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Abstract: The problem of mixed pixels negatively affects the delineation of accurate surface water in
Landsat Imagery. Linear spectral unmixing has been demonstrated to be a powerful technique for
extracting surface materials at a sub-pixel scale. Therefore, in this paper, we propose an innovative low
albedo fraction (LAF) method based on the idea of unconstrained linear spectral unmixing. The LAF
stands on the “High Albedo-Low Albedo-Vegetation” model of spectral unmixing analysis in urban
environments, and investigates the urban surface water extraction problem with the low albedo
fraction map. Three experiments are carefully designed using Landsat TM/ETM+ images on the three
metropolises of Wuhan, Shanghai, and Guangzhou in China, and per-pixel and sub-pixel accuracies
are estimated. The results are compared against extraction accuracies from three popular water
extraction methods including the normalized difference water index (NDWI), modified normalized
difference water index (MNDWI), and automated water extraction index (AWEI). Experimental
results show that LAF achieves a better accuracy when extracting urban surface water than both
MNDWI and AWEI do, especially in boundary mixed pixels. Moreover, the LAF has the smallest
threshold variations among the three methods, and the fraction threshold of 1 is a proper choice for
LAF to obtain good extraction results. Therefore, the LAF is a promising approach for extracting
urban surface water coverage.

Keywords: urban surface water extraction; threshold stability; sub-pixel; linear spectral unmixing;
Landsat imagery

1. Introduction

Worldwide mass migration to urban areas results in the land use/cover changes, changes in
climate and intensifying anthropogenic modifications to urban environments [1]. This directly brings
about more unexpected variations in urban surface water, especially in external morphological features
of the coverage. The urban surface water changes further impact relevant aquatic biodiversity, healthy
human life and even urban ecological balance [2]. Urban surface water deficiencies would aggravate
the urban heat island effect and disrupt the living environments of urban vegetation; conversely,
surface water inundation would result in flooding and even high fatality because of associated
waterborne diseases [3]. Therefore, figuring out the coverage of urban surface water is a crucial issue
for urban environments.

Remote sensing is a powerful data source for acquiring prior and comprehensive knowledge of
urban surface water [4,5]. It allows synoptic, permanent, and dynamic urban surface water monitoring
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and is clearly superior to conventional in-situ measurements [6,7]. Among current remote sensing
sensors, Landsat sensors have the greatest reputation in urban monitoring because of its advantages in
terms of free availability, and moderate spectral, temporal, and spatial resolutions. Therefore, in our
study, we implement Landsat imagery to investigate the urban surface water coverage problem.

Many studies have previously reported urban surface water extraction achievements using
Landsat images. Regular water extraction methods can be categorized into three main groups [8,9]:
(1) thematic classification methods [10–12]; (2) single-band thresholding methods [13,14]; and (3) water
index methods [15–17].

Thematic classification methods formulate urban surface water extraction into a regular binary
unsupervised or supervised classification problem on urban land cover types, and select surface water
as the exclusive thematic class for mapping [10]. The methods easily bring about low accuracy in
areas where the background land cover includes low albedo surfaces, such as asphalt roads and
building shadows in urban areas [11]. Moreover, they utilize a Boolean set to classify each pixel
as either water or non-water, and fail to achieve the desired accuracy, especially at the water-land
(i.e., non-water) interface [12]. Single-band thresholding methods select a single diagnostic spectral
band from Landsat images (e.g., band 5 from TM/ETM+) and delineate the urban surface water
coverage with a manually-defined threshold [18]. Accordingly, the subjectivity of the threshold
selection can lead to an overestimated or underestimated result and, moreover, the extracted surface
water is affected by shadow noise [16].

