however, the
GMAO_GLASS GPP algorithm exhibited the smallest bias (−228 gC·m−2·y−1) and RMSE (27%).
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Table 3. Biome-based comparison of the annual GPP derived from the site estimates with those
derived from the MODIS algorithms (MOD_GMAO GPP, MOD_Tower GPP, GMAO_GLASS GPP
and Tower_GLASS GPP).ENF: evergreen needleleaf forests; EBF: evergreen broadleaf forests; DBF:
deciduous broadleaf forests; MF: mixed forests; GRA: grasslands; CRO: croplands.

Biome Type Comparison R2 Mean (SD)
(gC·m−2·y−1)

Bias
(gC·m−2·y−1) RMSE (%) n

ENF

MOD_GMAO vs. Flux_Tower 0.87 ** 894 (335) vs. 1400 (708) −506 46

20
MOD_Tower vs. Flux_Tower 0.92 ** 883 (318) vs. 1400 (708) −517 47

GMAO_GLASS vs. Flux_Tower 0.89 ** 953 (394) vs. 1400 (708) −447 41
Tower_GLASS vs. Flux_Tower 0.91 ** 942 (383) vs. 1400 (708) −458 41

EBF

MOD_GMAO vs. Flux_Tower 0.50 ** 1312 (300) vs. 1826 (974) −514 51

23
MOD_Tower vs. Flux_Tower 0.50 ** 1211 (288) vs. 1826 (974) −615 54

GMAO_GLASS vs. Flux_Tower 0.91 ** 1604 (826) vs. 1826 (974) −222 21
Tower_GLASS vs. Flux_Tower 0.92 ** 1437 (711) vs. 1826 (974) −389 28

DBF

MOD_GMAO vs. Flux_Tower 0.55 ** 1038 (157) vs. 1773 (192) −735 42

24
MOD_Tower vs. Flux_Tower 0.34 ** 875 (93) vs. 1773 (192) −898 51

GMAO_GLASS vs. Flux_Tower 0.56 ** 1243 (206) vs. 1773 (192) −530 31
Tower_GLASS vs. Flux_Tower 0.41 ** 1037 (127) vs. 1773 (192) −736 42

MF

MOD_GMAO vs. Flux_Tower 0.48 ** 1006 (108) vs. 1509 (444) −503 41

26
MOD_Tower vs. Flux_Tower 0.43 ** 782 (87) vs. 1509 (444) −727 54

GMAO_GLASS vs. Flux_Tower 0.61 ** 1098 (95) vs. 1509 (444) −411 36
Tower_GLASS vs. Flux_Tower 0.51 ** 848 (71) vs. 1509 (444) −661 51

GRA

MOD_GMAO vs. Flux_Tower 0.75 ** 652 (276) vs. 869 (721) −217 61

23
MOD_Tower vs. Flux_Tower 0.83 ** 629 (202) vs. 869 (721) −240 67

GMAO_GLASS vs. Flux_Tower 0.95 ** 696 (532) vs. 869 (721) −173 33
Tower_GLASS vs. Flux_Tower 0.96 ** 651 (476) vs. 869 (721) −218 40

CRO

MOD_GMAO vs. Flux_Tower 0.06 938 (150) vs. 1363 (327) −425 39

25
MOD_Tower vs. Flux_Tower 0.08 847 (161) vs. 1363 (327) −516 44

GMAO_GLASS vs. Flux_Tower 0.15 * 1135 (129) vs. 1363 (327) −228 27
Tower_GLASS vs. Flux_Tower 0.14 * 1012 (146) vs. 1363 (327) −351 34

All

MOD_GMAO vs. Flux_Tower 0.62 ** 976 (299) vs. 1460 (676) −484 47

141
MOD_Tower vs. Flux_Tower 0.56 ** 869 (266) vs. 1460 (676) −591 53

GMAO_GLASS vs. Flux_Tower 0.79 ** 1126 (509) vs. 1460 (676) −334 32
Tower_GLASS vs. Flux_Tower 0.76 ** 987 (445) vs. 1460 (676) −473 41

Significance levels: * p < 0.05, ** p < 0.01.

