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Abstract: Shallow and deep lakes receive and recycle organic and inorganic substances from within
the confines of these lakes, their watershed and beyond. Hence, a large range in absorption and
scattering and extreme differences in optical variability can be found between and within global
lakes. This poses a challenge for atmospheric correction and bio-optical algorithms applied to optical
remote sensing for water quality monitoring applications. To optimize these applications for the wide
variety of lake optical conditions, we adapted a spectral classification scheme based on the concept
of optical water types. The optical water types were defined through a cluster analysis of in situ
hyperspectral remote sensing reflectance spectra collected by partners and advisors of the European
Union 7th Framework Programme (FP7) Global Lakes Sentinel Services (GLaSS) project. The method
has been integrated in the Envisat-BEAM software and the Sentinel Application Platform (SNAP)
and generates maps of water types from image data. Two variations of water type classification
are provided: one based on area-normalized spectral reflectance focusing on spectral shape (6CN,
six-class normalized) and one that retains magnitude with no modification to the reflectance signal
(6C). This resulted in a protocol, or processing scheme, that can also be applied or adapted for
Sentinel-3 Ocean and Land Colour Imager (OLCI) datasets. We apply both treatments to MERIS
imagery of a variety of European lakes to demonstrate its applicability. The studied target lakes cover
a range of biophysical types, from shallow turbid to deep and clear, as well as eutrophic and dark
absorbing waters, rich in colored dissolved organic matter (CDOM). In shallow, high-reflecting Dutch
and Estonian lakes with high sediment load, 6C performed better, while in deep, low-reflecting clear
Italian and Swedish lakes, 6CN performed better. The 6CN classification of in situ data is promising
for very dark, high CDOM, absorbing lakes, but we show that our atmospheric correction of the
imagery was insufficient to corroborate this. We anticipate that the application of the protocol to
other lakes with unknown in-water characterization, but with comparable biophysical properties will
suggest similar atmospheric correction (AC) and in-water retrieval algorithms for global lakes.
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1. Introduction

Freshwater lakes, reservoirs and rivers are an essential resource for human and animal survival.
Population increase coupled with change in land use, hydrologic regimes and climate are stressing
these systems worldwide, threatening their function as sources for drinking water, socio-economic
activities and ecological environments. Over the last decade, there has been an increase in the capacity
and availability of remote sensing imagery from satellites for lake systems worldwide, promoting
the usage and creating new demands for reliable remotely-sensed datasets. These new capabilities
stem in part from newly-launched satellites, such as the MultiSpectral Imager (MSI) on board the
European Space Agency’s (ESA) Sentinel-2 satellite and the Ocean Land Colour Imager (OLCI) on
board ESA’s Sentinel-3 satellite. The OLCI sensor is similar in spectral capabilities as the Medium
Resolution Imaging Spectrometer (MERIS) sensor (2002–2012), containing spectral channels well suited
to derive bio-optical parameters over the large range of optical conditions exhibited in lakes [1,2].
Sentinel-3A was launched in February 2016, and its twin Sentinel-3B is expected to be launched in
2017. The tandem missions of Sentinel-3A/B and follow ups will provide unprecedented monitoring
capabilities for lake water quality because of the favorable band settings, high signal/noise ratios, full
spatial resolution (300 m) and high overpass frequency.

A prototype infrastructure for handling of bio-optical algorithms and data products specific
to freshwater lakes was prepared within the EU Global Lakes Sentinel Services (GLaSS) project
(www.glass-project.eu). GLaSS aimed to develop generic methods and tools for Sentinel-2 and
Sentinel-3 data, using legacy datasets, and in support of water quality management for any lake
worldwide. One of the GLaSS products developed for lake image analysis is a classification tool
based on the spectral matching method of Moore et al. [3] as an expression of optical water types
(OWTs). The OWT tool operates on atmospherically-corrected and quality-checked images prior to the
application of bio-optical algorithms and provides users with a powerful data analysis technique to
visualize and discover the (variability of) optical conditions across image scenes.

Classification schemes are more common to terrestrial imagery, but are gaining traction in aquatic
applications and share basic similarities [4,5]. In both cases, the classification systems are based on
features (i.e., spectral channels) in a spectral signal related to underlying types with ecological meaning.
The features stem from the spectral reflectance shape and magnitude and are ultimately limited by
the spectral resolution of the sensors when utilized for image classification. For aquatic uses, water
types are analogous to land cover types, representing an optical condition, and hence, are referred to
as optical water types or OWTs. This notion of optical type has origins in [6,7], where water types
were defined by the diffuse attenuation coefficient of downwelling light. These Jerlov types are still
used in marine applications [8], and were used in a recent modeling study to generate Inherent Optical
Properties (IOPs) for each type [9], directly utilizing type-specific parameters.

More recent water type schemes have been introduced over the last 20 years using a variety of
methods based on in situ and/or satellite reflectance data. Regardless of the method, OWTs provide
information on the spatial distribution of optical states across image scenes when applied to satellite
data. These mapped products function as weighting factors for optimizing bio-optical algorithms
and product uncertainties for image scenes [3,10–12]. In these cases, they are intermediary products
that are not needed themselves for analysis and are invisible to users. However, OWTs are depictions
of optical states, providing information on underlying water conditions that in and of themselves
have intrinsic ecological value. They have been used directly for interpretive analysis for ecological
diversity [13] and ecological patterns [14] that may not be obvious from other bio-optical products,
such as chlorophyll concentration, which may be hard to retrieve in complex lake waters, because
of the complex atmospheric and in-water optical properties. In some cases, OWTs have been linked
to distinct optical phenomena that relate to specific phytoplankton [15]. These studies collectively
illustrate the varying roles and uses for water types, whether freshwater or marine, when applied to
remote sensing data.

www.glass-project.eu
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The GLaSS optical water types are a follow up of [3] that presented OWTs derived from lake
and coastal waters. The GLaSS dataset comprises lake data only, encompassing a larger dataset that
includes more diverse lakes from across the globe. Within this paper, we introduce this classification
method (called GLaSS-OWT or GLaSS optical water type method). The water types were derived from
a cluster analysis. The classification system that we present has two main implementation options:
a set of optical water types for un-modified reflectance data and a set of water types for normalized
reflectance data, an aspect not presented in [3]. The method is designed to be applicable to any lake
system, covering a large range of biophysical types from shallow turbid to clear and deep, as well as
eutrophic and dark absorbing colored dissolved organic matter (CDOM)-rich waters.

