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Abstract: Timely assessment of crop growth conditions under heavy metal pollution is of great
significance for agricultural decision-making and estimation of crop productivity. The object of this
study is to assess the effects of heavy metal stress on physiological functions of rice through the
spatial-temporal analysis of the fraction of absorbed photosynthetically active radiation (FAPAR).
The calculation of daily FAPAR is conducted based on a coupled model consisting of the leaf-canopy
radiative transfer model and World Food Study Model (WOFOST). These two models are connected
by leaf area index (LAI) and a fraction of diffused incoming solar radiation (SKYL) in the rice growth
period. The input parameters of the coupled model are obtained from measured data and GF-1
images. Meanwhile, in order to improve accuracy of FAPAR, the crop growth model is optimized by
data assimilation. The validation result shows that the correlation between the simulated FAPAR and
the measured data is strong in the rice growth period, with the correlation coefficients being above
7.5 for two areas. The discrepancy of FAPAR between two areas of different stress levels is visualized
by spatial-temporal analysis. FAPAR discrepancy starts to appear in the jointing-booting period and
experiences a gradual rise, reaching its maximum in the heading-flowering stage. This study suggests
that the coupled model, consisting of the leaf-canopy radiative transfer model and the WOFOST
model, is able to accurately simulate daily FAPAR during crop growth period and FAPAR can be
used as a potential indicator to reflect the impact of heavy metal stress on crop growth.
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1. Introduction

The pressures on agro-ecosystems are increasing with the rapid industrial, economic development
and environmental problems, such as drought and heavy metal contamination. One of the major
problems is heavy metal pollution of paddy fields, which is the widely cultivated crop in China and
provided approximately 42% of the national grain reserves [1–4]. The accumulation of heavy metal
ions in rice can threaten food security and harm human health. According to incomplete statistics,
there are more than 12 million tons of grains contaminated by heavy metals in China every year [5].
Some studies show that the heavy metal ions can influence the cell structure of plants and cause
changes in physiological function, affecting the normal growth of crops [6,7]. Significantly, these
changes can impair crop photosynthesis by affecting activity of photosynthetic enzymes and pigment
content (chlorophyll) [8–11]. The fraction of absorbed photosynthetically active radiation (FAPAR),
defined as the fraction of photosynthetically active radiation (PAR) absorbed by a green canopy in
the 0.4–0.7 µm spectral range, has been proven to be effective for quantitative estimation of canopy

Remote Sens. 2017, 9, 424; doi:10.3390/rs9050424 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2017, 9, 424 2 of 15

photosynthetic capacity as it constrains the photosynthesis rate through the energy absorbed by the
vegetation [12–14]. It is well known as a significant biophysical variable in characterizing energy
conversion of leaf physiological processes. It is also widely used for monitoring the health status of
crop growth [15,16]. However, the impact of heavy metal contamination is long-term, concealed and
irreversible [17]. It is difficult to predict the long-term effects of heavy metals on rice growth from the
short-term change in FAPAR. Therefore, seasonal simulations of FAPAR are needed by the agricultural
sector to properly assess the consequences of heavy metal stress on rice.

Most studies show the estimation of FAPAR from optical remote sensing is based on empirical
or physical models [18–20]. The main methods are focused on established empirical relationships
(linear or nonlinear) between field-measured FAPAR and satellite-derived vegetation indices by
regression analysis, without knowing the underlying physical mechanism in the radiative transfer
(RT) process [21]. Therefore, the functional analysis needs to be simple and computationally efficient
to operate over large scales [22]. However, the relationship between FAPAR and vegetation indices
cannot be applied in all conditions because canopy reflectance is also affected by other factors, such as
observation time and spatial resolution [22]. Additionally, some studies show the vegetation growth
period and reflectance of background may seriously affect the stability of the relationship between
FAPAR and the vegetation index, such as the normalized difference vegetation index (NDVI) [23].
However, physical models can be applied to most conditions, including different land covers and time
periods, because the physical models analyze the interactions between solar radiation and vegetation
canopies to reveal cause–effect relationships [20]. Meanwhile, a considerable number of studies have
pointed out that increasing the fraction of diffuse radiation could improve light use efficiency (LUE),
although total PAR reaching the top of the canopy would be decreased [24,25]. Therefore, we consider
the effects of diffuse radiation on vegetation conditions in order to increase the accuracy of FAPAR.
We decided to divide FAPAR into direct FAPAR (FAPARdir) and diffuse FAPAR (FAPARdif), which
represents the total canopy absorbed efficiency from both direct and diffuse PAR [26,27].