3.2. Meteorology

In this study, the MOD_GMAO GPP algorithm followed the standard MOD17A2H GPP algorithm,
which used the GMAO meteorology reanalysis data. The GMAO meteorology reanalysis data were
replaced with the site meteorological data for the MOD_Tower GPP algorithm. The MOD_GMAO
GPP and MOD_Tower GPP algorithms were thus compared to determine the influences of the
meteorological data on the GPP estimates. The results showed that the MOD_Tower GPP algorithm
did not estimate eight-day GPP more reliably than the MOD_GMAO GPP algorithm (Figure 1a,b;
Table 2). Conversely, estimates of annual GPP from the MOD_Tower GPP algorithm were inferior to
thoseof the MOD_GMAO algorithm (Figure 3a,b; Table 3).

We directly compared the daily GMAO meteorology reanalysis data and the site meteorological
data (Figure 4). The two datasets were highly significantly correlated for Tavg (R2 = 0.97) and Tmin
(R2 = 0.94) (Figure 4a,b), which implied that the GMAO meteorology reanalysis data could be reliably
used to estimate the on-site temperature conditions. Additionally, VPDavg was also statistically
significantly correlated (R2 = 0.88) (Figure 4c), which indicated that the on-site moisture variations
could also be dependably estimated from the GMAO meteorology reanalysis datasets. With respect to
PAR, the GMAO meteorology reanalysis data generally overestimated the site meteorological data
(Figure 4d), and the correlation (R2 = 0.85) was stronger than that of VPDavg, but weaker than those of
Tavg and Tmin.
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3.3. FPAR

Unlike the MOD_GMAO GPP algorithm, the GMAO_GLASS GPP algorithm followed the
MOD17A2H GPP algorithm by substituting GLASS FPAR (derived from GLASS LAI datasets) for
MODIS FPAR (derived from MOD15A2H products). Therefore, comparing these two types of
algorithms will be helpful for understanding the impacts of FPAR on the GPP estimates. In the case of
the eight-day GPP estimates, the effectiveness of the GMAO_GLASS GPP algorithm for estimating
the Flux_Tower GPP was much better than that of the MOD_GMAO GPP algorithm (Figure 1a,c;
Table 2). Additionally, the GMAO_GLASS GPP algorithm achieved substantial improvements over the
MOD_GMAO GPP algorithm for the annual GPP estimates (Figure 3a,c; Table 3). The GMAO_GLASS
GPP algorithm estimated the Flux_Tower GPP far more effectively than the MOD_GMAO GPP
algorithm for EBF site (Tables 2 and 3).

In our study, comparisons were made between GLASS FPAR and MODIS FPAR (Figure 5, Table 4).
Overall, the correlation between the two types of FPAR was not strong (R2 = 0.45). The correlations
between GLASS FPAR and MODIS FPAR were also weak for every single biome type, except ENF;
the correlation between them for EBF was lowest (R2 = 0.02). Obviously, GLASS FPAR overestimated
MODIS FPAR at most sites. This overestimation problem was most serious at GH-Ank (bias = 0.479),
PA-SPs (bias = 0.375) and BR-Sa3 (bias = 0.292). Moreover, GLASS FPAR also overestimated MODIS
FPAR for all six biome types.
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Table 4. Comparison of the FPAR derived from the GLASS LAI datasets (GLASS FPAR) with those from
the MOD15A2H products (MODIS FPAR) for various biomes. ENF: evergreen needleleaf forests; EBF:
evergreen broadleaf forests; DBF: deciduous broadleaf forests; MF: mixed forests; GRA: grasslands;
CRO: croplands.

Biome (Site) Comparison R2 Mean (SD) Bias RMSE (%) n

ENF GLASS FPAR vs. MODIS FPAR 0.72 ** 0.511 (0.242) vs. 0.463 (0.239) 0.048 26 917
(AR-Vir) GLASS FPAR vs. MODIS FPAR 0.61 ** 0.653 (0.155) vs. 0.615 (0.179) 0.038 19 138

(AU-ASM) GLASS FPAR vs. MODIS FPAR 0.44 ** 0.169 (0.046) vs. 0.236 (0.067) −0.067 36 184
(IT-Ren) GLASS FPAR vs. MODIS FPAR 0.69 ** 0.584 (0.195) vs. 0.497 (0.239) 0.087 32 595

EBF GLASS FPAR vs. MODIS FPAR 0.02 ** 0.583 (0.237) vs. 0.499 (0.21) 0.084 39 1099
(AU-Whr) GLASS FPAR vs. MODIS FPAR 0.67 ** 0.386 (0.204) vs. 0.476 (0.2) −0.09 32 138
(BR-Sa3) GLASS FPAR vs. MODIS FPAR 0.09 ** 0.925 (0.008) vs. 0.633 (0.315) 0.292 67 182
(FR-Pue) GLASS FPAR vs. MODIS FPAR 0.03 ** 0.437 (0.055) vs. 0.499 (0.083) −0.062 22 595