We describe the development of the classification method and demonstrate its application to a
variety of lake systems processed with different atmospheric correction schemes. The variations in
OWT image products are discussed in the context of atmospheric correction. We also examine the
strengths and differences of the different OWT schemes and how they may be appropriate for different
global lakes with unknown optical properties.

2. Materials and Methods

2.1. In Situ Data Sources

Conceptually, the OWTs represent optical states that can be determined by the spectral remote
sensing reflectance or Rrs(λ). This term refers to the above-water quantity unless otherwise noted.
In practice, they are derived from averaging grouped Rrs(λ) spectra that share characteristics (e.g.,
spectral shape), where each individual spectrum is an instance along an optical continuum bound
by the outer ranges of the environmental and optical conditions of all water systems. The goal of the
GLaSS lake classification is a meaningful partitioning of the full multi-dimensional Rrs(λ) space into a
set of optical water types. This water type-specific approach is intrinsically independent of location
and time and therefore designed for global application. Within a water type, there is a range of optical
conditions that is represented, and thus, the environmental representation of a water type is that of an
average condition.

The GLaSS OWT implementation is based on that of Moore et al. [3], but includes a larger variety
of lakes. A motivation for the GLaSS OWT implementation was to develop a lake-specific classification
tool for all lakes and conditions. To achieve this, we assembled a dataset of in situ hyperspectral
Rrs(λ) with co-measured Chl-a and Total Suspended Matter (TSM) concentrations and absorption
of CDOM at 443 nm (aCDOM) from multiple sources covering a wide dynamic range in optical and
environmental conditions.

This dataset includes the ‘lake only’ dataset portion (N = 320) from [3], which consists of
measurements from the northeast U.S., the Great Salt Lake [16] and across Spain [17]. We refer
the readers to these references for further information on the data collection protocols. These data
were combined with the GLaSS in situ dataset (Table 1), which consists of Rrs(λ) with co-measured
Chl-a, TSM and aCDOM from different countries. This dataset contains a large range of Chl-a, TSM
and CDOM concentrations that are covered, including the high concentrations (Chl-a > 900 (mgm−3),
TSM > 200 (mg−3), CDOM > 30 (443 m−1), representing a large variety of optical conditions.

The GLaSS Rrs(λ) measurements were collected above water and processed according to standard
protocols [18]. The measurements consisted of: (1) light (radiance) emerging from water (Lw) measured
at a 40–45 degree elevation angle from nadir and about a 135 degree azimuth angle from the Sun;
(2) radiance from the sky (Lsky) measured at the same viewing angles; and (3) downwelling irradiance
measurement (Ed). The remote sensing reflectance, Rrs (in sr−1) is then computed with:

Rrs(0,+) =
Lw − ρLsky

Ed
(1)

where the air-sea interface reflectance factor was fixed at 0.028 at a zenith angle of 42 degrees [19].
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Table 1. In situ data from various Global Lakes Sentinel Services (GLaSS) partners and advisory board member Yunlin Zhang. (VIS/NIR, in the visible and
near-infrared range; CDOM, colored dissolved organic matter; TSM, total suspended matter; Chl, chlorophyll-a.)

Area Spectrometers Spectral Spectral Spectral # Spectra Range Range Range
Range (nm) Resolution in VIS/NIR Resolution Interpolated CDOM (443 m−1) TSM (gm−3) Chl_a (mgm−3)

Estonia TriOS RAMSES 400–800 7 nm 2.5 nm 34 1.7–4.2 1.8–18.7 2.7–45.3
Finland ASD FieldSpec 350–2500 3 nm 1 nm 16 0.5–10 0.8–3.4 1.7–11

The Netherlands WI WISP-3 400–800 3.9 nm for Ed 1 nm 177 0.5–1.5 1.3–30 10–50
4.9 nm for Lw and Lsky

Photo Research PR650 380–748 4 nm 5 (L.IJsselmeer) 13–26 33.4–87.3
3 (L.Markermeer) 29.7–39.2 36.6–42.6

Italy ASD FieldSpec 350–2500 3 nm 1 nm 90 0.04–1.25 0.1–1.5 0.1–10
Full Range Pro

SpectraScan 380–780 8 nm 4 nm 3
Colorimeter

PR650
WISP-3 400–800 3.9 nm for Ed 1 nm 13 0

4.9 nm for Lw and Lsky
China ASD 350–1000 3 nm 1 nm 243 0.3–2.4 10–286 5–940

TOTAL 584 0.1–10 0.1–290 1.7–940
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A dataset from Lake Erie measured in 2013 (N = 16) was also added during the development of
the tool. These data included hyperspectral Rrs(λ) taken with a Field Spec ProTM VNIR-NIR1 portable
spectrometer system from Analytical Spectral Devices (Boulder, Colorado). The protocol for deriving
Rrs(λ) was similar to that of the GLaSS data for Steps 1 and 2, although downwelling irradiance
measurement (Ed) was determined from a grey card plaque.

All hyperspectral Rrs(λ) data were band averaged to 3-nm resolution in the merged dataset
(N = 926), quality controlled and reduced to N = 871 (Figure 1). Quality control measures consisted of
visual inspection on every spectral observation and the application of the ocean chlorophyll (OC4)
algorithm and MERIS three-band Chl-a algorithms for consistency checking. Observations with noisy
or negative spectra were rejected, as were spectra with abnormal Chl-a retrievals. It should be noted
that Rrs(λ) associated with floating algal mats were removed (i.e., high NIR values). We believe this to
be a special water type case that will be added in the future. The current dataset contained too few
samples for this type to be characterized at present.

Figure 1. Total remote sensing reflectance, Rrs(λ) data after quality control.

2.2. Development of the GLaSS Optical Water Types

To create the OWTs, a cluster analysis was applied to the merged, quality controlled Rrs(λ) data.
The goal of the clustering is simply to serve as a mechanism to sort data and to produce a partitioning
of meaningful sub-groups. The effectiveness of cluster partitioning depends on the features, in our
case Rrs as specific wavelengths, represented as a vector, that contribute to separability. In many cases,
feature dimensionality can be reduced from the original dataset. This is often necessary to minimize
processing time and cluster instability from redundant features or bands that highly covary [20], which
is the case with hyperspectral data. Prior to clustering, feature selection and extraction were conducted
on Rrs(λ). The wavelengths chosen were those that matched the MERIS (and several Sentinel 3)
visible and NIR band centers—412, 443, 490, 510, 560, 620, 665, 681, 709 and 753 nm—and reduced
the dimension of each Rrs(λ) spectra from 134 down to 10. Note, that this sole purpose of feature
reduction is for identifying clusters, not for reducing the spectral dimensionality of the overall dataset.

