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Abstract: Structure-from-motion (SfM) photogrammetry from unmanned aerial system (UAS)
imagery is an emerging tool for repeat topographic surveying of dryland erosion. These methods
are particularly appealing due to the ability to cover large landscapes compared to field methods
and at reduced costs and finer spatial resolution compared to airborne laser scanning. Accuracy and
precision of high-resolution digital terrain models (DTMs) derived from UAS imagery have been
explored in many studies, typically by comparing image coordinates to surveyed check points or
LiDAR datasets. In addition to traditional check points, this study compared 5 cm resolution DTMs
derived from fixed-wing UAS imagery with a traditional ground-based method of measuring soil
surface change called erosion bridges. We assessed accuracy by comparing the elevation values
between DTMs and erosion bridges along thirty topographic transects each 6.1 m long. Comparisons
occurred at two points in time (June 2014, February 2015) which enabled us to assess vertical accuracy
with 3314 data points and vertical precision (i.e., repeatability) with 1657 data points. We found
strong vertical agreement (accuracy) between the methods (RMSE 2.9 and 3.2 cm in June 2014 and
February 2015, respectively) and high vertical precision for the DTMs (RMSE 2.8 cm). Our results
from comparing SfM-generated DTMs to check points, and strong agreement with erosion bridge
measurements suggests repeat UAS imagery and SfM processing could replace erosion bridges for
a more synoptic landscape assessment of shifting soil surfaces for some studies. However, while
collecting the UAS imagery and generating the SfM DTMs for this study was faster than collecting
erosion bridge measurements, technical challenges related to the need for ground control networks
and image processing requirements must be addressed before this technique could be applied
effectively to large landscapes.
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1. Introduction

Repeat topographic surveys are an important tool for studying and managing dryland ecosystems,
particularly for tracking soil erosion and gully formation [1–5]. Other applications include hydrologic
erosion modeling [6,7], formulating ecohydrologic models [8], predicting plant species occurrence via
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topographic attributes [9], and delineating watersheds at a very fine scale to improve studies of water
and energy cycling in water-limited ecosystems [10].

An emerging tool for repeat topographic surveying is structure-from-motion (SfM)
photogrammetry derived from unmanned aerial system (UAS) imagery [4,11–14]. Use of this tool
has increased dramatically due to the proliferation of low-cost and easily accessible consumer UAS,
the availability of many off-the-shelf sensors small enough to be carried aboard small aircraft [15],
and advances in computer vision and software to process imagery [16,17]. SfM differs from traditional
photogrammetry in that it can reconstruct 3-dimensional scenes based purely on a large number
(typically millions) of automatically detected ground points in many overlapping images independent
of ground references [18]. This allows it to be very flexible in terms of accepting images with
inconsistent overlap, rotation between successive images, and images from different angles (i.e.,
nadir and oblique) [19]. SfM can also handle images collected with consumer grade cameras with
unknown or unstable lens characteristics [20]. Traditional photogrammetry is less flexible in that
it requires consistent image overlap, minimal rotation between successive images, and calibrated
sensors [19]. The flexibility of SfM is ideal for UAS-based topography surveying. Scientists and
land managers now have the ability to make on-demand imagery products, often at finer spatial
and temporal resolutions along with reduced costs compared to imagery from satellite or manned
aircraft [21].

A typical product of image-based reconstructions are digital terrain models (DTMs; i.e., bare
ground). Differencing a time-series of DTMs constructed from UAS imagery enables quantification
and visualization of soil movement (i.e., erosion and deposition) in more detail and over a larger
area compared to field methods such as erosion bridges [22], erosion pins [23,24], and total station
surveying [25,26]. Additionally, high-resolution SfM DTMs can be produced at a finer resolution and
lower cost compared to airborne laser scanning [27] and can cover a larger geographic extent but with
a reduction in detail compared with terrestrial laser scanning [28].

Knowing the expected accuracy (i.e., correctly representing the terrain) and precision
(i.e., repeatability of terrain measurements) are critical aspects of using this tool effectively for repeat
topographic surveys. Past research has shown that high-resolution (<10 cm ground sampling distance)
DTMs from UAS can be created with vertical accuracy <5 cm [3,17,29–32]. Quantifying vertical
repeatability is essential to separate model error from actual surface change [26,33]. Past studies of
high-resolution DTMs have found repeatability to be on average 1.7–6 cm [13,30].