(GH-Ank) GLASS FPAR vs. MODIS FPAR - 0.864 (0.028) vs. 0.385 (0.288) 0.479 145 184

DBF GLASS FPAR vs. MODIS FPAR 0.55 ** 0.588 (0.213) vs. 0.472 (0.268) 0.116 39 1100
(DE-Hai) GLASS FPAR vs. MODIS FPAR 0.49 ** 0.598 (0.19) vs. 0.498 (0.269) 0.1 43 550
(DK-Sor) GLASS FPAR vs. MODIS FPAR 0.61 ** 0.578 (0.234) vs. 0.445 (0.264) 0.133 48 550

MF GLASS FPAR vs. MODIS FPAR 0.46 ** 0.608 (0.167) vs. 0.512 (0.271) 0.096 37 1193
(BE-Vie) GLASS FPAR vs. MODIS FPAR 0.35 ** 0.606 (0.154) vs. 0.52 (0.282) 0.086 47 641

(CA-Gro) GLASS FPAR vs. MODIS FPAR 0.62 ** 0.611 (0.181) vs. 0.503 (0.256) 0.108 38 552

GRA GLASS FPAR vs. MODIS FPAR 0.49 ** 0.393 (0.308) vs. 0.368 (0.245) 0.025 57 1054
(AU-Rig) GLASS FPAR vs. MODIS FPAR 0.56 ** 0.419 (0.223) vs. 0.514 (0.228) −0.095 36 138
(CZ-BK2) GLASS FPAR vs. MODIS FPAR 0.57 ** 0.619 (0.23) vs. 0.497 (0.312) 0.122 48 276
(PA-SPs) GLASS FPAR vs. MODIS FPAR - 0.835 (0.027) vs. 0.46 (0.183) 0.375 91 138

(US-Wkg) GLASS FPAR vs. MODIS FPAR 0.46 ** 0.141 (0.1) vs. 0.231 (0.117) −0.09 55 502

CRO GLASS FPAR vs. MODIS FPAR 0.58 ** 0.552 (0.198) vs. 0.456 (0.219) 0.096 31 1148
(BE-Lon) GLASS FPAR vs. MODIS FPAR 0.46 ** 0.537 (0.165) vs. 0.42 (0.194) 0.117 45 505
(FR-Gri) GLASS FPAR vs. MODIS FPAR 0.50 ** 0.614 (0.184) vs. 0.53 (0.211) 0.084 33 505

(US-CRT) GLASS FPAR vs. MODIS FPAR 0.84 ** 0.378 (0.242) vs. 0.314 (0.231) 0.064 37 138

Significance levels: ** p < 0.01.

3.4. Land Cover Classification

We obtained the pixel values within a range of 5 km × 5 km centered over each site, as well as the
numbers of corresponding pixel values from the MCD12Q1 image data during 2001–2013. MODIS
land cover classification results at each site were then calculated from the statistics of the pixel values.
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Additionally, the actual land cover type of each site was obtained by consulting site descriptions
provided by the FLUXNET2015 dataset.

We also compared MODIS land cover classification results and actual land cover types in this
study (Figure 6). It was found that MCD12Q1 misclassified eleven of the eighteen sites. As shown in
Figure 6, the misclassified sites included AR-Vir (mistook ENF for savannas), AU-ASM (mistook ENF
for open shrublands), AU-Rig (mistook GRA for CRO), AU-Whr (mistook EBF for woody savannas),
CZ-BK2 (mistook GRA for ENF), DE-Hai (mistook DBF for MF), DK-Sor (mistook DBF for CRO),
FR-Pue (mistook EBF for MF), IT-Ren (mistook ENF for MF), PA-SPs (mistook GRA for savannas) and
US-Wkg (mistook GRA for open shrublands).
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3.5. Light Use Efficiency