We applied the fuzzy c-mean (FCM) algorithm [21] to the reduced Rrs(λ) data. Following [3],
these data were transformed to sub-surface values (Equation (2)) following [22]. It should be noted
that the clustering and ensuing membership functions use the below-water quantity, but we will retain
referencing any spectra as Rrs(λ) for simplicity.
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Rrs(0,−) =
Rrs(0,+)

0.52 + 1.7 ∗ Rrs(0,+)
(2)

The FCM algorithm partitions the input data into a specified number of clusters. The function
operates by minimizing the distance between the data points and the prototype cluster centers (means),
which are iteratively adjusted until optimization criteria are met. Since the number of clusters is not
known beforehand, FCM was applied to the dataset over a range of clusters set from 2–20. Cluster
validity functions were used to assess the effectiveness of the cluster performance for each outcome.
These functions measure various aspects of the entire cluster partitioning and were used to guide the
ultimate choice for the number of optimal clusters [3].

The clusters define the GLaSS OWTs through their means and covariance matrices. While only a
subset of bands was used to determine the cluster partitioning, the OWTs were created with the full
hyperspectral data allowing for the construction of a membership function (the main component of
the classification tool that produces the image classification) to operate on any band configuration
within the range of hyperspectral data (400–800 nm) and, thus, on any satellite sensor. It is important
to note that the clustering process was applied to the spectrally-reduced Rrs(λ) data, resulting in
a partitioning of the data. This partitioning was simply a means for sorting, and once sorted, the
membership functions could be produced from the hyperdimensional Rrs(λ) data.

There are two different forms of Rrs(λ) used in classification schemes for depicting OWTs:
area-normalized Rrs(λ), e.g., [13,23] and un-modified or non-normalized Rrs(λ), e.g., [3]. The rationale
behind normalizing is to remove the influence of magnitude on clustering and stressing the spectral
shape. The work in [23] showed that coastal turbid waters are susceptible to magnitude shifts based on
the concentration of particles of the same type, which are sorted into the same cluster when normalized.
Absorption characteristics have more impact on clustering.

The GLaSS OWTs are represented through both approaches, resulting in two different water type
sets: a normalized set and a non-normalized set. For the normalized set, we applied a trapezoidal
numerical integration over a wavelength range from 400–750 nm (Photosynthetically Active Radiation),
hereafter called PAR-normalized, for each spectrum. Each dataset was analyzed separately for cluster
analysis, cluster validity and the development of optical water types through the means and covariance
matrices. For the non-normalized and the normalized data, the optimal number of clusters (and
associated optical water types) was six for each based on validity functions and a priori user knowledge.
These are denoted as 6C and 6CN, respectively (Figure 2).

Figure 2. OWT mean spectra for the non-normalized (left) and PAR-normalized (right) clusters.
(Normalization as explained in text.) Open circles indicate bands used in the clustering.
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2.3. BEAM/SNAP Implementation and the Membership Function

The classification system has been implemented as a processing tool in Brockmann Consult’s
BEAM software and its successor SNAP and is available for application to satellite imagery
(http://www.brockmann-consult.de/cms/web/beam/project, http://step.esa.int/main/toolboxes/
snap/). The tool produces class memberships to OWTs (for either configuration) using membership
functions, which produce fuzzy partitions for the OWT set.

Membership functions are formed from the mean and covariance matrix for each cluster, and class
(OWT) membership values ranging from 0–1 are assigned to observations (pixels) using a two-step
fuzzy process. For the first step, the Mahalanobis distance is computed between the observation and
the OWT as:

Z2 = ( ~Rrs − ~µj)
tΣ−1

j ( ~Rrs − ~µj) (3)

where ~Rrs is the observed remote sensing reflectance vector, ~µj is the mean reflectance vector of
the j-th OWT and Σ−1

j is the covariance matrix for the j-th OWT. The Mahalanobis distance is the
multivariate equivalent of the standardized random variable Z = (X − M)/S, which is the distance
of the univariate random variable X from its mean M normalized by the standard deviation S. In
other words, the Mahalanobis distance is a weighted form of the Euclidean and is preferable because
it incorporates the shape of the distribution of points around the cluster center (i.e., the geometric
shape of the point cloud expressed in terms of variance). For the second step, the membership function
converts the Mahalanobis distance into a fuzzy membership using a chi-square probability function.
In mathematical terms, if the probability distribution of points belonging to the cluster centered at ~µj is
normal and ~Rrs is a member of that population, then Z2 as defined by Equation (3) has a chi-squared
distribution with n degrees of freedom where n is the dimensionality of ~Vrs. The likelihood that ~Rrs is
drawn from the j-th population can be defined as:

f j = 1 − Fn(Z2) (4)

where Fn(Z2) is the cumulative chi-square distribution function with n degrees of freedom. The fuzzy
membership ranges from 0–1 and depicts the degree to which a measured reflectance vector belongs
to a given OWT. The value is one if the measured vector is identical to the mean vector of that OWT,
and its value diminishes to zero as the Mahalanobis distance increases. This allows for an observation
to have memberships to multiple OWTs, although in practice, one or two are typically expressed
as present.

2.4. Characteristics of Remote Sensing Data

For inland waters, high backscatter and absorption in both the atmosphere (by land aerosols)
and the water (due to high concentrations of optically-active substances) can confuse the coupled
atmospheric correction and in-water retrieval software [24]. Furthermore, nearby vegetated land
can cause over-radiation of water pixels in the near-infrared (NIR) wavelengths that are used for
atmospheric correction. Therefore, we started with radiometrically-corrected MERIS Level-1 TOA
radiances. These base datasets were processed with different atmospheric correction algorithms, and
the output reflectances (with confidence flags) can subsequently be used in the OWT classification
system. The confidence flags are quite strict and will, e.g., indicate extreme reflectances caused by sun
glint or vision of the lake bed in optically-shallow waters. The satellite images were processed with and
without correction for stray light from adjacent land pixels, using the Improve Contrast over Ocean
and Land (ICOL) processor [25]. The images were atmospherically corrected using several processors:
Case 2 Regional (C2R, [26]), CoastColour with C2R ( CC2R, [27]) and the Modular Inversion and
Processing scheme (MIP) [28–30].