Many research papers have reported accuracy and precision of SfM DTMs by using surveyed
check points or comparison with LiDAR derived DTMs. None, however, have directly compared
the results with concurrent erosion bridges, a common field method that has been demonstrated
to effectively measure small topography changes for many natural resource applications including
livestock impacts [34], post-fire erosion [35–38], erosion rates in cultivated fields [39], and impacts
of recreational trails [40]. Though they can detect micro changes in soil surface with high precision,
erosion bridges measure linear topographic profiles usually at lengths between 1 and 10 m, making it
possible only to sample small portions of the landscape. Additionally, the choice of where to locate
erosion bridges in a study area requires a priori knowledge and anticipation of where soil movement
will occur. Unexpected consequences of the disturbance or process of interest may cause soil erosion to
occur in places not sampled by the erosion bridges. Alternatively, measuring soil surface change via
UAS photography and SfM methods provides synoptic observation of entire study areas and the ability
to spatially locate sources and sinks of sediment movement, including areas with unexpected results.

In this paper, we directly compare SfM DTMs with erosion bridge data to demonstrate that
the method of UAS-based SfM DTMs, though more technically challenging, can provide additional
benefits of increasing sampling area. Included are analyses showing the differences in accuracy and
precision that can be expected between the field and aerial methods. We demonstrate these methods in
the context of investigating erosional impacts of unpaved road networks across the landscape.



Remote Sens. 2017, 9, 437 3 of 24

The proliferation of unpaved road networks on public lands is a persistent and pressing problem
for land managers globally [41], particularly in the western USA [42,43]. These unpaved roads present
a challenge for soil conservation [44], with assessments of road erosion often relying on modelling that
is not well parameterized to highly disturbed conditions [45,46]. Many immediate and pronounced
impacts from roads and related disturbances are associated with altered erosion and hydrology [47,48]
which are not well captured by common rangeland monitoring methods (e.g., Herrick et al. [49]).
The USDA-Agricultural Research Service Jornada Experimental Range (JER) is conducting a long-term
controlled experiment called Threshold Resistance and Connectivity (TRAC) to investigate further the
effect of road networks on rangeland health. Across an 870 ha watershed, a series of unpaved roads
were constructed with a road grader and received vehicle driving treatments several times per year
which consisted of driving on the roads with a 4WD pick-up truck to simulate traffic. The soil erosion
and compaction component of the TRAC study is currently being measured with a series of erosion
bridges which sample a small portion of the experimental roads. A UAS-based DTM differencing
approach to measuring soil erosion from roads could greatly expand and improve data collection for
this study, as well as provide an important tool for land managers tasked with monitoring conditions
on unpaved road networks. Though we test this technology over a relatively small area (15 ha),
we view the results in terms of expanding the geographic extent and discuss the opportunities and
challenges of scaling-up this approach.

The objectives of this project were to: (1) create high-resolution SfM DTMs from UAS-acquired
imagery and assess their accuracy by comparing surface elevation profiles from the DTM with in situ
close-range laser measurements from erosion bridges; (2) assess precision (i.e., repeatability) of SfM
DTMs between image acquisition dates in order to quantify the level of topographic change that is
detectable; (3) conduct DTM differencing to quantify and visualize soil movement over a 9 month
time-span; and (4) assess the feasibility of applying these methods to large landscapes (>200 ha).

2. Materials and Methods

2.1. Study Area

We conducted this study at the JER north of Las Cruces, NM (32◦36′19.30′ ′N, 106◦37′12.14′ ′W;
1420 m). The JER lies on the northern end of the Chihuahuan Desert and has a semi-arid climate.
The study area received 293 mm of precipitation during the study period from June 2014 to February
2015 with more than half of the precipitation falling as the late summer monsoon rains. The TRAC
study is located on a broad alluvial fan emanating from the western flank of the San Andres Mountains.
The study area slopes gently from east to west with an average of slope of 2◦. The soil was characterized
as shallow gravelly loam (Ecological Site ID R042XB010NM). Shrubs dominated by Larrea tridentata
(Creosote), Prosopis glandulosa (Mesquite), Flourensia cernua (Tarbush), and Parthenium incanum
(Mariola) cover approximately 40–50% of the study, while an understory of grasses and forbs is
nearly non-existent.

The TRAC project has a total of 47 plots (50× 50 m) spread out over 870 ha (Figure 1). We selected
a subset of six test plots within a 15 ha strip to compare UAS-based topographic surveying with
erosion bridge measurements. The layout of the plots was chosen to be along a north-south line,
which facilitated image acquisition.