The constant values of εmax used in the MOD17A2H GPP algorithm varied for the different
types of land cover; each biome type had an individual εmax value. By using Equations (1) and (3) in
Section 2.1.1, we recalculated the inferred εmax for each land cover type and then directly compared
them to the MOD17A2H εmax (Figure 7, Table 5). The results showed that the inferred εmax was higher
than MOD17A2H εmax by 31% for ENF, 21% for EBF, 72% for DBF, 61% for MF, 31% for GRA and 25%
for CRO. Moreover, from the perspective of a single site, the inferred εmax was higher than MOD17A2H
εmax at almost all sites except AU-Whr (bias = 0.093).
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Figure 7. Eight-day site estimated GPP (gC·m−2·8-d−1) against the product of GLASS FPAR, tower
PAR, VPDs and Ts for (a) ENF, (b) EBF, (c) DBF, (d) MF, (e) GRA and (f) CRO. APAR (absorbed
photosynthetic-active radiation) = FPAR × PAR.
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Table 5. Comparison of the inferred εmax and MOD17A2H εmax for various biomes. ENF: evergreen
needleleaf forests; EBF: evergreen broadleaf forests; DBF: deciduous broadleaf forests; MF: mixed
forests; GRA: grasslands; CRO: croplands.

Biome (Site) MOD17A2H εmax
(gC·m−2·d−1·MJ−1)

Inferred εmax
(gC·m−2·d−1·MJ−1)

Bias
(gC·m−2·d−1·MJ−1)

ENF 0.962 1.256 −0.294
(AR-Vir) 0.962 1.521 −0.559

(AU-ASM) 0.962 1.225 −0.263
(IT-Ren) 0.962 1.183 −0.221

EBF 1.268 1.539 −0.271
(AU-Whr) 1.268 1.175 0.093
(BR-Sa3) 1.268 1.695 −0.427
(FR-Pue) 1.268 1.418 −0.150

(GH-Ank) 1.268 1.496 −0.228

DBF 1.165 2.008 −0.843
(DE-Hai) 1.165 2.037 −0.872
(DK-Sor) 1.165 1.988 −0.823

MF 1.051 1.692 −0.641
(BE-Vie) 1.051 1.968 −0.917

(CA-Gro) 1.051 1.371 −0.320

GRA 0.860 1.125 −0.265
(AU-Rig) 0.860 1.292 −0.432
(CZ-BK2) 0.860 1.118 −0.258
(PA-SPs) 0.860 1.141 −0.281

(US-Wkg) 0.860 0.869 −0.009

CRO 1.044 1.303 −0.259
(BE-Lon) 1.044 1.655 −0.611
(FR-Gri) 1.044 1.086 −0.042

(US-CRT) 1.044 1.234 −0.190

4. Discussion

In this study, Flux_Tower GPP from eighteen sites were used to verify four groups of
GPP estimates recalculated following the MOD17A2H GPP algorithms (i.e., MOD_GMAO GPP,
MOD_Tower GPP, GMAO_GLASS GPP and Tower_GLASS GPP). It was found that the four groups
of GPP estimates deviated from the flux-derived GPP values to varying degrees. The extent of the
deviations varied depending on the site location, the type of biome and the time interval. We can
attribute these deviations to different factors. Undoubtedly, the effectiveness of GPP estimation
critically depends on the precision of every input data involved in the MOD17A2H GPP algorithm.
Therefore, the meteorological data, FPAR product, land cover classification result and εmax value were
all potential sources of error [43]. The accuracy of the flux-derived GPP value and the reliability of the
MOD17A2H GPP algorithm itself should also be considered [44].

4.1. Impact of Meteorological Data on MODIS GPP

There are three meteorological factors (PAR, Tmin and VPDavg) involved in the MOD17A2H GPP
algorithm, which suggests that meteorology reanalysis data could be the main source of error in the GPP
estimates [44]. For the previous MOD17A2 GPP product, the meteorological input data were selected
from the DAO meteorology dataset (1.00◦ × 1.25◦ spatial resolution). In contrast, the latest MOD17A2H
product uses an updated version of the GMAO meteorology dataset (0.5◦ × 0.625◦ spatial resolution).
However, the spatial resolution of GMAO meteorology data is still greatly inferior to that of the MODIS
GPP product (500 m). Although a strict interpolation was completed in the data pre-processing stage,
the errors caused by the original low resolution could not be eliminated. Moreover, the interpolation
process may have resulted in additional uncertainties. Analytic comparisons between the GMAO
meteorology reanalysis dataset and the site-based meteorological observations indicated that GMAO
data were effective for estimating on-site temperature elements and moisture conditions (Figure 4a–c).
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Compared with the previous research results about MOD17A2 meteorology data, the GMAO data
adopted in the current MOD17A2H product achieved substantial progress in estimating actual values
of meteorological elements [45,46]. This demonstrated the considerable effectiveness of the efforts
that MODIS GPP has taken in the version upgrading process to reduce the error derived from
meteorological data. Note that as the source of original energy for GPP, PAR plays an extremely
important role among the four meteorological elements involved in the MOD17A2H algorithm. It
can be seen from this work that the effectiveness of GMAO data in estimating PAR was less than that
of GMAO data in estimating the temperature and moisture elements (Figure 4d), which is mainly
because the GMAO data largely overestimated the site-measured PAR.