This is a subset from the atmospheric correction (AC) methods tested in the GLaSS project [31],
because not all AC output was suitable as input for the OWT tool. SCAPE-M (Self-Contained

http://www.brockmann-consult.de/cms/web/beam/project
http://step.esa.int/main/toolboxes/snap/
http://step.esa.int/main/toolboxes/snap/
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Atmospheric Parameters Estimation from MERIS data, [32]) is not included in the classification
analysis, because of known problems with MERIS Band 2, which would have a large influence on
the produced classes. Due to missing spectral bands, the output of the Freie Universität Berlin
(FUB/WeW) Water Processor [33] cannot be fed into the OWT tool. The standard MERIS Ground
Segment (MEGS) Processor is not included because of the extremely low number of valid pixels it
produced in atmospheric correction tests in GLaSS (0–14%, depending on the lake [31]). The output
of the 6S (Second Simulation of a Satellite Signal in the Solar Spectrum, [34,35] and the ATCOR [36]
processors also did not perform well compared to other atmospheric correction processors for any of the
selected lakes, likely because we did not have sufficient information to optimize their parameterization,
and they were also not included here.

3. Results

3.1. Properties of the GLaSS OWTs

The cluster analysis for each treatment of Rrs(λ) resulted in the creation of the OWTs (Figures 2
and 3). The number of optimal clusters was six for each case, which were not directly linked and
were coincidental. Tables 2 and 3 show the distributions of class assignments from the cluster analysis
for individual in situ lake datasets for each partition. For referencing OWTs within each scheme, we
adopt a nomenclature convention of the scheme followed by the OWT. For example, OWT 1 of the
non-normalized scheme will be referenced as 6C-1, and OWT 1 of the PAR-normalized scheme will be
referenced as 6CN-1, and so forth. For the non-normalized data (Table 2), the distributions across type
vary by slightly more than a factor of two maximum (84 points to 6C-6 and 199 to 6C-4).

Table 2. Cluster distribution using the six-class (6C) classification scheme.

Non-Normalized: 6 Classes
OWT Type
Source 1 2 3 4 5 6 Total

Finnish lakes 0 15 1 0 0 0 16
Taihu 0 0 1 41 108 84 234
Peipsi 0 0 10 21 3 0 34
IJsselmeer 0 0 50 8 0 0 58
Markemeer 0 0 16 57 0 0 73
Italian lakes 93 3 4 3 2 0 105
Betuwe 0 8 8 0 0 0 16
New Hampshire (NH) lakes 32 29 77 39 2 0 179
Spanish lakes 28 72 19 20 1 0 140
Lake Erie 2 0 4 10 0 0 16
Total 155 127 190 199 116 84 871
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Table 3. Cluster distribution using the six-class normalized (6CN) classification scheme.

Normalized: 6 Classes
OWT Type
Source 1 2 3 4 5 6 Total

Finnish lakes 0 11 0 1 4 0 16
Taihu 0 0 8 79 22 125 234
Peipsi 0 0 0 9 25 0 34
IJsselmeer 0 6 0 12 40 0 58
Markemeer 0 8 0 30 35 0 73
Italian lakes 91 12 0 1 1 0 105
Betuwe 0 8 0 6 2 0 16
NH Lakes 27 60 26 32 33 1 179
Spanish lakes 25 52 1 37 25 0 140
Lake Erie 2 7 0 3 4 0 16
Total 145 164 35 210 191 126 871

Individual lake datasets typically group into two or three clusters. For example, the Finnish lakes
are mostly grouped into 6C-2, while the Italian lakes are spread across five different OWTs, but mostly
are grouped into 6C-1. The normalized Rrs(λ) cluster distributions change somewhat (Table 3). In
some lakes, the data are spread out across more OWTs (e.g., Spanish, New Hamphire (NH) and Finnish
lakes), whereas in the case of Lake Peipsi, the data become more concentrated into a single OWT. Still,
most of the data sources show just a few dominant types.

Figure 3. Distribution of individual Rrs(λ) across the clusters (OWT 1, top; OWT-6, bottom) for the
non-normalized (left column) and PAR-normalized (middle column) schemes. The right column shows
the same data for the middle column, but not normalized.
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The two OWT schemes differ in small, but important ways in how the Rrs(λ) are distributed and
in resulting OWT means. The PAR-normalized treatment effectively removed magnitude effects. For
example, 6C-3–6C-6 appear similar in shape and inflection characteristics (e.g., variations on peaks at
550 and 710 nm, depressions at 620 and chlorophyll absorption between 665 and 680 nm), but with
different magnitudes and with a general flattening of spectra towards 6C-6, as seen in the mean spectra
(Figure 2). For the PAR-normalized system, the spectra belonging to a given cluster cover a wide range
of magnitudes, as seen in the Rrs(λ) when viewed in their non-normalized condition (Figure 3, right
column). The same spectra are distributed over several OWTs in the 6C scheme. Conversely, 6C-2
contains low Rrs(λ) typically associated with high absorption, and these Rrs(λ) are distributed over
several OWTs in 6CN, offering new potential for discrimination within dark or high absorbing waters.

An underlying assumption and early motivation for OWT approaches in the context of bio-optical
algorithms is that data assigned to the same cluster share IOP characteristics [12]. Without a full set
of co-measured IOP data, it is not possible to verify whether or not Rrs(λ) associated with the same
OWT share similar IOP characteristics. However, the distributions of co-measured Chl-a (all stations),
CDOM and TSM concentrations (available for 376 of stations) provide insight into spectral drivers
behind the water types (Tables 4 and 5).

Table 4. In-water characteristics for non-normalized OWTs, 6C.

OWT Chl Chl Chl CDOM CDOM CDOM TSM TSM TSM
min median max min median max min median max

1 0.1 1.6 12.3 0.04 0.17 1.03 0.15 1.34 14.70
2 0.8 7.2 69.6 0.9 4.8 20.43 0.87 27.18 52.28
3 1.3 24.0 33.0 0.05 2.6 8.0 0.28 16.76 208.9
4 0.9 107.0 705.0 0.27 4.2 18.67 1.70 37.65 190.07
5 0.8 27.0 86.1 0.2 1.17 17.0 3.10 54.03 285.6
6 7.5 22.5 450.0 0.32 0.76 1.03 1.4 67.27 250.36

Table 5. In-water characteristics for normalized OWTs, 6CN.