In addition, some literature has assessed the contribution of driving factors on FAPAR variation
by sensitivity analyses using different scales. In Asner and Wessman studies [13], the geometrical
optical radiative transfer model was utilized to assess the factors driving FAPAR variation from the
landscape views, canopy and leaf scales. Li et al. [28] conducted a sensitivity analysis and found that
both FAPAR and FAPARdif at the early growing stage were more affected by leaf area index (LAI), leaf
angle distribution (LAD) and solar zenith angle (SZA) than those at other growing stages. These results
showed that the effect of LAI varies with the change of landscape scale, while LAI played a more
significant role in FAPAR than leaf biochemical variables at the canopy scale. This study also concluded
that LAI accuracy directly influences performance of the retrieval physical model. Therefore, the LAI
can be used as an important connecting variable in combining physical and other models. On the other
hand, our previous studies focused on heavy metal stress monitoring by representative variables, such
as LAI and weight of root (WRT), which was simulated by the World Food Study Model (WOFOST)
and the data assimilation method [29,30]. The results showed that the method of assimilating LAI into
the WOFOST model can simulate seasonal LAI accurately during rice growth period and can be used
to calculate daily fraction of diffused incoming solar radiation (SKYL), which present the proportion of
scattered radiation in solar incident radiation. However, our previous studies neglected to examine the
variation of rice physiological functions, such as photosynthesis, which are affected by heavy metal
stress. Hence, coupling the physical and WOFOST models was considered as a potential methodology
to simulate seasonal FAPAR for assessing rice photosynthesis variation under heavy metal stress.

In this study, a coupling growth-canopy radiative transfer model based on the Leaf Optical
Properties Spectra (PROSPECT) [31,32], Scattering by Arbitrarily Inclined Leaves Model (SAIL) [32]
and the World Food Study Model (WOFOST) [30], was employed to calculate daily FAPAR during
the rice growth period and described spatial-temporal variation in FAPAR under different levels of
heavy metal stress. The connection between models was based on LAI and SKYL, which determined
accuracy of retrieved FAPAR by the PROSAIL model. The objective of this study is to comprehensively
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analyze spatial-temporal variation in FAPAR based on the coupled model under different heavy
metal conditions.

2. Materials and Methods

2.1. Study Area and Data

2.1.1. Study Area

The study area is located in Zhuzhou (112◦17′–114◦07′E, 26◦03′–28◦01′N), a city in Hunan Province
of China, which is an old industrial base and important grain production region. The climate here is
mostly humid, and there is sufficient sunshine for growing paddy rice from May to September. The
annual average temperature is 16–18 ◦C and the average precipitation is about 1500 mm. The dominant
soil texture is red soil with sufficient organic matter (2–3%). Rice and related varieties form the majority
of crops grown in most of the farmland and are normally transplanted in early June and reaped in
late September. However, the existence of several heavy industries, including metallurgy, machinery,
electronics and chemical factories, has caused serious pollution by heavy metals in the Xiangjiang River
basin. Accordingly, the Xiangjiang River and its tributaries have long been contaminated by industrial
pollutants. Rice is susceptible to heavy metal pollution due to being river-irrigated. In this study, two
large rice-growing areas (labeled A and B) were selected (Figure 1). Table 1 depicts the concentrations
of major heavy metal types in soil and rice in the study areas. As shown inTable 1, the concentrations of
heavy metals Cd, Hg, Pb and, as in area B, were higher than the background values. In correlation with
these concentrations, the concentrations of heavy metal in rice tissues were at higher levels. According
to the study area location and soil heavy metal concentrations measured using sampling tests, area
A and B are classified as being at the “safe level” and “stress level”, respectively. Due to only small
changes in topography and agricultural management, two rice-growing areas have similar climates,
soil textures and water in the study area. Under normal circumstances, local farmers would provide
sufficient nutrients, manure and irrigation water to ensure normal growth of rice without the impact
of other environmental factors. Therefore, an assumption of this study is that the study area is subject
to only heavy metal stress without other unintended stress caused by other environment factors.
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Table 1. Average heavy metal concentrations in the study areas.