In this study, we replaced the GMAO meteorology reanalysis dataset with the site-based
meteorological observations to recalculate the MOD17A2H GPP algorithm and gained new GPP
estimates (MOD_Tower GPP). Unexpectedly, the eight-day GPP estimates recalculated using the
site-based meteorological observations did not result in obvious improvements (Figure 1a,b).
Conversely, the annual GPP estimates recalculated using the site-based meteorological observations
were not as accurate as those calculated using the GMAO meteorology reanalysis dataset (Figure 3a,b).
The implication of these results is that an improvement in meteorological input data will not necessarily
improve the reliability of GPP estimation by the MOD17A2H GPP algorithm, emphasizing the
requirement of identifying additional sources of uncertainty.

4.2. Impact of FPAR Product on MODIS GPP

To assess the influences of FPAR on the accuracy of GPP estimation, we introduced an improved
FPAR dataset (GLASS FPAR) and designed the GMAO_GLASS GPP algorithm. Our results showed
that the greatest improvements were gained in estimating the eight-day GPP values when the MODIS
FPAR was replaced by the GLASS FPAR (Figure 1a,c). Similarly, the precision in estimating annual GPP
was also improved substantially after substituting GLASS FPAR for MODIS FPAR (Figure 3a,c). By
comparing two groups of FPAR data, we found that the values of MODIS FPAR were generally smaller
than that of GLASS FPAR (Table 4). Indeed, the MOD17A2H GPP (MOD_GMAO GPP algorithm)
generally underestimated the flux derived GPP values (Tables 2 and 3). The improved GLASS FPAR
data thus balanced the underestimation resulting from the use of MODIS FPAR to some extent.

Admittedly, GLASS FPAR adopted in the GMAO_GLASS GPP algorithm was improved from the
previous MOD15A2 LAI/FPAR product, which had a spatial resolution of 1 km. The MOD_GMAO
GPP algorithm adopted the latest MOD15A2H FPAR product, whose spatial resolution increased to
500 m. However, our results showed that the GMAO_GLASS GPP algorithm estimated the site-based
GPP much more effectively than the MOD_GMAO GPP algorithm. This indicated that what had been
done in MODIS GPP products to reduce the error derived from FPAR during the version upgrading
process was still far from sufficient.

The qualities of the meteorological data and the FPAR product were simultaneously improved in
the Tower_GLASS GPP algorithm. We simply substituted the site-based meteorological observations
for the GMAO meteorology reanalysis dataset and replaced the MODIS FPAR with GLASS FPAR.
The results showed that the effectiveness of eight-day GPP estimation had the greatest improvements
(Figure 1a,d). However, this replacement strategy did not produce the most effective algorithm in
terms of annual GPP estimates (Figure 3a,c,d). This may indicate that the accuracy of GPP estimates
could be enhanced by simultaneously improving the qualities of multiple inputs of the MOD17A2H
algorithm; but it did not imply that improvements could be gained simply by replacing the input data
because the overall gain in algorithm performance was not simply the sum of the individual gains.
More detailed analysis needs to be conducted to evaluate the interaction effects of the joint variation of
the model inputs in future research [1].

Compared with MOD17A2, MOD17A2H improved in terms of meteorological data and FPAR.
Therefore, four groups of experiments (i.e., MOD_GMAO GPP, MOD_Tower GPP, GMAO_GLASS
GPP and Tower_GLASS GPP) were designed to verify the contributions of the upgraded meteorology
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dataset and FPAR product to the estimation accuracy of GPP. It was discovered that the GMAO_GLASS
GPP and Tower_GLASS GPP algorithms achieved enormous performance gains over the MOD_GMAO
GPP algorithm in terms of flux-derived GPP estimates and that the performance of the GMAO_GLASS
GPP algorithm was almost the same as that of the Tower_GLASS GPP algorithm. This may indicate
that the error from FPAR was larger than that from the meteorological data in the current version of
the MODIS GPP product.