2.2. Field Measurements

As part of the TRAC project, soil surface elevation profiles were measured in June 2014 and
February 2015 along 5 linear transects in each plot using a laser range finder mounted on an erosion
bridge (Figures 2 and 3). The erosion bridge consisted of a metal beam suspended approximately 1.5 m
above the ground using tripods on each side for support. Permanent nails in the ground marked the
beginning and end of each transect and also provided a guide to set up the bridge identically each time.
A laser range finder (Leica Disto D8) was slid along the beam in a rolling carriage and the distance
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from the beam to the ground was recorded every 10 cm along the 6.1 m erosion bridge for a total of
62 measurements. The laser had footprint of ~0.1 mm. Adjustments were made to account for slight
sag in the middle of the beam. The vertical repeatability of this method was estimated to be ±2.5 mm
based on consecutive surveys without terrain change. Manufacturer reported accuracy was ±1.0 mm.
Since the primary objective for the erosion bridge measurements was measuring the terrain change,
vegetation encountered along the transects was delicately pulled aside to ensure the laser was striking
the ground.
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airspace was conducted under a Federal Aviation Administration certificate of authorization held by 
New Mexico State University Physical Science Laboratory.  

For this study, the aircraft flew on average 152 m AGL which yielded a ground sampling 
distance of ~2.7 cm and an image footprint of 156 × 104 m. The onboard sensor was a 21 megapixel 
Canon EOS 5D Mark II DSLR and a Canon EF 35 mm lens. It was mounted within the fuselage with 
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Piccolo Command Center (www.cloudcaptech.com). Both acquisitions used the same flight plan. 
Planned image forward overlap was 66% and image sidelap was 66%. The forward overlap was lower 
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to minimize shadowing. There was more shadowing, however, in the February 2015 acquisition 
because of the lower winter sun angle.  

Figure 1. This study was conducted at the USDA-Agricultural Research Service Jornada Experimental
Range outside of Las Cruces, NM. Our six test plots (within yellow box) are a subset of the threshold
resistance and connectivity (TRAC) project which is investigating the impact of roads and vehicular
traffic on dryland landscapes.

2.3. Image Acquisition

We acquired UAS imagery in June 2014 and February 2015 within a few days of the erosion
bridge measurements using an MLB BAT4 fixed-wing (Figure 2; Table 1) which weighs 59 kg and
has a 4 m wingspan. The aircraft was powered by an 110 cc 2-stroke engine and required a runway
(152 m minimum) for take-off and landing. The BAT4 has a telemetry range of over 16 km and has an
endurance of approximately five hours before refueling. These characteristics make it an ideal platform
to image large landscapes and flight tests have shown that it can image nearly 13 km2 (1300 ha) in
2.5 h at 213 m above ground level (AGL). Operation of the UAS in national and restricted airspace was
conducted under a Federal Aviation Administration certificate of authorization held by New Mexico
State University Physical Science Laboratory.

For this study, the aircraft flew on average 152 m AGL which yielded a ground sampling distance
of ~2.7 cm and an image footprint of 156 × 104 m. The onboard sensor was a 21 megapixel Canon
EOS 5D Mark II DSLR and a Canon EF 35 mm lens. It was mounted within the fuselage with a lens
hole cut on the bottom of the aircraft. The entire acquisition mission was executed autonomously
using Cloud Cap Piccolo autopilot and the mission planning and flight software Piccolo Command
Center (www.cloudcaptech.com). Both acquisitions used the same flight plan. Planned image forward
overlap was 66% and image sidelap was 66%. The forward overlap was lower than typical (~80%)
due to camera triggering speed. All images were intended to be vertical (nadir). Three parallel flight
lines were in north-south orientation and eighteen parallel flight lines were in east-west orientations
(Figure 2c) to ensure multiple views for all surfaces. For each acquisition date, the flight plan was
executed twice to ensure target coverage and image overlap in case of camera triggering problems or
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slight variations in roll, pitch, and yaw at the time of exposure. Each point on the ground was captured
on average in 20 images. Images were captured in RAW format and converted to 16-bit TIFF for image
processing. Images were taken within a few hours of solar noon to minimize shadowing. There was
more shadowing, however, in the February 2015 acquisition because of the lower winter sun angle.Remote Sens. 2017, 9, 437  5 of 24 
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Figure 2. (a) We measured surface elevation profiles using a laser range finder (inset map) attached
and slid along a 6.1 m erosion bridge; (b) We acquired high-resolution imagery using an MLB BAT4
fixed-wing unmanned aerial vehicle; (c) The flight path for the image acquisition in June 2014 and
February 2015. The yellow line is the flight path and the blue dots represent the image locations.