Study
Area Coordinates

Type Cd Hg Pb As
Pollution

LevelBackground
Value (mg/kg) 1.43 0.20 82.78 19.11

A 27◦47.5′N 113◦12.5′E
Soil (mg/kg) 0.84 0.82 78.32 10.22

Safe LevelRice Tissues (mg/kg) 0.82 0.04 10.60 5.39

B 27◦50.4′N 113◦2.6′E
Soil (mg/kg) 3.28 0.51 120.75 18.15

Stress levelRice Tissues (mg/kg) 2.97 0.06 36.73 7.04

Note: Heavy metal background values were used as threshold values to indicate pollution. They were derived from
the Hunan Institute of Geophysical and Geochemical Exploration, City, China.

2.1.2. Data Preparation

The experimental datasets included remote-sensing, meteorological and field-measured data.
Remote-sensing images were used to retrieve LAI and meteorological data were used as input
parameters for the crop growth model, while field measured data, including weight of rice tissue and
content of heavy metals in soil and rice tissue, served as validation data.

To capture rice growth conditions during different growth periods, four 16 m multispectral
GF-1 images (The first series of Chinese High Resolution Earth Observation System, GaoFen-1)
were obtained from China Center For Resources Satellite Data and Application (http://218.247.
138.121/DSSPlatform/index.html) and acquired on 27 June, 14 July, 3 August, 9 September, which
corresponded to day 177, 194, 214, 251 of the year (DOY). These images were selected as remote-sensing
data in this study. The GF-1 satellite is equipped with two 2 M panchromatic/8 M multispectral
cameras and four 16 M wide-field imagers (WFI). The 16 M wide-field imagers have four bands
of blue, green, red and near-infrared spectral wavelengths (B1: 0.45–0.52 µm, B2: 0.52–0.59 µm,
B3: 0.63–0.69 µm, B4: 0.77–0.89 µm). For the GF-1 images, the digital values were converted into
sensor radiance using calibration coefficients provided by the China Center for Resources Satellite
Data and Application and using the radiometric calibration tool in ENVI5.3. Surface reflectance was
retrieved using the Fast Line-of-Sight Atmospheric Analysis of Spectral Hyper-cubes (FLAASH) model.
The tropical atmospheric model was selected by study area and flight time was used in atmospheric
correction of GF-1 images. After radiometric calibration, geometric correction was completed to
generate orthorectified images through the rational polynomial coefficient (RPC) ortho-rectification
tool with a digital elevation model (DEM) file in ENVI5.3. The two rice fields in the study area were
extracted by visual interpretation and supervised classification.

Three field campaigns were carried out in 2015 during the entire rice growth season on 17 July,
5 August and 25 August, which corresponded to the jointing-booting, heading-flowering and ripening
stages of rice growth, respectively. In each area, 20 randomly distributed sample plots were selected for
field measurement, which were located using the global positioning system (GPS). The field campaign
acquired soil and rice parameters, including non-destructive measurements and destructive sampling.
For destructive sampling, 5–10 plants and a handful of soil were randomly selected around the sample
plots. The organs of rice plants (including roots) were completely dried at room temperature to
obtain dry weight. The rice root and aboveground parts were then separated to measure weight
and heavy metal content. Meanwhile, the soil samples were dried for measurement of heavy metal
content. The concentrations of heavy metals in rice and soil were estimated using an atomic absorption
spectrophotometer (AAS, spectr AA 110/220, Varian, City, CA, USA) at the Chinese Academy of
Agricultural Sciences. Non-destructive LAI in two study areas were measured using a botanical canopy
analyzer (AccuPAR model LP-80, Manufacturer, City, US State abbrev. if applicable, Country) at five
random positions in each sample plot. Leaf chlorophyll was determined using a SPAD-502 portable
chlorophyll meter (Minolta Corporation, Ramsey, NJ, USA). In the meantime, the photosynthetically
active radiation (PAR) was measured above and below the canopies.