Different from the above two methods, water index methods combine two or more spectral
bands using algebraic operations to enlarge the divergence between water and non-water areas.
McFeeters proposed the normalized difference water index (NDWI) to delineate urban surface
water. The NDWI is implemented with a ratio model using the green band (i.e., band 2) and the
near-infrared band (i.e., band 4) from Landsat TM/ETM+ data [15]. An empirical value of 0 is
set as the threshold for extracting surface water from the raw Landsat images, and pixels with
positive NDWI values are regarded as belonging to surface water. Unfortunately, the obtained
NDWI surface water suffers from noise in built-up areas, and the threshold of 0 always results in
an over-estimation of the surface water [16]. Subsequently, Xu presented another surface water
index called modified normalized difference water index (MNDWI) [16]. MNDWI improves NDWI
by replacing the near-infrared band (i.e., band 4) with the middle-infrared band (i.e., band 5) from
Landsat TM/ETM+ images. MNDWI reduces the built-up area noise in NDWI, and it performs better
than NDWI in extracting urban surface water where built-up areas dominate in the image scene.
Nevertheless, the threshold of MNDWI is difficult to estimate because of their scene-driven features,
and the problem adversely impacts its realistic performance of MNDWI [8]. To address the instability
of MNDWI, the automated water extraction index (AWEI) was presented by combining multi-band
Landsat images (i.e., bands 2, 4, 5, and 7 of Landsat TM/ETM+ images) [9]. The AWEI argues that the
threshold of 0 is a good initialization for urban surface water extraction in the method.

The above three types of methods greatly benefit the studies of urban surface water extraction.
However, one big problem of mixed pixels still exists in the urban surface water extraction procedure
when using moderate spatial resolution Landsat images. In particular, the problem becomes more
pronounced when extracting accurate boundaries of surface water. A simple cause for this problem
is that the scale of urban land cover is often smaller than the field of view in the Landsat TM/ETM+
sensor (30 m) [19,20]. Subsequently, a few sub-pixel classifiers were presented to handle the mixed pixel
problem. Sethre proposed a sub-pixel classifier named analysis spectral analytical process (AASAP),
which aimed to expand the regular classifier into the sub-pixel field to detect the size and shape of
ponds [21]. The classifier focuses on sub-pixel wetlands or ponds and requires careful verifications
when implemented in the case of urban water extraction. Sun optimized the training samples with
mixed training samples and then combined them with the support vector machine (SVM) classifier
to improve the urban surface water extraction results [22]. However, the scheme suffers from slow
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computational speed and complicated manual operations, which seriously restricts its real-word
applications in other urban areas.

Spectral unmixing is an alternative technique that can be used to solve the mixed pixel problem
encountered in urban environments. It can be classified into linear spectral unmixing (LSU) and
nonlinear spectral unmixing (NLSU), according to different mathematical assumptions in mixing
patterns of urban land covers in the study area [23]. Numerous applications exploit the powerful
performance of LSU in converting spectral information into physical abundances of materials on
the earth’s surface [23]. Previously, researchers have made some trials related to the surface water
extraction problem using spectral unmixing. Zhou integrated a multiscale extraction scheme with
spectral mixture analysis techniques to improve water extraction in urban environments from moderate
spatial resolution satellite images [24]. The feature of this work is to adopt the multiscale scheme that
conducts surface water extraction in multiscale local regions in order to refine the result. Xie combined
the water index NDWI with LSU and proposed an automatic subpixel water mapping (ASWM) method
to map urban surface water at the sub-pixel scale [25]. Pure water extracted from NDWI and water
fractions of mixed water-land pixels estimated from LSU constitute the final urban surface water map.
As distinct from previous research, we propose a low albedo fraction (LAF) method based on LSU to
extract urban surface water from Landsat imagery. In comparison to all of the above methods, our
LAF methods have three major advantages, in the following:

(1) The LAF method stands on the H-L-V [23] (i.e., high albedo-low albedo-vegetation) spectral
mixture analysis of urban surface reflectances, and investigates the urban surface water extraction
problem with the low albedo fraction map. Accordingly, our idea is different from above water
extraction methods, especially sub-pixel classifiers and spectral unmixing methods by Zhou [24]
and Xie [25].

(2) The LAF method implements a steady initial threshold at 1 and that significantly reduces the
work of parameter tuning in LAF. By contrast, current spectral unmixing-based methods by Zhou
and Xie could not provide a stable threshold for fraction segmentation. The water index methods
also suffer from the unstable initial threshold problem. Therefore, the LAF is easier to implement
in real-word applications than other methods, such as spectral unmixing methods and water
index methods.

(3) The LAF method obtains high extraction accuracies of urban surface water, and it significantly
improves the accuracy of sub-pixel surface water extraction when compared against MNDWI
and AWEI.