OWT Chl Chl Chl CDOM CDOM CDOM TSM TSM TSM
min median max min median max min median max

1 0.1 1.4 5.8 0.04 0.17 1.03 0.28 1.27 14.70
2 0.3 8.1 69.0 0.17 1.3 2.82 0.15 16.7 52.28
3 1.6 20.5 70.0 3.33 11.4 20.43 10.32 29.95 137.0
4 2.7 120.8 705.0 0.56 0.96 1.52 2.03 47.05 212.6
5 1.7 20.7 450.0 0.27 1.12 12.1 1.7 54.32 227.6
6 7.5 22.5 82.0 0.32 0.85 1.83 1.4 68.3 285.6

The OWT distributions for Chl-a, CDOM and TSM are shown in Figure 4. The trends for mean
Chl-a for the 6C scheme show an increase from OWT 1–OWT 4, while TSM increases across all six
OWTs, indicating that C6-5 and C6-6 have major inorganic particle contributions. High mean CDOM
values are in 6C-2–6C-4, with 6C-2 having the highest value and consistent with the lowest overall
mean Rrs(λ). These combinations are broadly consistent with progressively elevated mean Rrs(λ),
tempered with suppressed spectra with high Chl-a and CDOM OWTs. For the 6CN scheme, mean
Chl-a follows that of the 6C scheme. A notable difference in the distribution for CDOM is evident,
with 6CN-3 having the highest mean. TSM also follows the trend for the 6C scheme, with the highest
TSM distributions associated with 6CN-6 and consistent with the shape of the mean Rrs(λ).
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Figure 4. Boxplots for Chl-a, CDOM and TSM across the OWTs for 6C (top row) and 6CN (bottom row).

The general relations between the OWT optical and in-water properties for the two schemes can
be summarized as follows: the 6C mean Rrs(λ) retain absolute shape and are influenced by absorption
and scattering properties, ranging from a relatively clear type (6C-1) to turbid, highly scattering waters
(6C-6). A very dark water type indicative of high absorption (CDOM-dominated) is also represented
(6C-2), and 6C-3–6C-5 generally are associated with increasing levels of phytoplankton biomass in
eutrophic waters. In 6CN, peaks and valleys in the red and NIR region are the most differentiating
aspect of shape, with 6CN-1 and 6CN-2 relatively flat in this region, and varying levels of shape and
magnitude for 6CN-3 through 6CN-6. The largest peak amplitude in the red/NIR region is exhibited
by 6CN-3, consistent with the highest Chl-a levels. For the 6CN, there is no ‘dark’ water OWT, as in
the case of the 6C scheme.

3.2. The GLaSS Lakes Case Studies

The GLaSS OWT tool utilizes these schemes with the membership functions to produce mapped
products (Figure 5). Mapped products show (1) the fuzzy memberships to each OWT, (2) the dominant
water type (determined from the water type with the highest membership) and (3) the membership sum
(i.e., the sum of memberships from all water types). Also included are the normalized memberships
(not to be confused with the normalized Rrs(λ)). The normalized memberships are constrained to sum
to one for every pixel. For these quantities, each membership is divided by the membership sum for
that pixel.
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Figure 5. Processing chain for MERIS scenes.

We tested the tool and the two schemes on a selection of MERIS images from GLaSS target lakes,
which included lakes in Estonia, Finland, Italy, The Netherlands and Sweden (Table 6). One of our
goals was to assess how OWTs are impacted by and can inform us of how to improve the application
of atmospheric correction schemes to local imagery. To test this, the satellite images were processed
with and without correction for stray light from adjacent land pixels (ICOL [25]) and atmospherically
corrected using several AC methods available in GLaSS (see Table 7). The mapped distribution of the
dominant OWT for each classification scheme was evaluated on a qualitative basis in consultation with
local GLaSS lake experts, since we lack match-up validation data. Atmospheric correction with CC2R
gave best results for most lakes, and maps based in these results are discussed in the next sections.

Table 6. List of GLaSS lakes for test case application by country.

Country Lakes

Estonia Lake Peipsi, Lake Võrtsjärv
Finland Lake Päijänne, lake Pääjärvi, Lake Vesijärvi

Italy Lake Garda, Lake Maggiore, Lake Lugano, lake Idro
The Netherlands Lake IJsselmeer, lake Markermeer

Sweden Lake Vättern, Lake Vänern
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Table 7. Atmospheric correction method used in each image tested.

Lake Date Atmospheric Correction
yyyy-mm-dd Method

Estonia 2005-07-18 CC2R
Estonia 2011-07-27 MIP
Finland 2004-08-05 C2R and CC2R
Finland 2006-05-09 C2R and CC2R
Finland 2007-06-01 CC2R
Finland 2007-08-23 MIP

Italy 2009-09-11 CC2R
Italy 2008-05-06 MIP

The Netherlands 2011-04-15 C2R
The Netherlands 2011-04-23 CC2R
The Netherlands 2011-09-28 MIP

Sweden 2003-08-29 CC2R
Sweden 2009-06-26 MIP

Note: CC2R: CoastColour; MIP: Modular Inversion and Processing Scheme; C2R: Case 2 Regional.

3.2.1. Italian Lakes: Deep and Clear

Located in the southern Perialpine region, Lake Garda is the largest Italian lake, typically with
meso-oligotrophic conditions. The lake can be divided in two sub-basins: a larger area extending with
a N-SW orientation with a deep bottom; and a shallower SE basin. Lake Maggiore is the second largest
by surface and volume. It is a very narrow elongated lake with a N-S orientation. The deepest basins
(max depth 373 m) are situated in the central and northern parts, with shallower bottoms in the south.
Lake Maggiore has experienced eutrophication since the 1960s, but since the 1980s, it has stabilized
and cleared, and today, it is classified as oligotrophic. For the Italian lakes, following Tables 2 and 3,
we expect 6C-1 and 6CN-1 to occur most of the time, in combination with 6CN-2 [37–39]. Seasonal and
daily variation can induce some deviations. Figure 6 shows the classified maps for these lakes after
ICOL corrections. The invalid or suspect flags were not applied as masks for the maps, in order not to
loose much of the data. Without ICOL, large parts of Garda and all of the other lakes in the area are
flagged as ‘L2R (level-2 reflectance) invalid’ or ‘L2R suspect’, and the waters are classified as 6C-3 and
6C-4, which is clearly not correct. With ICOL processing, still many of the pixels in the Italian lakes
(except for larger Lake Garda) are flagged as ‘L2R invalid’, but the resulting water types 6C-1, 6C-2
and 6C-3 could be correct for these lakes. However, the percentage presence of 6C-3 is higher than
expected, and 6C-4 is assigned to parts of Lake Lugano and Lake Idro, which is not appropriate. The
6CN classifier assigns OWT 6CN-1 to all of the Italian lakes, except of Lake Lugano (6CN-2). This
agrees with the known optics of the lakes and with the distribution shown in Table 3. We believe the
OWT normalization is appropriate and accurate here.