Repeat DTM surveys require highly accurate spatial references to ensure proper scaling, rotation,
and georeferencing of the 3D model. Though direct georeferencing with onboard GNSS and inertial
measurement units (IMU) has become common, imagery products are still generally more accurate and
precise using a network of surveyed ground control points (GCPs) [3,50]. In terms of GCP patterns,
recent literature has suggested that GCP networks should be evenly distributed [12] and generally
surround the area of interest due to DTM quality deteriorating outside of GCP envelopes [51,52].
Regarding GCP density (quantity per area), references from traditional aerial photogrammetry suggest
locating GCPs at the beginning and end of each flight line along with interior GCPs located every
3–5 images [53–55]. Some SfM studies have reported the highest accuracies with GCPs densities
similar to the traditional approach [12,30]. Beyond this density, there appears to be a saturation point
where additional GCPs offer no further improvement [56–58]. Other research has shown that GCPs
quantities can be greatly reduced with a well-defined camera model and proper weighting of tie point
and marker accuracy [59].

We surveyed 12 GCPs in each plot with a Leica TS02 total station (http://leica-geosystems.com).
Comparative analysis showed that there was no significant difference in image product quality using
3 GCPs and 12 GCPs. Accordingly, we used 3 GCPs per plot as ground referencing during SfM
processing and used the remaining 9 locations as check points (Figure 3b). Our main sources of
errors were centering the prism pole at the GCP locations and the uncertainties in angle and distance
measurements observed with the total station. Following the procedure described by Baykal et al. [60],
with a 1.0 mm centering error for the prism pole [61] and the published accuracy of the Leica TS02 total
station [62], the estimated relative positional uncertainty of the GCPs is approximately 1.5–1.7 mm.
Each plot was surveyed separately in its own local coordinate system. We then converted the local
coordinates into universal transverse Mercator (UTM) coordinate system by determining the x, y,
z position of the 3 GCPs in each plot using a Trimble GeoXH 6000 GNSS receiver. We differential
corrected the coordinates with data from a Continuously Operating Reference Station (CORS) using
the Trimble’s GPS Pathfinder Office (http://www.trimble.com/) (3D positional accuracy of 10 cm).
The local coordinates of the check points were projected into UTM using ArcGIS 10.2 (ESRI, Redlands,
CA, USA). This total station/GNSS method of referencing was done to have the accuracy of a total
station survey but in a real world coordinate system making it GIS ready for future analysis with
additional data sets. The GCP/check point targets were 17 cm diameter black plastic lids with a
5 × 5 cm white square in the center. For each flight, ten GCPs were placed on the permanent nails
that mark the ends of each erosion bridge (Figure 3b). Two additional targets were placed near the
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center of each plot, attached to PVC stakes in the ground. The same GCP/check points were used
for 2014 and 2015 imagery. Image exposure location and orientation information recorded by the
BAT4’s onboard GNSS/IMU was not used for referencing because of large positional errors due to
time synchronization problems between the camera shutter and the GNSS/IMU.

Table 1. Acquisition and processing specifications for June 2014 and February 2015 imagery.