2. Test Sites and Datasets

The test sites utilized in the study are located in three representative metropolises of China: Wuhan,
Shanghai, and Guangzhou. Different surface features of the urban environments (e.g., different spatial
patterns of land covers and different urban backgrounds) of the three sites render them good candidates
for testing the proposed LAF method. The Wuhan metropolis lies in one of the fastest-growing regions
in central China, and it is becoming a significant strategic center for the rejuvenation of the Chinese
nation. Wuhan is centered at the confluence of the Yangzi River and Han River, as shown in Figure 1a.
Shanghai is a famous international metropolis, and it is known for advanced economics, shipping, and
finance. The Huangpu River in Figure 1b is very important for the health and wellbeing of people
in Shanghai. Guangzhou is an important port in China. The Pearl River in Figure 1c runs around
Guangzhou city, and is a vital source of drinking water. Figure 1 illustrates the different surface
characteristics of all three metropolises, where it can be seen that they have similar land cover types,
including built-up surfaces, tall buildings, rivers, and vegetation.

Landsat images of the three metropolises were acquired from the website of the United States
Geological Survey (USGS) (available at http://www.glovis.usgs.gov) [26], and the subsets cover the
main urban background types and surface water for extraction. The downloaded Landsat imagery
belongs to a Level-1 precision- and terrain-corrected product (L1T). The utilized Landsat images are
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free of clouds in order to avoid any negative effects from cloud. A reference image was utilized to
determine the ground truth of water pixels in Landsat images, and it greatly helped in evaluating the
accuracies of extracted surface water, at either the pixel level or sub-pixel level. The original sources
of the reference data were high spatial-resolution pan-sharpened Quickbird images from the Digital
Globe Company, and the JPEG format image at 4m spatial resolution was exported from Google
Earth Pro (available at www.google.com). We selected high spatial-resolution images (HSRI) with
acquisition times as close as possible to the Landsat images, and tried our best to ensure that the
land-cover classes of the Landsat images and the Google Earth images were the same for the same site.
Table 1 lists detailed information about the reference data and Landsat images. Geo-referencing HSRI
data with Landsat images was implemented to unify spatial references of the corresponding pixels in
both datasets. The manual co-registration was carefully undertaken with a Root Mean Square Error
(RMSE) of no more than 0.3 pixels, and 19 control points were manually selected from each image.
The “true” boundaries of urban surface water at the test sites were manually digitized on screen from
the reference data, and were then rasterized at 4 m spatial resolution.
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Table 1. Description of Landsat images and their corresponding reference data.

Test Site Acquisition Date Sensors Path Row Source

Wuhan
Landsat data 13 September 2000 TM 123 39 USGS
Reference data 21 September 2000 Google Earth ©Digital globe

Shanghai Landsat data 27 November 2002 ETM+ 118 38 USGS
Reference data 28 December 2002 Google Earth ©Digital globe

Guangzhou Landsat data 2 January 2009 TM 122 44 USGS
Reference data 16 November 2008 Google Earth ©Digital globe

3. Methodology

3.1. The Procedure of LAF Method

The LAF method explores the urban surface water extraction problem from the perspective
of linear spectral unmixing and a three-endmember H-L-V (high albedo-low albedo-vegetation)
model [23]. It extracts urban surface water coverage through threshold segmentation on the fraction
map of the low albedo endmember. The overall procedure of extracting urban surface water using
LAF is shown in Figure 2 and includes the following steps:

www.google.com
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(1) The Landsat images are preprocessed with radiometric calibration.
(2) The three-endmember H-L-V linear mixture model is implemented to analyze surface reflectances

of urban land cover types.
(3) Endmembers covering high albedo, low albedo, and vegetation are carefully selected from

Landsat images using our multiple selection scheme.
(4) The unconstrained least square techniques are implemented to unmix Landsat images and

to estimate the fractions of all three endmembers at each pixel. Fraction maps of all three
endmembers are then obtained.

(5) The binary classification is implemented to segment the fraction map of low albedo endmember,
using a given threshold t. The pixels with low albedo fractions no less than t constitute the final
surface water map of LAF.
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3.1.1. Preprocessing of Landsat Images

Radiometric calibration is used to transform the initial digital numbers (DNs) in Landsat images
into normalized exo-atmospheric reflectance. The procedure is implemented in ENVI 5.0 [27] with
the input of calibrated parameters obtained from the header file of Landsat images. Atmospheric
correction is not undertaken because previous studies have shown that the process has an unclear
influence on fraction maps when image-based endmembers are used in the LSU method [28,29].