Remote Sens. 2017, 9, 420 14 of 24

Figure 6. Classification of Italian lakes: Lake Maggiore (A), Lake Lugano (B), Lake Como (C),
Lake Iseo (D), Lake Idro (E) and Lake Garda (F). MERIS 2009-09-11 (yyyy-mm-dd) , ICOL + CC2R. No
flagging applied. Top: 6C; bottom: 6CN.

3.2.2. The Estonian and Dutch Lakes: Shallow-Turbid and Shallow Phytoplankton-Dominated Lakes

Using Tables 2 and 3 as a guide, we expected Lake Peipsi in Estonia to be classified mostly as 6C-3
and 6C-4 and partly as 6C-5. Lake Võrtsjärv has higher sediment and CDOM loads, and class 6C-5
could therefore be expected. In Figure 7, the results of the 6C (left) and 6CN (right) classifications for
Lake Peipsi (east on the map) and Lake Võrtsjärv (west) are shown. 6C-2 and 6C-3 are assigned to the
northern part of Lake Peipsi; these are lower OWTs than reported in Table 4. However, the three 6C
water types that are found in Lake Peipsi have Rrs(λ) spectra that are similar to field measurements,
and the spatial distribution of the OWT classes seems credible: the northern part with lower classes
than the southern part. The southern part of Lake Peipsi (Lake Pihkva) is richer in sediments than
the northern part, and Lake Pihkva is very similar to Lake Võrtsjärv, which is confirmed by the
classifications [40,41]. At the time of image acquisition (18 July 2005), there was a large phytoplankton
bloom in the northern part of Lake Peipsi. In the beginning of July 2005, the measured Chl-a varied
between 14 and 74 mg m−3 with lower values close to shore and higher values in the center, and in
August, the bloom was even more intense. This range of Chl-a concentrations complies somewhat
with 6C-2 (Table 4). Importantly, in situ measurements of Lake Peipsi from 2008–2011 [42] show
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average CDOM absorption at 440 nm of 3.1 m−1. This combination of Chl-a and CDOM concentrations
(cf. Table 4) explains that 6C-2 was assigned to this image. OWT 6C-3 indicates the presence of
somewhat lower Chl-a concentrations for the areas adjacent to the blooms in Lake Peipsi.

OWTs 6CN-4 and 6CN-5 were expected from the normalized classification of the in situ spectra
(Table 3). However, 6CN-2 and 6CN-5 were found in the MERIS image for the northern part of
Lake Peipsi. Still, this is a reasonable distribution for the period with during a phytoplankton bloom
(elevated Chl) and CDOM concentrations of around 3 m−1 (Table 4). The smaller southern part, Lake
Vörtsjärv, is assigned class OWT 6C-4 or 6CN-6. The non-normalized classification appears to work
best here, as Võrtsjärv has high Chl-a, TSM and CDOM, which agree with OWT 6C-4, but not with
OWT 6CN-6 (which had a lower CDOM range in the training set; Table 4).

Figure 7. Estonian Lake Peipsi (A) and Lake Võrtsjärv (B). MERIS 18 July 2005 ICOL + CC2R. Flagged
data in black with L2R (Level-2 reflectances) suspect. Left: 6C; right: 6CN.

The Dutch Lake IJsselmeer and its split-off Lake Markermeer have quite distinct optical properties.
Markermeer is shallow (average depth of 3.6 m), and bottom sediments are characterized by fine,
easily resuspendable sediments with frequently high surface TSM concentrations [24]. River IJssel
discharged higher nutrient loads into Lake IJsselmeer, in the past. Lake IJsselmeer is still optically
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dominated by phytoplankton and cyanobacterial blooms. As expected from Table 2, Markermeer is
classified with a combination of OWT 6C-3 and 6C-4, while the majority of IJsselmeer is assigned to
OWT 6C-3 (Figure 8). Near the outflow of River IJssel, IJsselmeer also contains OWT 6C-2, which could
indicate the presence of CDOM in an otherwise relatively clear region, where mussels filter the water.
In both lakes, some OWT 6C-1 pixels are found along the shorelines. This is not correct and is not
explained by the adjacency effect, which would lead to a higher (not lower) OWT number. However,
all of these 6C-1 pixels are indeed flagged as ‘L2R invalid’ or ‘L2R suspect’. With the normalized
classifier, 6CN-2 is dominantly assigned to both lakes IJsselmeer and Markermeer, and 6CN-1 occurs,
as well. The latter could be incorrect because the associated concentrations are low (Table 5). In that
case, an incorrect atmospheric correction would explain the difference between the results in Table 5
and the MERIS-based maps.

Figure 8. Dutch lakes IJsselmeer (A) (north of the dike) and Markermeer (B) (south of the dam). MERIS
23 April 2011, ICOL + CC2R. Left: 6C; right: 6CN.

3.2.3. The Finnish and Swedish Lakes: High Absorbing, Low Reflecting Waters

Figure 9 shows a classified MERIS image from 9 September 2006, containing several Finnish lakes.
Based on Table 2, the Finnish lakes are almost always classified as 6C-2, because of their overall low
Rrs(λ). After normalization, more differentiation in shape leads to several assigned normalized OWTs
(6CN-2, 6CN-4 and one instance of 6CN-5). With the 6C application, most of Päijänne and the central
parts of Pääjärvi were classified as 6C-2, which is according to expectation since these lakes have
generally low Rrs(λ) attributable to high CDOM absorption for Pääjärvi and low TSM and particle
scattering in Päijänne. Although Lake Vesijärvi is predominantly classified as 6C-3, this is viewed
as accurate, because this lake has low CDOM and typically higher TSM and Chl-a and, thus, higher
Rrs(λ). The ‘L2R suspect’ flag was raised at the shores of Lake Päijänne, which indicates that the
OWT 6C-4 pixels might require masking due to excessively high Rrs(λ) values. The 6CN classifier
assigns 6CN-1 to Lake Päijänne and 6CN-2 to Lake Pääjärvi. Other surrounding lakes are classified
as 6CN-1, as well. 6CN-1 was not expected according to Table 3, and Lake Vesijärvi and the small
surrounding lakes could be classified into several classes. The question is whether the normalization
and classification did not work well here, or if something else is disturbing the results. Because Tables 2
and 3 do represent the differences between Finish lakes well, the expectation is that the atmospheric
correction might not have been suitable for these lakes [43].
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Figure 9. Finnish Lakes: Päijänne (A), Pääjärvi, (B) and Vesijärvi (C). MERIS 2006-05-09, ICOL + CC2R.
Left: 6C no flagging; center: 6C ‘L2R invalid’ flagged out; right: 6CN with flagging.