http://218.247.138.121/DSSPlatform/index.html
http://218.247.138.121/DSSPlatform/index.html
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In the field, FAPAR is usually substituted with the fraction of intercepted photosynthetically
active radiation (FIPAR), which is calculated from PAR measurements above and below the canopy as
follows [33–35]:

FIPAR =
PARabove − PARbelow

PARabove
(1)

Generally, assuming 5% of intercepted light is reflected or absorbed by non-photosynthetic tissues
when the canopy is completely green, FAPAR was calculated using field FIPAR [35].

The meteorological data, including daily maximum temperature, minimum temperature, early
morning vapour pressure, mean daily windspeed at 10 m and hours of sunshine, were obtained from
the China Meteorological Data Sharing Service System.

2.2. Methods

In this study, we combined the PROSAIL and WOFOST models to obtain reliable and actual
FAPARs during the growth season of rice through the crucial variable LAI, SKYL. Meanwhile, in the
simulation of the rice growth process under heavy metal stress, we used particle swarm optimization
algorithm (PSO) to assimilate LAI into the WOFOST model to ensure the LAI simulations were close
to the actual LAI. Figure 2 shows process of estimating daily FAPAR of the rice growth season.
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2.2.1. FAPAR Calculation Based on PROSAIL Model

The PROSAIL model is a coupled model of the PROSPECT leaf optical properties model and the
4SAIL canopy bi-directional reflectance model, which is widely applied to simulated canopy reflectance
for a range of biochemical and biophysical variables. This model uses the output parameters of the
PROSPECT model as input parameters for the 4SAIL model. The PROSPECT model simulates the
direction of hemispherical reflectance and transmittance on the leaf scale at a wavelength range
of 400–2500 nm. The model was developed based on the generalized plate model from Allen and
requires six input parameters, including the leaf mesophyll structure parameter (Ns), leaf chlorophyll
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a and b content (Cab), leaf equivalent water thickness(Cw), dry matter content(Cm), leaf brown
pigment content (Cbr) and carotenoid content (Car) [31]. The 4SAIL model inputs canopy and external
parameters and simulates bi-directional reflectance at the canopy scale. The canopy parameters include
LAI, average leaf angle (ALA), hotspot parameters (hotspot) and soil brightness parameters (Psoil).
The external parameters consist of the fraction of diffused incoming solar radiation (SKYL), sun zenith
angle (SZA), sensor zenith angles (VZA) and azimuth angle between the sun and the sensor (RAA),
respectively [32].

FAPAR is the fraction of PAR absorbed by a green canopy and is derived from PROSAIL by the
law of conservation of energy [36]. Based on the Four-Stream Radiative Transfer theory developed by
Verhoef and Bach [37], the FAPAR, FAPARdir and FAPARdif are calculated from PROSAIL simulations
in this study (Figure 3). The direct and diffuse directional transmittance and reflectance calculated
by PROSAIL are first considered in order to assess the absorption efficiency of light by the canopy.
Meanwhile, multiple scattering effects caused by the interaction between the canopy and background
soil need to be considered in the calculation. The equations for calculating the FAPAR, FAPARdir and
FAPARdif are as follows [37]:

α∗s = αs +
τssγsd + τsdγdd

1− γddρ
b
dd

αd, (2)

α∗d = αd +
τddγdd

1− γddρ
b
dd

αd, (3)

αs = 1− ρsd − τsd − τss, (4)

αd = 1− ρdd − τdd, (5)

FAPAR =
∑λ=700

λ−400 (α
∗
s Et

dir + α∗dEt
di f )

∑λ=700
λ−400 (Et

dir + Et
di f )