3.1.2. Analyzing Urban Surface Reflectances Using Three-Endmember H-L-V Model

Generally, the three-endmember vegetation-impervious surface-soil (V-I-S) model is utilized for
urban landscape analysis from remote sensing data [30]. The model classifies urban land-cover classes
into fraction combinations of vegetation, impervious surfaces, and soil; and its typical application is to
extract urban vegetation [31]. The V-I-S model is, however, limited in urban surface water extraction
because the idea of a single endmember could not represent the complicated land cover types in urban
impervious surfaces. As a result, Wu and Murray (2003) separated impervious surfaces into high
albedo and low albedo surfaces, and modified the V-I-S model into a four-endmember model [32].
The difference between the four-endmember model and the three-endmember H-L-V model is whether
the model includes the soil endmember or not.
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In contrast to previous works, we implement the three-endmember H-L-V model. Previous
studies have demonstrated that the reflectance properties of land cover in urban environments can
be accurately described as linear combinations of three endmembers of high albedo, low albedo and
vegetation [33]. Moreover, the three-endmember H-L-V model avoids the misclassification of soil as
high albedo that exists in the four-endmember model. Furthermore, our preliminary experimental
results showed that the combination of the linear mixture model and H-L-V model is more suitable for
urban surface water extraction. The three-endmember H-L-V linear mixture model is represented as
follows [23]:

Ri =
3

∑
j=1

Ri,j f j + ei (1)

where Ri is the spectral reflectance in band i, Ri,j is the reflectance of endmember j in band i, f j is the
fraction of endmember j, and ei is the bounded approximation error in the model.

3.1.3. Selecting Proper Endmembers Using a Multiple Selection Scheme

The result of endmember selection closely correlates with the success of the linear mixture model
in urban surface water extraction. Moreover, a proper three-endmember H-L-V combination helps to
robustly estimate a good threshold for extracting urban surface water from the fraction map of the low
albedo endmember. In the study, we utilize a combination of different selection schemes to determine
the three appropriate H-L-V endmembers from Landsat images. Multiple selection schemes combine
the scatter plots of principal component analysis (PCA) transformation, image-based manual selection,
and endmember optimization using cross-validation. The image-based selection scheme is adopted
because of its advantages in terms of ease of operation and the same spectral response magnitude
of selected endmembers with image spectra. The multiple selection schemes are implemented in the
following procedures.

The first procedure is to implement PCA transformation to produce covariance-based principal
component (PC) rotation and normalize the eigenvalues. The PCA transformation is implemented
in ENVI 5.0 software with the input of Landsat images. For the H-L-V model, the two-dimensional
normalized eigenvalue distributions of Landsat images could quantify the partitions of reflectance
variance among all the PCs and formulate a triangular form with scatter plots of first two PCs [34].
The topology of triangular mixing space in Figure 3 is consistent with the mixing space of Landsat
images. The pixels at the vertexes of the triangular topology correspond to high albedo, low albedo
and vegetation endmembers [33]. The three vertex endmembers could accurately represent the most
important physical properties of the surface reflectance of urban land cover types.
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Meanwhile, because of the limits of spatial and spectral resolution in Landsat sensors, the Landsat
images could not discriminate the wide variety of reflectances present in the urban environments.
Accordingly, the three vertex endmembers in the triangular form might represent a variety of different
ground objects and that might adversely impact the accuracy of estimates for pixels with the three
endmember fractions. In particular, the high albedo endmember is the most compositionally variable
and the least constrained by the triangular topology. Figure 3 illustrates that a wide variety of spectra
exists near the high albedo vertex of the triangular topology of scatter plots. The fraction of the
high albedo vertex endmember does not necessarily provide an accurate estimate of the overall
albedo because of the non-linearity and dispersion of most mixing spaces near the high albedo vertex;
that is, the high albedo vertex endmember in the triangular form could not accurately represent
the wide variety of high albedo reflectances observed in the urban Landsat images. In contrast,
the vegetation and low albedo endmembers are generally well constrained in the triangular topology.
Therefore, the second procedure is to manually select endmembers from Landsat images, compare the
endmembers with the vertex endmembers of the triangular form, and optimize the selection result
via cross-validation.

The operation rules for three H-L-V endmembers via cross validation are listed in Table 2 and the
technique details are as follows:

(1) The low albedo endmember: The low-albedo endmembers correspond to deep dark shadow and
water [29]. In this study, water is the most important object. Therefore, we chose the low albedo
endmember from the deep dark water pixels, and the endmember has minimal brightness values
in the image scene via cross-validation. The low albedo endmember is easy to determine from
the image.