The two largest Swedish lakes are Lake Vänern and Lake Vättern. Lake Vättern is very clear,
with very low concentrations of Chl-a, TSM and CDOM. Lake Vänern typically has low concentrated
chlorophyll blooms and relatively high CDOM absorption of around 1 m−1 (at 440 nm) [40,44]. Both
lakes are mainly classified as OWT 6C-2, Lake Vänern also partly as OWT 6C-3 (Figure 10). The small
Bay Dättern, in the south of the eastern basin of Lake Vänern, is very turbid, with high concentrations
of TSM (>30 g m−3), Chl-a (>30 mg m−3 in summer) and very high CDOM concentrations (3–10 m−1).
Bay Dättern is classified as OWT 6C-4, and probably due to the high CDOM absorption, it does not fall
into OWT 6C-6. The occurrence of OWT 6C-5 was also expected for this bay, but that class was not
found. ICOL processing makes a difference in Lake Vättern, but not in a positive sense: after ICOL
processing, Vättern is classified as OWT 6C-3, while OWT 6C-1 would have been more appropriate.
Bay Dättern continued to be flagged as ‘L2R invalid’ after ICOL processing. The result without ICOL
processing is therefore preferred. With the normalized classifier, Vättern is actually classified as OWT
6CN-1 and seems the most appropriate for this lake. After normalization, Vänern is assigned OWT
6CN-2 and Dättern OWT 6CN-3, which is correct. For the Swedish lakes, the normalization seems an
improvement over the non-normalized classification.

Figure 10. Classification of Swedish Lakes: Lake Vänern (A), Lake Vättern (B) and the bay of
Dättern (C). MERIS 25 June 2009, ICOL + CC2R. Only cloud (white), cloud shadow (partly transparent
white) and “L2R suspect” flagging applied. Left: 6C; right: 6CN.

4. Discussion

The GLaSS lake OWTs were developed by extending the OWTs derived in [3]. In that earlier
study, seven OWTs were identified, but represented coastal marine waters, as well as inland freshwater.
The number of OWTs we found in a larger dataset but exclusive to freshwater was six. The impact
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of adding more data did not significantly alter the partitioning of reflectance space into clusters. We
purposefully omitted spectra associated with floating algae because of too few instances to derive stable
statistics, but we believe this is a water type that exists and should be incorporated in future renditions.

In addition to the development of the six OWTs on un-modified spectra (6C), we developed a
parallel set using normalized spectra (6CN), accentuating absorption features by removing scaled
magnitude effects solely attributable to concentration levels [45]. The GLaSS tool contains both options
for OWT processing. It is yet to be determined which choice of the classification scheme is best for
a given lake (i.e., 6C or 6CN). This will depend on how the classification maps might be used and
the nature of the lake system. In the Dutch and Estonian lakes (the lakes with a higher sediment
load), the 6C classification performs better, while for the Italian and Swedish lakes (mainly for the
clear Lake Vättern), the 6CN classification provided the best results based on the current analysis.
This is consistent with our expectations: the normalized method discriminates ‘low reflecting’ lakes
(either clear blue lakes or brown/yellow CDOM lakes) that would otherwise end up in the same ‘low’
reflectance OWT using non-normalized classification. For the Finnish lakes, however, the results from
both classification schemes seem not very convincing: there are large contrasts between the classified in
situ reflectance values (Tables 4 and 5) and the image results. We believe this is caused by atmospheric
correction problems over dark waters. For these dark absorbing lakes, such as the ones in Finland and
Sweden, it is known that the FUB processor performs best. However, due to missing spectral bands,
the output of this processor cannot be fed into the OWT tool.

These AC test results highlight a new role for the OWT classification in identifying atmospheric
correction problems, as an overall aim of the GLaSS OWT tool is to improve water quality products
generated from satellite image processing for any lake system. A general problem with image
processing over lakes is that certain AC and bio-optical algorithm retrieval schemes are more suitable
for some optical conditions, while other schemes work better for other conditions (e.g., clear versus
turbid waters). Selecting the most suitable AC and retrieval algorithm schemes is the most critical
decision for producing accurate and meaningful water quality products. The OWT classification
provides a mechanism to assist, for example by indicating whether a dark-pixel correction is possible
(non-turbid) or not.

Using OWTs for improving the results of atmospheric correction for imagery over lakes would
be a new application for these products. Currently, one iteration of atmospheric correction combined
with the application of the OWT tool shows the distribution of OWTs over the whole lake. In cases
that lakes contain water types that have a better performance with different AC schemes, one could
imagine an iterative system where standard AC processing is executed and OWTs are computed, and
then, if certain water types are found (assuming error in the turbid areas), a re-application of AC
over the scene could be applied with a scheme more suitable to turbid conditions for those pixels
assigned to the OWT that is connected to a different AC scheme. This approach is conceptually similar
to the switching scheme between the NIR and SWIR AC models originally suggested by [46] and
further tested by [47,48] for MODIS imagery over various coastal locations, as well as for MERIS
Case 1 and Case 2 atmospheric correction [49–52]. In the present case, multiple AC schemes could be
available for selection, with images re-combined similar to the algorithm blending method for in-water
retrievals, e.g., [3]. This approach would require further testing of different AC schemes with different
image scenes containing a variety of OWTs, but offers an avenue for blending AC schemes within a
single image.

One important issue to mention concerns the use of the flags derived from the pre-processing of
the scenes and the atmospheric correction method used. In the scenes analyzed, the ‘L2R suspect’ and
the ‘L2R invalid’ flags removed some misclassified pixels along the lake shores, which could be caused
by the remaining adjacency effect or by mixed land-water pixels. Those flags can be used to mask out
these problematic pixels, but they can also mask large areas of valid pixels. Therefore, to determine to
which class the main part of the lake belongs, it is advised not to use additional flagging besides the
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land- and cloud-related flags. It is also wise to ignore the much higher classes that are found in the 1–2
pixels along the shores of the lakes when they appear.