= FAPARdir + FAPARdi f , (6)

where α∗s and α∗d are canopy absorptance for direct solar incident flux (Et
dir) and hemispherical diffuse

incident flux (Et
di f ), respectively; αs and αd represent absorbance of the isolated canopy layer for solar

and hemispherical diffuse incident flux, respectively; γdd and γsd are the bi-hemispherical factor and
the directional–hemispherical factor over the surroundings, respectively; τss and τsd are the direct
transmittance and directional-hemispherical transmittance for solar flux, respectively; ρdd and ρsd
represent the bi-hemispherical reflectance at top-of-canopy and directional–hemispherical reflectance
for solar flux, respectively; ρb

dd is the bi-hemispherical reflectance at the bottom-of-canopy.
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Figure 3. A flowchart of the coupled growth-canopy model for describing the process of the
FAPARsimulation; PROSPECT is the Leaf Optical Properties Spectra model, SAIL is the Scattering by
Arbitrarily Inclined Leaves Model, WOFOST is world food study model, PAR is the photosynthetically
active radiation, and FAPAR is the fraction of absorbed photosynthetically active radiation.
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2.2.2. LAI Assimilation into the WOFOST Model

The LAI is a crucial output parameter in the WOFOST model as it represents the crop’s growth
status and ability to absorb light. The LAI retrieved from GF-1 images were assimilated into the
improved WOFOST model in order to simulate the actual LAI of rice growth period (Figure 2).
In previous studies, a variety of methods were developed for retrieving LAI from remote sensing data,
among which the most widely and earliest used method is the normalized difference vegetation index
(NDVI) [5,38]. Although some studies suggest that NDVI will be saturated when the LAI is high, our
study chose NDVI to retrieve the rice LAI as the LAI of our study area is no higher than 7 according
to prior knowledge [39]. Using the field data, the exponential function calculating the relationship
between measured LAI and NDVI was determined as follows:

LAI = 0.361× e3.69NDVI (7)

The determination coefficient (R2) of the exponential function is 0.84 and the mean square of
residual is 0.06. The NDVI spatial distributions were obtained on three separate occasions through
GF-1 images and the LAI spatial distribution of all acquired data was calculated using Equation (7).
When the empirical model was calculated, the other land-use regions were excluded in the study area
during the processing of remote sensing data.

The WOFOST model is a dynamic and interpretative model that simulates the annual growth of
crop at a daily time-step under specific soil and climate conditions. The model can be implemented
under three levels: (1) the potential productivity level, in which the solar radiation and temperature
are the main factors limiting the crop growth; (2) the water-limited level; and (3) the nutrients-limited
level. In this study, we used the improved WOFOST model under the potential productivity level,
which embedded the parameter of “stress factor” to simulate the daily LAI over the course of the
season at different levels of heavy metal stress [40]. The improved WOFOST has better performance
than the normal version without the ‘stress factor’ in reliably simulating rice LAI under heavy metal
pollution [5,38]. Based on our previous studies, the stress factor corresponds to the daily total gross
assimilation of CO2 and the range of the stress factor is from 0.7 to 1, which represents serious heavy
metal stress and no stress, respectively. However, the stress factor is difficult to acquire and we selected
the method of assimilating LAI into the WOFOST model to obtain the optimal stress factor [40].
The assimilation processes for adjusting the stress factor were implemented using a particle swarm
optimization algorithm (PSO), which continued until the difference between simulated and retrieved
LAI was minimized. The difference was calculated using a cost function as follows:

C =

√
1
N ∑N

i=1(LAIRi − LAISi)
2, (8)

where N is the number of images in the entire growing season, LAISi is the simulated LAI by WOFOST
model at the time of image acquisition, and LAIRi is the retrieved LAI from GF-1 data. The process of
assimilated LAI into WOFOST can be roughly divided into four steps. Firstly, LAI was retrieved by
remote sensing images, which is corresponded to different rice growth periods. Secondly, the WOFOST
model was initialized to simulate the LAI in the whole growth season, with a step size of one day. Then,
the cost function was calculated based on inversed and estimated LAI values at the corresponding time.
Finally, if the cost function does not meet the condition, the initial stress factor is continually adjusted
until the simulated LAI reached the best agreement with inversed LAI. The improved WOFOST model
and assimilation is described in detail with reference to previous studies [3,5,40].