(2) The vegetation endmember: The vegetation usually corresponds to grass or dense agriculture.
The pixel with maximal normalized difference vegetation index (NDVI) values (dense grass
and pasture) in the image scene is chosen as the vegetation endmember, using cross-validation.
The vegetation endmember is also easily determined in the LAF method.

(3) The high albedo endmember: The high albedo endmember shows much greater sensitivity to the
selection method because it varies most greatly in amplitude within the triangular topology [29].
Therefore, we combine Landsat images with HSRI data to optimize the selection of the high
albedo endmember via cross-validation. The initial high albedo endmembers are manually
selected from building roofs, airport runways, and highway intersections in Landsat images,
with reference to corresponding land covers in the HSRI data. Next, these initial endmembers
are compared with the high-albedo vertex endmember in the scatter plots of PC1 and PC2.
The endmember located closest to the high albedo vertex of the triangular topology is finally
selected as the high albedo endmember [35].

Table 2. The operations of multiple selection schemes in three endmembers.

Endmembers Difficulty Level Key Words in Operation Candidate Sources

Low albedo Easy minimum brightness deep dark water

Vegetation Easy maximal normalized difference
vegetation index grass and pasture

High albedo Difficulty nearest to the high albedo vertex
in the triangular topology

building roofs, airport runway
and highway intersections

3.1.4. Spectral Unmixing and Binary Classification of the Low Albedo Fraction Map

Spectral unmixing is utilized to solve the three-endmember H-L-V linear mixture model in
Equation (1). Spectral unmixing was initially proposed for calculating land-cover fractions for
a pixel [36]. The least square techniques are implemented to estimate the fraction of each endmember
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at each pixel by minimizing the model errors. The techniques can be grouped into unconstrained
and constrained types. The differences between the two types are nonnegativity and sum-to-one
constraints in the fractions of each pixel [37].

In the study, we implement the unconstrained least square techniques, for two reasons. The first
is that the result of unconstrained least square techniques is only affected by the adopted model,
and the second is that our objective is to explore the relations between urban surface water and the
fraction map of low albedo endmember, and this purpose differs from current common applications
of constrained least square techniques. After spectral unmixing operation with unconstrained least
square techniques, the fractions of all three endmembers are estimated and the fraction maps are
then obtained.

From the above analysis, the low albedo spectrum dominates in the pixels of urban surface water,
and we accordingly extract them from the fraction map of the low albedo endmember. The binary map
of urban surface water is achieved by segmenting the low albedo fraction map with a given threshold
t, shown as follows:

LAF = flow−albedo ≥ t (2)

where flow−albedo is the fraction or abundance of the low albedo endmember in each pixel.
In LAF, we implement a cross-validation scheme to select an appropriate threshold. The scheme

is initialized with a manually-defined threshold, and we then interactively estimate the sub-pixel
accuracies (mentioned in Section 3.2) of urban surface water by tuning the threshold parameter from
the initial value. Finally, we select an appropriate threshold with the optimal sub-pixel extraction
accuracy that best balances over-estimation errors and under-estimation errors. It should be stressed
that a good initialization is important for the above scheme. From our trial experiments, we found
that, in the low albedo fraction map, pixels with fraction values clearly greater than 1 always belonged
to water; pixels with fraction values around 1 were boundary mixed pixels dominated by water; and
pixels with fraction values of less than 1 belonged to non-water. We also found that the pixels that
were mixed by building shadows and other ground objects had fractions of the low albedo endmember
smaller than 1. The shadows belong to non-water and their fractions do not affect the extraction result
of LAF in urban surface water. Therefore, we manually select the initial threshold of LAF as 1, and
implement the cross-validation scheme to achieve a proper binary classification map of urban surface
water. The binary map after thresholding segmentation includes water and non-water, and the image
is directly adopted as our final extraction result of urban surface without any filter operations, such as
removing isolated or partial water pixels.

3.2. Accuracy Assessment Schemes on the Per-Pixel and Sub-Pixel Levels

Considering the fact that the MNDWI and AWEI obtain a better accuracy of urban surface
water extraction than other current water extraction methods [8,9], the two methods are utilized to
make comparisons with the proposed LAF. The thresholds in the three methods were estimated via
cross-validation, and the best extraction results of urban surface water from all three methods were
adopted for the comparison.