Aircraft Bat 4 Fixed-Wing

Sensor Canon EOS 5D Mark II, 21 megapixels
Canon EF 35 mm lens

Flying height above ground level (m) ~152 AGL
Image Forward Overlap (%) 66

Image Side Overlap (%) 66
Image Ground Footprint (m) 156 × 104

Ground sampling distance (cm) ~2.7
Image Count 25–35 images per plot

Avg. Point density (points·m−2) 1444
DTM cell size (cm) 5

2.4. Image Processing

We used SfM photogrammetry software Agisoft Photoscan version 1.1.6 build 2038 (http://
www.agisoft.ru) to create 3D point clouds, digital surface models (DSMs), and orthomosaics for each
plot individually. The first step consisted of photo alignment and creation of sparse point clouds.
Agisoft Photoscan uses algorithms similar to Scale Invariant Features Transform (SIFT) [63] to search
for features that are identifiable in multiple images and through an iterative bundle adjustment
determines the location and orientation of all cameras in the block as well as calculates 3D coordinates
of the features in a sparse point cloud. Internal camera parameters were not known a priori, however,
self-calibration provided by Agisoft Photoscan was used as it has been shown to produce accuracy
results similar to pre-calibration approaches [64]. No erroneously located sparse points were detected
(e.g., sinkers and flyers) so no manual point filtering was conducted. Next, we manually identified
GCPs in 2 images for each plot which enabled Agisoft Photoscan to estimate the locations of the
GCPs in all other images based on the scene geometry. The estimated GCP locations were checked
and adjusted to the center of each GCP. Coded targets that Agisoft Photoscan can automatically
identify were experimented with but were unreliable at this image scale. We performed the linear
Helmert transformation to convert the scene’s arbitrary coordinates into UTM Zone 13, WGS84 (the
coordinates of the GCPs), then potential non-linear errors were removed by optimizing the scene
with another bundle adjustment using the GCP coordinates [65]. Within the bundle adjustment we
specified the following measurement accuracies: marker accuracy, 3 cm; marker accuracy, 0.1 pixels;
and tie point accuracy, 4 pixels. The latter two parameters were default in Agisoft Photoscan, while
the first parameter was an estimate of accuracy using the total station/GNSS workflow. The lens
parameters we optimized included focal length (f), principal point coordinates (cx, cy), radial distortion
parameters (k1, k2, k3), affinity and non-orthogonal (b1, b2), tangential distortion (p1, p2). We specified
“ultra-high” density and “mild filtering” settings for dense point cloud creation which generated an
average density of 1444 points·m−2 (Table 1, Figure 3c). A more detailed description of the SfM
workflow can be found in Snavely et al. [16], Westoby et al. [20], Smith et al. [66], and Eltner et al. [55].

In repeat topographic surveys, the presence of shrubs and other vegetation can confound our
ability to quantify soil change. Accordingly, we identified and filtered out all vegetation in the point
clouds. We used the “Classify Ground Points” tool in Agisoft Photoscan to identify ground and
non-ground points based on their topographic position compared to surrounding points. The point
cloud was first divided into a grid of equally sized cells, and the point with the lowest elevation
was identified as being ground. Additional ground points were identified based on a user specified
distance and angle from the original ground point. After testing each of the parameters we found

http://www.agisoft.ru
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the best results had a cell size of 0.75 m, a maximum angle to other ground points of 1 degree, and
maximum distance of 5 cm from the originally identified ground point. See also Cunliffe et al. [67]
for similar a methodology used to filter vegetation in a semi-arid shrubland. To have greater control
over the interpolation process (Agisoft Photoscan does not publish full methods), we exported only
the ground points into Log ASCII Standard (LAS) files, then imported them into ArcGIS 10.2 as ESRI
LASD files. We converted the point clouds to DTMs) using natural neighbor interpolation with a
spatial resolution of 5 cm. Areas where the points had been removed because they were identified as
vegetation, became gaps in the DTMs represented as “no data”. Some manual editing was necessary to
completely remove vegetation areas from the DTMs due to omission by the ground point classification
in Agisoft Photoscan. We assessed the quality of the DTMs by comparing northing, easting, and
elevation coordinates with the 9 check points in each plot. We subtracted the 2014 DTM from the 2015
DTM on a cell by cell basis to make a DTM difference image for each of the six plots. Because this was
a methodological test and because minimal erosion was expected between acquisition dates, we did
not transform the DTM difference measurements into estimates of soil volume and mass. Dense point
clouds, DSMs, and orthomosaics with the vegetation still present were also generated and exported
from Agisoft Photoscan for visualization purposes.
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with targets), we extracted elevations from the DTMs using the “interpolation line” tool available in 
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Figure 3. (a) Six 50 × 50 m test plots were chosen to compare laser range finder (erosion bridge) and
UAS-based digital terrain model (DTM) methods for representing surface topography; (b) For each
plot we measured surface elevation profiles along 5 transects using both methods. The DTMs were
reconstructed using structure-from-motion photogrammetry methods referenced with 3 ground control
points and were assessed with 9 check points; (c) Point clouds were created for each plot as an
intermediate step to build DTMs; (d) Along each transect we compared the elevations between the
erosion bridge and DTM 62 times (10 cm spacing).
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2.5. Assessing Agreement between Erosion Bridge and DTMs

Using the colored point clouds to visual identify the ends of the topographic transects (marked
with targets), we extracted elevations from the DTMs using the “interpolation line” tool available
in ArcMap 3D Analyst toolbar. The extracted profile is intended to be the exact area measured by
the erosion bridge to facilitate direct comparison between the two methods (Figure 3d). The erosion
bridge laser measurements (originally distance to ground) were converted to elevation in the same
UTM coordinate system as the DTMs by assigning the first laser measurement (nail) the same GNSS
coordinate as the GCP. The rest of the erosion bridge elevation values were calculated as a vertical
deviation from the beginning nail elevation. Using this methodology, the erosion bridge topographic
profiles were not a completely independent “check” data set and testable only for z-value elevation.
This was done deliberately to compare the photogrammetric DTM methods with erosion bridge
methods independent from the inherent inaccuracies of referencing tools such as GNSS.