2.2.3. Simulation of Seasonal Dynamics of FAPAR

To obtain the daily FAPAR of the rice growth period, we established a connection between the
PROSAIL and WOFOST model. Namely, the LAI and SKYL, which are simulated from the WOFOST
model, input into the PROSAIL model (Figure 2). In this study, the LAI during the rice growing
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season and daily SKYL were simulated by the WOFOST model and meteorological data. The input
parameters of the WOFOST model were set according to previous literature [5,38,40,41], and the
primary parameters are shown in Table 2. In the input parameters of the PROSAIL model, the
sun zenith angle (SZA), sensor zenith angles (VZA) and azimuth angle between the sun and the
sensor (RAA) were consistent with remote sensing data acquired in rice growth period. Aside from
the daily LAI and SKYL, the setting of other parameters was fixed according to the LOPEX93 and
previous studies [42–44]. Detailed information about the setting of parameters is shown in Table 3.
FAPAR simulations during rice growing season were obtained from the coupled model, which
consisted of PROSAIL and WOFOST models (Figure 2). In the experimental area, each pixel represents
a sample point where the LAI and SKYL during rice growth period was simulated by the WOFOST
model and the FAPAR was calculated by the coupled model.

Table 2. The main initialization parameters used in the World Food Study Model.

Parameter (Unit) Description Value Source

Phenological
Parameters

IDEM (day) Day of transplanting 154 Field
measurements

TSUM1 (◦C) Cumulative temperature from
emergence to anthesis 1800 Field

measurements

TSUM2 (◦C) Cumulative temperature from
anthesis to maturity 620 Field

measurements

DVSI Development stage of transplanting 0.25 Field calibration

Crop initial
Condition
Parameters

TDWI (kg·ha−1) Initial total crop dry weight 65 Field
measurements

LAIEM (ha·ha−1) Leaf area index at emergence 0.1 Field
measurements

Green Area
Parameter

SPAN (day) Life span of leaves growing at 35 ◦C 50 From previous
studies

TBASE (◦C) Lower threshold temperature for
aging of leaves 15 From previous

studies

Table 3. The parameters used in the PROSAIL model for simulated seasonal FAPAR of rice.

Parameter Default Value Unit Note and Reference

Illumination
Parameter

SKYL Calculated by WOFOST model − fraction of diffused incoming
solar radiation

SZA Consistent with remote sensing data ◦ Sun zenith angle

VZA Consistent with remote sensing data ◦ View zenith angle

RAA Consistent with remote sensing data ◦ Relative azimuth angle

Leaf Parameter

Ns 1.5 − Leaf mesophyll
structure parameter

Cab 40.194 µg·cm−2 Leaf chlorophyll content

Cw 0.0 g·cm−2 Leaf water content

Cm 0.0064 g·cm−2 Leaf dry matter content

Car 0.0036 µg·cm−2 Leaf carotenoid content

Canopy Parameter

ALA 70 ◦ Averaged leaf angle

LAI Calculated by WOFOST model − Leaf area index

Hotspot 0.05 − Hotspot size parameter

Psoil 0 − Soil bright index

3. Results

3.1. Validation of FAPAR

In three field campaigns, 20 sampling points were randomly selected for measuring the FAPAR of
rice at each experimental area. According to the time measured in the field, the simulated value was
selected as the FAPAR of the pixel whose position was approximately consistent with the sampling
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point using the PROSAIL model. An obvious distinction is observed between the two pollution levels
(Figure 4). The correlation between the simulated and measured values was analyzed. With the growth
of rice, the relationship between simulated and measured values has a similar pattern under different
levels of heavy metal stress. In study area A, the R2 at three corresponding dates were 0.800, 0.790 and
0.810, respectively. The R2 in study area B were 0.824, 0.783 and 0.803 (Figure 5). All root mean square
error (RMSE) values are less than 0.05.
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regions. Day 43 represents the jointing-booting stage of rice, Day 62 represents heading-the flowering
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after transplanting.