The per-pixel accuracy and sub-pixel accuracy were estimated from the binary map to evaluate
the performance in extracting urban surface water. The per-pixel accuracy is to evaluate the overall
performance of the LAF binary classification map, with pure pixels and boundary mixed pixels of
surface water included. The ratio of spatial resolutions between the reference HSRI data and Landsat
images is 4:30, meaning that one pixel in Landsat images corresponds to about 50 HSRI pixels. Similar
to the idea expressed in [9], we regarded the pixels in Landsat imagery that consist predominantly
of water (>50% proportions, i.e., over 25 HSRI pixels) as true water pixels, and vice versa. Using the
random sampling scheme, the labels (water and non-water) of testing water pixels for overall per-pixel
accuracy evaluation was manually digitized from Landsat imagery, and then compared with their
true labels from reference data. The kappa coefficients (KC) were calculated and used to quantify the
overall extraction accuracy of all three methods.
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Different from overall per-pixel accuracy, the sub-pixel accuracy is to testify the specific
performance of all three methods in extracting water from mixed pixels, especially from boundary
pixels. The sub-pixel accuracy evaluation implemented the following four main steps.

(1) The actual water fractions of testing boundary pixels were manually estimated via the visual
overlay analysis of reference data and Landsat images. By overlaying the binary maps of extracted
surface water from all three methods (AWEI, MNDWI and LAF) with the HSRI data, the water
fraction of each boundary pixel from each method can be calculated. This was equal to the
percentages of water pixels in the total number of HSRI pixels that were fully contained within
the area of one pixel of Landsat imagery. For example, within the scene of one pixel from Landsat
imagery, if the water occupies 20 of the total 50 HSRI pixels, the water fraction of the targeted
boundary pixel is 40%. The process is repeated and the actual water fractions of all testing
boundary pixels resulting from the three methods were achieved.

(2) The testing boundary pixels were designated into six categories according to their true water
fractions. The true water fractions of all testing boundary pixels in the HSRI data can be classified
into six categories, 0–10%, 10–30%, 30–50%, 50–70%, 70–90% and 90–100%. For example, Figure 4
shows six categories of true water proportions in the testing boundary pixels of Shahu lake,
and the number of testing boundary water pixels is 106.
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(3) The estimation errors (EEs) of all three methods on each testing boundary pixel were
estimated. The EEs for each testing boundary pixels at the sub-pixel level are the summation
of over-estimation error and under-estimation error, defined according to the following two
conditions: (a) if a testing boundary pixel in the binary classification map of each method
was classified as water, its complement of the true water fraction is regarded as the sub-pixel
over-estimation error; (b) in contrast, if the pixel was classified as non-water, its true water
fraction is quantified as the under-estimation error at the sub-pixel level.

(4) The average estimation errors (AEEs) in all six categories of testing boundary pixels were
calculated and the set of AEEs with six elements for all three methods were obtained to quantify
the sub-pixel water extraction accuracy of boundary mixed pixels at different water proportions.



Remote Sens. 2017, 9, 428 10 of 15

4. Experimental Results and Analysis

4.1. Water Extraction Maps and Per-Pixel Accuracy Assessment in Overall Result

The water extraction results using the three methods of MNDWI, AWEI, and LAF at the three
test sites are illustrated in Figure 5. A visual inspection of the figure indicates that LAF results in
a better (or at least comparable) accuracy of urban surface water mapping than the AWEI and MNDWI.
For the test sites of Wuhan and Shanghai, in particular, the LAF method performs better in suppressing
non-water surfaces. Unfortunately, at the test site in Guangzhou, a visual inspection of Figure 5 tells
us that the proposed method produces noisy results, as do the other two methods.
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Table 3 lists extraction accuracies of urban surface water at the per-pixel level from the three
methods at the three test sites. For the overall per-pixel accuracy assessment, 400 testing samples
were randomly sampled from the image scene of each test sites. The results show that the KCs of
LAF outperform those of MNDWI and AWEI at the Wuhan and Shanghai test sites, whereas LAF
does not perform as well as MNDWI and AWEI at the Guangzhou test site. Therefore, from the above
observations, we can conclude that LAF achieves a better, or at least comparable, per-pixel extraction
accuracy for urban surface water than MNDWI and AWEI.

Table 3. List of extraction accuracies at the per-pixel level for the three methods at three test sites.