Erosion bridge measurements were taken every 10 cm, while DTMs had 5 cm cell sizes. Using an
R script (R version 3.1.1.; [68], we paired a DTM height with its corresponding erosion-bridge height
every 10 cm along the transect. The remaining DTM heights that were not paired (half) were removed
from the analysis. There were a total of 62 pairs per transect and 1860 pairs across all transects in the
6 plots. Because the measurements were taken twice (June 2014, February 2015) the total number of
comparative height pairs was 3720. We removed from the analysis the height pairs corresponding to
the nails at both ends of the transects because they were used to convert the erosion bridge data to
UTM coordinates, and thus not independent. On several of the transects, shrubs were present. To
make the erosion-bridges directly comparable with the DTMs, we removed any height pairs that had
the presence of vegetation (i.e., vegetation pulled aside to laser the ground) because vegetation areas
were already removed from the DTMs. After removing height pairs influenced by vegetation and nail
pairs, we had 3314 pairs for analysis.

2.6. Assessing DTM Repeatability

A common method for quantifying repeatability is propagating accuracy error in each digital
elevation model (DEM; a generic term encompassing both DTMs and DSMs; see Lane et al. 2003 [69]).
For example, Brasington et al. [70] and Wheaton et al. [26] showed how individual errors in a DEM
can be propagated in a DEM difference as:

δuDoD =

√
(δznew)

2 + (δzold)
2, (1)

where δuDoD is the propagated error in the differenced DEM, and δznew and δzold are the individual
errors in the first and second DEM, respectively. Another method measures the height of unchanged
features during the time-series which could include natural features such as rocks or a network of
validation points [71,72]. Comparison of DEM change to change measured by the erosion bridge offers
a third method of quantifying repeatability. Deviation of the DEM change estimates from the erosion
bridge change measurements (“true change” for the purposes of this study) is an indication of the
repeatability of the DEM method. Using this method produced 1657 estimate of repeatability, far more
than the check point dataset (n = 54) or locating invariant features (e.g., rocks) in the imagery of each
plot. Because photogrammetric processing was separate for each plot, we assessed repeatability for
each plot individually.

Based on the quantified repeatability error we used a statistical threshold to separate model error
in DTM differencing from actual surface change. We used a t-distribution 95% confidence interval
where the upper and lower 2.5 percentiles (i.e., <2.5 percentile and >97.5 percentiles) were considered
to be actual surface change. Values >2.5 percentile and <97.5 percentile were discarded as model error.
This method of thresholding represents a conservative estimate of change which limits type I errors
(i.e., reporting soil movement when it did not occur). Setting a threshold level of detection should
reflect the specific application of the repeat topographic survey and the potential costs of false positives
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and false negatives. For our application, we did not want to wrongly attribute soil erosion to vehicular
driving on dirt roads if it did not actually happen.

3. Results

3.1. DTM Comparison with Check Points

We assessed the easting, northing, and elevation accuracy of the DTMs through a traditional
method of comparing image coordinates with independent check point coordinates. The easting and
northing RMSE for all plots was 1.1 cm and 1.5 cm, respectively for the June 2014 acquisition (Table 2).
The easting and northing RMSE for the February 2015 acquisition was nearly identical with RMSE of
1.1 cm and 1.1 cm, respectively. The elevation RMSE for all plots was 2.3 cm in the June 2014 acquisition
and February 2015 acquisition.

Table 2. Check point coordinates minus DTM coordinates.