Based on the above analysis, the simulated and measured values have a high correlation.
This suggests that the coupled model consisting of PROSAIL and WOFOST is an effective tool for
FAPAR calculation.
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3.2. Seasonal Changes in FAPAR in Response to Heavy Metal Stress

The effective validation in the previous section demonstrates that the coupled model had a better
performance to simulate rice FAPAR under heavy metal stress. Seasonal time courses for daily FAPAR
in the two experimental areas were exhibited in Figure 6. We found that FAPAR in stressed area were
significantly lower than the safe areas during the vegetative growth stage, which occurs after the
jointing-booting stage. The FAPAR values increased slowly at the tilling stage (0–25 days) and increased
rapidly at jointing-booting (25–70 days). FAPAR reached its maximum at the heading-flowering stage
(70–100 days) and finally began to decline gradually at the ripening stage (100–116 days). The peak
FAPAR in the region under serious stress was significantly lower by 12% when compared with the
safe area.
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In order to explore the seasonal changes in FAPAR further, the growth rate of FAPAR was
calculated to analyze the influence of heavy metal stress on rice (Figure 6b). During the tilling
stage, FAPAR growth rate in the two experimental regions were approximately equal. A remarkable
discrepancy appeared at the jointing-booting stage, with FAPAR growth rate in safe areas being
significantly higher than stressed areas. In the heading-flowering stage, the pattern of FAPAR growth
rate in the two regions has reversed, with the growth rate of FAPAR in safe area being slightly lower
compared to stressed area during 60 to 80 days. Subsequently, the variation trends of growth rate of
FAPAR were similar to the tilling stage.

Based on the response mechanism of crops to heavy metals and the seasonal FAPAR of the
safe area, the normal photosynthesis process of rice was obviously restrained by the poisonous
nature of heavy metals during the jointing-booting stage (Figure 6b). However, the heavy metal ion
slightly promoted the photosynthesis process of rice during the heading-flowering stage (60–80 days)
(Figure 6b). Finally, the effect gradually stabilized at the end of the growing season. In conclusion, the
jointing-flowering stage was the optimal observation time to monitor heavy metal stress levels and the
FAPAR can also be used as an indicator to study the seasonal changes of photosynthesis and other
physiological functions of rice under heavy metal stress.

3.3. Spatial-Temporal Analysis of FAPAR

In two study areas, the levels of heavy metal stress were homogeneous, but the effect of heavy
metal stress was heterogeneous [5]. Consequently, the FAPAR of each study area has shown different
spatial distribution during different periods. Figure 7 shows the variation of FAPAR simulation
values during the rice growing season by combining remote sensing images and a coupled model
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in two study areas. In area A, the values of FAPARmax had a range of 0.9–0.95 and accounted for
82% of the total pixels. In comparison, the FAPARmax of 0.8–0.9 in area B accounted for 81% and
the proportion of 0.6–0.7 accounted for 28%. This difference indicates that the spatial distribution of
FAPAR is inhomogeneous. In order to show the spatial differences of FAPAR more clearly, the spatial
distribution of FAPAR in the two study areas were exhibited in Figure 8 during four crucial growing
stages of rice. Overall, the distribution of FAPAR in two regions is generally consistent, but in the
east of the stress area (Area B), the FAPAR values were slightly higher because this area is closer to
the Xiangjiang River. In addition, during the tilling (Day 20) and jointing-booting (Day 50) periods,
the discrepancy between the FAPAR of the two regions is very small. However, there were obvious
differences shown as the values of the area under stress (Area B) were less than the safe area (Area A)
during the heading-flowering (Day 80) and ripening periods (Day 104).
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There are many explanations for these differences. After collecting the data from transplanting, the
roots were not completely developed and the ability of absorbing water and nutrition was weakened,
which consequently affected the photosynthesis of rice and resulted in a relatively low FAPAR
(Figure 6b). As rice growth entered the jointing-booting stage, the growth of rice is mainly concentrated
in the stem and leaf, which is a process requiring abundant water and nutrients. Meanwhile, rice
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begins to absorb heavy metal ions, which inhibited the photosynthesis of rice. Hence, there appeared
significant differences between the FAPAR values of the two study areas (Figure 6a,b). During the
heading-flowering stage, the rice growth rate and cumulative heavy metal content reached their
maximums, leading to the emergence of the largest difference in FAPAR value (Figure 6a,b). Finally,
after entering the ripening stage, there was a slow decline in FAPAR values because chlorophyll content
decreased and the photosynthetic capacity of the canopy declined after leaf senescence.