Water Extraction Methods
Kappa Coefficient (KC)

Wuhan Shanghai Guangzhou

LAF 0.97 0.93 0.91
AWEI 0.95 0.92 0.93

MNDWI 0.96 0.92 0.92
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4.2. Sub-Pixel Accuracy Assessment of LAF in Boundary Mixed Pixels

We also compare extraction accuracies at the sub-pixel level for the three methods. The experiment
aims to investigate the performance of LAF in extracting the water from boundary mixed pixels that
consist of mixtures of water and non-water components. Table 4 lists extraction errors of the three
methods for the boundary mixed pixels at all three test sites. For the sub-pixel accuracy assessment,
the testing samples on Wuhan, Shanghai and Guangzhou were randomly chosen along the boundary
of Shahu Lake, Huangpu River and Pearl River. The testing samples were mixed by water and concrete
pavement, vegetation and soil. The detailed information of three test sites for sub-pixel accuracy
assessment is listed in Table 5. The numbers of testing pixels on Wuhan, Shanghai and Guangzhou are
210, 198 and 201, respectively. The accuracies within each water fraction range are the average of AEEs
from three test sites.

Table 4. List of extraction errors at the sub-pixel level for the three methods with boundary mixed
pixels of all three test sites.

Water Extraction Methods
Extraction Errors of % Water in the Boundary Mixed Pixels

0–10% 10–30% 30–50% 50–70% 70–90% 90–100%

LAF 0.04 0.22 0.43 0.41 0.23 0.03
AWEI 0.04 0.30 0.49 0.47 0.34 0.03

MNDWI 0.04 0.33 0.48 0.49 0.37 0.03

Table 5. The detailed information of three test sites for sub-pixel accuracy assessment.

City Name of
Water Bodies

Center Point
Coordinate (UTM) Area (km) Characteristics of

Water Bodies Topography Climate

Wuhan Shahu lake 30◦34′04.30′ ′N,
114◦19′41.76′ ′E 3.04 Clear lake flat Subtropical wet

Shanghai Huangpu river 31◦14′33.18′ ′N,
121◦29′21.00”E 6.79 Turbid river flat Subtropical wet

Guangzhou Zhujiang river 23◦06′19.23′ ′N,
113◦14′17.30′ ′E 13.69 Turbid river flat Subtropical wet

The results are in agreement for the three methods in that boundary mixed pixels consisting of
0–10% and 90–100% water are correctly classified as non-water and water, respectively. However,
the performance of the three methods varies greatly in extracting water having proportions of 10–90%
in the boundary mixed pixels. For the 10–90% boundary pixels, AWEI and MNDWI obtain similar
extraction accuracies, with AWEI being slightly superior to MNDWI. The accuracy of LAF clearly
surpasses that of AWEI and MNDWI, and it reduces extraction errors by at least 5% in the 10–90%
proportion of the boundary pixels. Therefore, we conclude that LAF performs significantly better at
the sub-pixel level than AWEI and MNDWI.

4.3. Threshold Analysis

Section 3.1 describes that an initial threshold estimation is essential for the parameter tuning
of LAF. A good initialization reduces the computational complexity of threshold estimation in LAF,
thereby promoting the feasibility of LAF for real-word applications. This experiment therefore explores
the stability of the threshold in LAF.

Table 6 lists the parameter settings of the three water extraction methods that produces the best
extraction results in experiments 4.1 and 4.2. The standard deviation (Std) is adopted to quantify the
variation in threshold parameters of the three methods. The appropriate threshold for MNDWI at the
three test sites ranges from 0.35 to 0.515, giving the largest Std in parameter estimation. The appropriate
threshold for AWEI varies from 0.086 to 0.2, and the Std is smaller than that of MNDWI but is higher
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than that of LAF. The comparison shows that the appropriate threshold of LAF shows the smallest
variation across the three test sites, with the narrowest range from 1 to 1.08. The appropriate threshold
of LAF is close to its initial value of 1, with only slight tuning work required. Therefore, we conclude
from the above that the appropriate threshold in LAF has the smallest variation among all the three
methods at the three test sites, and the threshold value at 1 is a good and stable initial value for LAF in
extracting urban surface water.

Table 6. Stability analysis for the thresholds of all three water extraction methods.