Plot Acquisition
Date

Check
Points n

Mean Difference (cm) Absolute Mean Difference (cm) RMSE (cm)

Easting Northing Elevation Easting Northing Elevation Easting Northing Elevation

1
June 2014 9 −0.1 −0.9 −0.2 1.0 0.9 1.7 1.1 1.1 2.2

February 2015 9 0.0 −1.0 0.2 0.8 1.3 0.9 1.0 1.8 1.2

2
June 2014 9 −0.4 0.8 −1.0 1.0 1.1 3.0 1.7 1.7 4.0

February 2015 9 −0.5 0.2 −1.1 1.1 0.4 2.5 1.4 0.5 3.8

3
June 2014 9 −0.4 0.1 −0.2 0.9 0.7 0.9 1.1 0.9 1.2

February 2015 9 −0.6 −0.0 0.1 0.9 0.6 1.3 1.3 0.9 1.4

4
June 2014 9 0.2 0.1 0.1 0.3 0.6 1.1 0.4 0.9 1.4

February 2015 9 0.6 −0.5 1.0 0.6 0.9 1.1 0.7 1.1 1.3

5
June 2014 9 0.4 0.3 1.7 0.8 1.4 2.0 1.0 2.6 2.7

February 2015 9 −0.5 0.3 2.0 1.2 1.0 2.9 1.3 1.1 3.5

6
June 2014 9 −0.3 0.3 0.0 0.7 0.6 0.9 0.9 0.7 1.1

February 2015 9 0.1 0.2 0.1 0.6 0.8 0.4 0.8 0.9 0.5

All
June 2014 54 −0.1 0.1 0.0 0.8 0.9 1.6 1.1 1.5 2.3

February 2015 54 −0.1 −0.1 0.4 0.9 0.8 1.5 1.1 1.1 2.3

DTM precision (repeatability) between acquisition dates was determined by subtracting 2014
check point ground coordinates from 2015 check point ground coordinates. Precision RMSE was
estimated to be 1.4, 1.6, and 1.7 cm for easting, northing, and elevation, respectively (Table 3).

Table 3. DTM precision (repeatability) calculated by subtracting 2014 check point image coordinates
from 2015 check point image coordinates.

Plot Check
Points n

Mean Difference (cm) Absolute Difference (cm) RMSE (cm)

Easting Northing Elevation Easting Northing Elevation Easting Northing Elevation

1 9 −0.2 0.1 −0.5 1.0 1.2 1.4 1.2 1.7 2.0
2 9 0.0 0.6 0.1 1.5 1.0 1.1 1.9 1.5 1.4
3 9 0.1 0.1 −0.3 0.9 0.9 1.4 1.1 1.2 1.6
4 9 −0.3 0.6 −0.9 0.5 1.2 1.4 0.6 1.3 1.7
5 9 1.0 0.0 −0.3 1.7 1.5 1.6 1.8 2.3 2.1
6 9 −0.5 0.0 −0.1 0.8 0.6 0.9 1.0 0.7 1.0

All 54 0.0 0.2 −0.3 1.1 1.1 1.0 1.4 1.6 1.7

3.2. Agreement between Aerial DTMs and Erosion Bridges (Accuracy)

Comparing the topographic transects measured by the aerial DTMs and the erosion bridges
produced vertical RMSE of 2.9 cm and 3.2 cm for all plots in June 2014 and Feb. 2015, respectively
(Table 4). Except for plot 5, the DTMs in each of the plots in both 2014 and 2015 were reconstructed
with a slight systematic higher elevation on average compared with the erosion bridges. DTM and
erosion bridge elevation profiles for Plot 5 for each year along with the topographic change from
one year to the next are shown in Figure 4a (graphs for remaining plots in Appendix A).
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Figure 4. (a) Surface topographic profiles from Plot 5 measured with erosion bridges and digital 
elevation models (DSMs) reconstructed from UAS imagery. The surface heights (y-axis) are shown as 
a vertical difference from the first erosion bridge height for easier interpretation and comparison 
across graphs. The large differences between erosion bridge and DSM surface height measurements 
at the end of Transect 1 were due to the presence of vegetation. All height pairs with vegetation 
influence were not included in the accuracy and precision analyses. (b) DTM difference image for plot 
5 overlaid on UAS-based orthophotos. Blue colors represent elevation decrease (erosion) and the red 
colors represent elevation increase (deposition) from June 2014 to February 2015. Transparent areas 
are within the threshold of repeatability error as determined by the difference between the erosion 
bridge change and DTM change along the transects. The indicated deposition in the northwest corner 
of the plot is likely DTM error caused by ‘doming’ effect outside of the GCP envelope, as opposed to 
real surface change. 