4. Discussion

The increase of heavy metal pollution has caused long-term damage to rice growth due to
the decline of light absorption capacity in canopies, which has had a significant impact on rice
photosynthesis. Hence, it is necessary to explore the effects of heavy metals on the photosynthesis of
rice canopies by simulating the changes and spatial distribution of FAPAR during the rice growing
season. In this study, PROSAIL and WOFOST models were coupled by LAI and SKYL, in which the
WOFOST model was optimized by data assimilation. This allowed us to simulate and analyze the
seasonal change and spatial distribution of FAPAR in the study area. Previous studies have focused
on establishing an empirical model between remote sensing data and measured FAPAR in addition
to retrieving the instantaneous FAPAR. Compared with previous studies, the method of coupling
the PROSAIL and WOFOST models using the law of conservation of energy can accurately simulate
the daily FAPAR and spatial distribution of rice during the growing season. Therefore, the method
proposed in this paper not only can study the changes in photosynthetic capacity of rice canopies, but
also suggests a new concept for crop yield estimation, growth health monitoring and heavy metal
stress monitoring. The change of canopy structure is an important factor to be considered when the
PROSAIL model was used to calculate FAPAR. As the growing season changes, the canopy structure
of most crops constantly changes and the extent of some of these changes is significant. However,
variations of leaf and canopy structure during rice growth were moderate, making the simulation
of FAPAR feasible. Therefore, it is necessary to consider the change of leaf and canopy structure at
different growth stages and adjust the parameters if the method is applied to other crops.

In this study, the connection between the two models mainly depended on LAI and SKYL and
some input parameters lacking verification of the measured data. For a more accurate simulation
of FAPAR, more connection between the two models need to be established and more time-varying
parameters need to be measured in the future, such as SZA, VZA and RAA. Meanwhile, LAI retrieved
from remote sensing data was considered as the actual observed values and assimilated into the
WOFOST model. Therefore, the error of LAI inversion need to be discussed and the source of error
include the measurement error, model error and remote sensing image quality. The uncertainty of LAI
will affect the assimilation results and thus affect the simulation accuracy of the coupled model. In
addition, the proposed approach can be employed to other crop types or regions and the parameters
of coupled model need to be re-localized. Meanwhile, the meteorological parameters should be
regionalized according to the practical situation at large scales.

5. Conclusions

In this study, the daily FAPAR was simulated by a coupled model, which consisted of the
PROSAIL and WOFOST models. Meanwhile, the crop growth model is optimized by data assimilation.
The effects of heavy metal pollution on the capacity of light absorption of rice canopy at different
growth stages were assessed by analyzing the seasonal dynamic change and spatial distribution of
FAPAR under different stress levels. First, the strong correlation between simulated and measured
FAPAR at different growth stages indicated that the coupled model with the applied assimilation
method had higher feasibility and availability. Secondly, comparing the spatial-temporal variations of
FAPAR under different stress levels, we found that heavy metal stress had no significant effect on the
capacity of light absorption of rice canopies at the tilling stage. Upon entering the jointing-booting stage,
the effect of heavy metal stress began to increase and reached its maximum at the heading-flowering
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stage, with FAPARmax of the safe area being 13% higher than the stressed area. Subsequently, this
influence tended to be stable until rice is fully mature.

In conclusion, the effects of heavy metal stress on the canopy capacity of light absorption were
obvious when rice growth entered the jointing-booting stage, which can also be used as the optimal
time to monitor heavy metal stress and the changes of canopy photosynthesis. In addition, the method
of coupling the PROSAIL and WOFOST models can successfully simulate FAPAR and has strong
potential applications in environmental monitoring.
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