Water Extraction Methods
Test Site Threshold Variability

Wuhan TM Shanghai ETM+ Guangzhou TM Std

LAF 1.000 1.080 1.000 0.046
AWEI 0.086 0.200 0.156 0.057

MNDWI 0.350 0.515 0.470 0.085

5. Discussion

In the above experiments, we implemented LAF to extract urban surface water from Landsat
imagery on three metropolises, Wuhan, Shanghai and Guangzhou. The extraction results were
evaluated on the aspects of per-pixel accuracy and sub-pixel accuracy and were compared with two
state-of-the-art methods, AWEI and MNDWI. All the experimental results demonstrate the superiority
of LAF to other two methods.

First, from per-pixel accuracy estimation experiment on three test sites, our LAF shows better
performance in differentiating urban surface water from other ground objects (e.g., building roofs,
roads, and vegetation), especially in the image scenes of Wuhan and Shanghai. The better per-pixel
accuracy results, in our estimation, from two main causes. The first is that the H-L-V linear mixture
model could explain reflectance features of land covers in Landsat imagery, while also avoiding
nonnegative effects from soil. The second is that multiple selection schemes maximize the divergence
of three endmembers of high albedo, low albedo and vegetation, and it guarantees three vertexes of
triangular topology in mixing space of all land covers of urban environments.

Second, with regard to sub-pixel accuracy estimation results on three test sites, our LAF behaves
better at recognizing water fractions from boundary mixed pixels. The LSU feature of our method
guarantees that it is better able to identify water fractions from boundary mixed pixels, using a fraction
threshold of low albedo. On the contrary, the AWEI and MNDWI could not avoid the large uncertainty
in boundary water pixels originating from the hard-binary classification of water and non-water at the
pixel level.

Finally, the threshold analysis explains that the LAF has a relatively more stable threshold than
other two methods. For many water extraction methods, the threshold value for binary classification
is difficult to estimate because of its data-driven nature [8]. Our LAF has the smallest variations in
the threshold on three test sites among all three methods, making the implementation of the method
simpler. It is essential to note that the different endmember selection scheme described in [38] would
also greatly affect the stability or value of the fraction threshold.

However, our work has several limitations that require further study. The first is that we could not
explain theoretical reasons for good behaviors of empirical threshold value as 1. The fraction relations
between water and other urban land covers should be carefully analyzed in further experiments
to explain the physical meanings of the recommended initial threshold. The second is that we
did not carefully investigate the water extraction problem in the presence of cloud and SLC-gaps.
Many algorithms including the multi-temporal linear regression algorithm [39] and the GNSPI
algorithm [40] have been proposed to detect the thick clouds and fill gap pixels in SLC-OFF Landsat
imagery. The combination of the above algorithms with our LAF would be a promising direction to
extend the LAF into urban water extraction of any archived Landsat images. The third is that the
H-L-V linear mixture model restricts the applications of LAF into other image scenes. It is not difficult
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to extend the LAF for the purposes of extracting urban wetlands and identifying water fractions
from mixed vegetation-water pixels. Unfortunately, the method would not directly apply to other
situations, such as open water or coastal wetlands, because the spectral features of their land covers do
not satisfy the H-L-V linear mixture model, especially the unavailability of high albedo reflectance
such as building roofs and airports. In such cases, other linear mixture models or nonlinear mixture
models might be a good addition to the proposed method. The fourth one is that the endmember
selection scheme involves too much manual operations and it might restrict the application of LAF
to too large an image scene. The automatic or intelligent scheme should be further investigated to
satisfy the demands from its complicated image scenes in massive Landsat datasets. The last one is
that most recently proposed methods including the enhanced water index (EWI) [39] and dynamic
surface water extent (DSWE) [40] have not been considered in comparisons with the LAF. Further
performance contrast with modifications of MNDWI and newly-proposed methods on more Landsat
images is essential to promote the LAF in real-word applications.

6. Conclusions

The main purpose of this study was to devise a method that improves the sub-pixel water extraction
accuracy and has a stable threshold value. Using Urban Landsat images, we presented the LAF method,
and then compared its per-pixel and sub-pixel extraction accuracies and threshold stability with those
of two state-of-the-art methods, AWEI and MNDWI, at three test sites including Wuhan, Shanghai,
and Guangzhou. The results show that LAF achieves a better sub-pixel water extraction accuracy
and reduces errors by at least 5% when compared to AWEI and MNDWI, and obtains better, or at
least comparable, extraction results at the per-pixel level than the other two methods. Moreover,
the method has the smallest variation in appropriate threshold, and the threshold at 1 is a good and
stable initialization for parameter tuning in LAF.
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