4.3. Impact of Land Cover Classification Result on MODIS GPP

The MOD17A2H GPP algorithm uses the MCD12Q1 product as its land cover classification
scheme. The accuracy of the land cover classification directly determines the veracity of εmax and
further influences the effectiveness of the GPP estimates. Therefore, the influences of land cover
misclassification on GPP estimation are non-negligible.

In our study, we found that MCD12Q1 misclassified most of the sites (Figure 6). These
misclassifications directly led to the misestimating FPAR by MOD15A2H and the misjudgments
of εmax by BPLUT and thus affected the MOD17A2H GPP estimates for corresponding sites.

4.4. Impact of LUE Value on MODIS GPP

The value of εmax is biomespecific, representing the maximum light use efficiency (LUE) of the
corresponding vegetation in the process of photosynthesis. For a given biome type, the value of εmax is
constant and assigned by the BPLUT. Although the BPLUT has corrected and updated εmax values, the
colossal diversity of terrestrial environments and climatic conditions does not allow a value of εmax at
one location to be used reliably in another location, even for the same biome type [47]. The optimized
εmax that we deduced for the eighteen sites in this study greatly differed from the MOD17A2H εmax

that was specified by the BPLUT (Figure 7, Table 5). Because the εmax value used in the MOD17A2H
GPP algorithm sets the foundation for the actual conversion of light energy, the misestimation of its
value will inherently reduce the accuracy of GPP estimations.

4.5. Uncertainties, Errors and Accuracies

In this study, our evaluation of MOD17A2H GPP assumed that the values of GPP derived from EC
flux tower sites are reliable, even though it is well known that the flux-derived GPP values encompass
many uncertainties [48]. The ecosystem respiration (Reco) is an essential variable when the flux-derived
GPP value is calculated. However, accurate estimation of Reco is difficult, and misestimation can
produce random and systematic errors in estimating GPP. Moreover, mismatches in scale between
MODIS pixels and tower flux footprints lead to further uncertainties. Additionally, researchers have
discovered structural errors in the MODIS GPP algorithm [49–51]. For example, it was found that
the MODIS GPP algorithm cannot correctly identify the contribution of leaves in both insolated and
shaded locations to the calculation of total GPP when compared with GPP estimates from a two-leaf
process-based model [52].

5. Conclusions

In our study, we systematically assessed both eight-day and annual MOD17A2H GPP using
the latest FLUXNET2015 dataset at eighteen sites in six different ecosystems across the globe during
2001–2014. The sensitivities of the MOD17A2H algorithm to the meteorology reanalysis dataset
and FPAR product was evaluated by introducing site-based meteorological observations and an
upgraded GLASS FPAR product. We further explored the potential error contributions from land
cover classification and εmax. Our principal conclusions are summarized as follows:

(1) The effectiveness of the standard MOD17A2H product (i.e., MOD_GMAO GPP) for estimating
annual GPP was poor (R2 = 0.62) and even worse over eight days (R2 = 0.52). Replacing the GMAO
meteorology reanalysis dataset with the site-based meteorological observations (i.e., MOD_Tower
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GPP) failed to improve the correlations with the flux-derived eight-day GPP (R2 = 0.52) and
annual GPP (R2 = 0.56). However, great improvements in estimating the flux-derived annual
GPP (R2 = 0.79) were gained by replacing MODIS FPAR with GLASS FPAR (i.e., GMAO_GLASS
GPP). This may indicate that in the current version of the MODIS GPP product, the error from
FPAR was larger than that from the meteorological data. When the meteorological dataset and
FPAR product were replaced by upgraded data simultaneously (i.e., Tower_GLASS GPP), the
accuracy in estimating the flux-derived eight-day GPP (R2 = 0.65) was significantly improved.

(2) There are four possible sources of error related to the input data of MOD17A2H algorithm:
meteorological reanalysis dataset, FPAR product, land cover classification result and the εmax

value. The GMAO meteorology reanalysis dataset commonly overestimated the site-measured
PAR, and MODIS FPAR underestimated the upgraded FPAR in most flux tower sites. In addition,
MCD12Q1 exhibited frequent misclassification errors, and the MOD17A2H εmax values were
much smaller than the inferred εmax values for all six ecosystems discussed in our study.

From the above analyses, the latest MODIS GPP product, MOD17A2H, still has some defects in
estimating the actual value of GPP. We suggest that FPAR and land cover classification products need
to be improved, and εmax should be adjusted in the next versions of datasets for GPP estimation.
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