The classification maps produced from the GLaSS tool also serve as stand-alone products that
provide spatial information for understanding the distributions and long-term trends of optical states
that have environmental and ecological linkages. ESA’s Diversity II Project (http://www.diversity2.
info/) used the dominant OWT class as a monthly inland waters product from MERIS imagery for
a variety of globally-distributed lakes. Time series of these classification maps provide indications
of how a given system may be trending or changing as expressed OWT changes. Frequency maps
of OWTs can be generated and are useful for understanding the distributions of the dominant water
types for a given lake, leading to a first order indication of the types of AC schemes and retrieval
algorithms that may be needed for processing, e.g., [3]. There is much interest in using remote sensing
to support reporting for the European Water Framework Directive and U.S. Clean Water Act [53,54].
Frequent OWT maps can provide an insight into the state and seasonal patterns that occur in lakes.
Longer term or unexpected changes can be a reason to perform a full processing and taking additional
samples for detailed analysis.

The 6C and 6CN classification methods analyzed here are similar in their implementation, but
represent different approaches in classification and interpretation. The non-normalized approach (6C)
is based on absolute Rrs(λ) values and thus can differentiate ‘dark’ from ‘bright’ waters more effectively
than the normalized scheme (6CN), which essentially removes magnitude effects attributable to
particle scattering. The normalized class partitioning is driven by spectral shape effects, largely from
spectral-varying absorption properties. These considerations may be relevant to how the classification
tool is ultimately used for a lake, such as to determine the most suitable tuning of a bio-optical
algorithm or for general optical assessment.

Water classification is a somewhat recent and evolving discipline. Classification schemes exist that
use normalized and non-normalized Rrs spectra, but there has been no attempt anywhere to connect
the two approaches. Currently, each approach has been treated separately without the other, and each
has advantages and disadvantages. However, it is possible to unify the two schemes. Figure 11 shows
a view of the combined system as a matrix with the normalized and non-normalized normalized input
remote sensing reflectance (Rrs) spectra separated into their respective clusters using the six-class
scheme for both, resulting in 36 potential variations. Based on our results, 20 of the 36 possibilities are
encountered. One approach for integrating the different schemes would be to use one classification
system subsidiary to the other. Under this approach, fuzzy memberships would be derived for one
scheme as the master factor, and a second sorting could take place according to the dominant OWT
of the subsidiary scheme. This approach avoids intermingling fuzzy memberships, which is not yet
feasible, but does add a new layer of classification by further discriminating shapes within a class. As
an example, the new integrated scheme would use the fuzzy memberships for non-normalized classes
as the main fuzzy value for pixel weighting if serving that function, and the dominant class of the
normalized data as a subset variation of the non-normalized class. Theoretically, each non-normalized
class has six normalized potential assignments when combining 6C and 6CN. This approach has not
been tested, but could be a way to take full advantage of the classification tool. It is beyond the scope
of this study to develop these concepts further and remains a gap that future work should address.

The selection of algorithms optimized for local conditions can also be facilitated by using the
OWT approach to direct the algorithm selection and output blending. As has been demonstrated
by [3], the best performing algorithm to a particular water type can be determined through algorithm
analysis a priori. During operational classification, the class memberships can then be used to weigh
retrievals from multiple algorithms into a blended product. This assumes that algorithm performance
for specific OWTs are globally representative. This assumption should be checked for a given lake
system though. Variations in local optical drivers or specific Inherent Optical Properties (sIOPs) may
deviate from global behavior or conditions.

http://www.diversity2.info/
http://www.diversity2.info/
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Figure 11. Matrix of non-normalized (GLaSS6C) (rows) and normalized (GLaSS6CN) (columns) clusters
with remote sensing reflectance (Rrs) spectra sorted into respective OWT.

5. Conclusions

Optical water type classification is a developing research topic in aquatic remote sensing.
It has evolved from Jerlov water types as descriptors of marine waters, to a variety of marine and
freshwater schemes designed for use with remote sensing image applications. We have developed
a new tool specific for classifying lake remote sensing images, now available in the BEAM software.
The development of the tool is an outgrowth of the method presented by [3], differentiated by new
data and new scheme configurations. Optical data from different lakes across Europe, the U.S. and
China were merged, covering a wide range of environmental conditions, including dark lake waters,
turbid waters and highly eutrophic waters comprising cyanobacteria blooms. We have re-developed
lake optical water types with both a spectral-normalized and non-normalized treatment, resulting
in two separate, but linked schemes. The resulting water types in each scheme were described by
in-water concentrations of chlorophyll-a, CDOM and total suspended matter. While each scheme
differs at a fundamental level, they serve the same roles for downstream applications, which in the
past have included using them as intermediary products for optimizing bio-optical algorithm selection
and as stand-alone products for supporting biogeochemical and biodiversity system analysis. We
have focused our research on the development of the schemes within the tool and its use with remote
sensing imagery from the MERIS sensor for a variety of European lakes as case studies with different
optical conditions. We found that each scheme had merits for generating mapped water type products,
depending on the lake. While the images used are a small subset of conditions likely to be found
globally, the analysis is useful as a means for contrasting the different approaches for different lake
conditions. The best scheme for any system requires a fundamental a priori knowledge of optical
drivers, necessary for interpreting the images. For example, Lake Vättern in Sweden showed better
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results for the normalized scheme, while other lakes such as Lake Võrtsjärv and Lake Markermeer
and IJseelmeer in the Netherlands showed better performance with the non-normalized approach.
These approaches were assessed by how accurately we believed the classification maps depicted the
underlying optics.

Although a prime use of classification maps is for bio-optical algorithm application, we did not set
out to test or develop the tool with algorithms, as was done in [3]. There is a wide variety in algorithms
and intended purposes of algorithms, and this type of evaluation with the two-scheme approach was
beyond the scope of this work. However, we presented a new use for classification maps as related
to guiding atmospheric corrections schemes. As the tool operates directly on the spectral Rrs, the
atmospheric correction scheme will impact the effectiveness of the classification tool. We tested several
different atmospheric correction schemes with each image, producing different classification maps for
each test image. The classification results provided feedback on the performance of the atmospheric
correction scheme, and we believe that the classification map interpretations are useful in assessing
the performance of atmospheric correction when in situ match-up data are not available, which is
generally the case. Thus, another use of classification maps is for atmospheric correction assessment
and possibly selecting and blending, as well, although we speculate on how this may be done.

These two scheme variations presented here—spectral-normalized and non-normalized—represent
the current options available to developers and users of images produced from optical water type
classification, regardless of origin. We have shown how these schemes differ spectrally and in use, as
well as in in-water characterizations. We have also shown how they are linked through a classification
matrix and speculate on the potential to unify the two schemes, which could provide a way to maximize
the advantages of each scheme together. This is an evolving area of research, and the guidelines and
uses of optical water type schemes are still being explored and discovered.
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