Figure 4. (a) Surface topographic profiles from Plot 5 measured with erosion bridges and digital
elevation models (DSMs) reconstructed from UAS imagery. The surface heights (y-axis) are shown as a
vertical difference from the first erosion bridge height for easier interpretation and comparison across
graphs. The large differences between erosion bridge and DSM surface height measurements at the end
of Transect 1 were due to the presence of vegetation. All height pairs with vegetation influence were
not included in the accuracy and precision analyses; (b) DTM difference image for plot 5 overlaid on
UAS-based orthophotos. Blue colors represent elevation decrease (erosion) and the red colors represent
elevation increase (deposition) from June 2014 to February 2015. Transparent areas are within the
threshold of repeatability error as determined by the difference between the erosion bridge change and
DTM change along the transects. The indicated deposition in the northwest corner of the plot is likely
DTM error caused by ‘doming’ effect outside of the GCP envelope, as opposed to real surface change.
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Table 4. Erosion bridge vertical measurements minus digital terrain model measurements.

Plot Acquisition Date Sample Size n Mean Difference (cm) Absolute Mean Difference (cm) RMSE (cm)

1
June 2014 249 −2.2 2.5 2.9

February 2015 249 −1.1 1.7 2.3

2
June 2014 292 −1.2 1.6 2.1

February 2015 292 −0.9 1.9 3.0

3
June 2014 298 −2.1 2.2 2.6

February 2015 298 −0.3 1.5 2.2

4
June 2014 278 −1.7 2.6 3.4

February 2015 278 −1.7 2.5 4.8

5
June 2014 285 0.4 2.4 3.0

February 2015 285 0.7 3.1 3.7

6
June 2014 255 −2.5 2.6 3.1

February 2015 255 −1.7 2.0 2.4

All
June 2014 1657 −1.5 2.3 2.9

February 2015 1657 −0.8 2.1 3.2

3.3. DTM Repeatabilty

Across all plots the vertical repeatability of the DTMs, as measured by the difference between
erosion bridge change and DTM change, had an average RMSE of 2.8 cm (Table 5). In individual
plots, RMSE ranged from 2.2 cm to 4.4 cm. Applying the 95% CI threshold, the average vertical error
(undetectable surface change) was between −4.7 cm and 6.1 cm. Vertical surface change detectability
varied between individual plots. The lower 95th percentile threshold ranged between −2.0 cm and
−8.8 cm while the upper 95th percentile threshold ranged between 4.6 cm and 8.6 cm.

The only anomalies in the repeatability results occurred in Plot 4 where 8 measurements from
the erosion bridge showed deepening of a narrow rill that was not detected in the DTMs (Figure A4).
Therefore the difference between the erosion bridge change and DTM change at this site was much
larger than all other repeatability measures in the study. These values had a disproportionately large
effect on the threshold of this plot but were retained in the analysis to demonstrate some of the
discrepancies between the two methods of topographic measurement.

In comparison with the check point benchmark, accuracy and precision using the erosion bridge
benchmark was slightly worse. This was not altogether unexpected because the check point benchmark
was a comparison of DTMs with survey grade positioning of flat discs. The erosion bridge benchmark
method was more challenging given the range of surface roughness of the transects. In addition,
there was a small spatial mismatch in the way the terrain was measured between DTMs and erosion
bridge laser measurements. The erosion bridge laser measured a point on the ground less than a
millimeter in size while the DTM was an interpolation of 3–4 points within a 5 cm cell.

3.4. Topographic Change

Over the 9 month span between data collections there was very little soil movement. The erosion
bridge measurement showed an average positive vertical change of only 4 mm (Table 5). The DTMs
showed an average change of −2 mm between acquisitions. This indicates that there is a small but
systematic shift between the ground and imagery methods. The cause of this shift is unknown in this
case, but can easily be corrected if the offset remains stable in further investigations. Maps of DTM
differencing showed very little surface change within the area enclosed by the GCPs deep enough
to cross the threshold of true surface change (Figure 4b as example; other maps are in Appendix A).
Only a few areas within arroyos (dry water channels) experienced significant soil change. An exception
to this can be seen in the northwest corner of plot 5 where there is indication of significant soil
deposition. This is not true surface change but are instead DTMs errors that will be described in more
detail in the discussion.
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Table 5. Digital elevation model (DTM) vertical repeatability error as measured by comparing the DTM change with erosion bridge change (erosion bridge change
minus DTM change). Because structure-from-motion processing was carried out separately for each plot to create DTMs, we assessed repeatability error individually
for each plot.

Plot Sample n
Mean Erosion
Bridge Change

(cm)

Absolute Mean
Erosion Bridge

Change (cm)

Mean DTM
Change (cm)

Absolute
Mean DTM
Change (cm)

Erosion Bridge
Change Minus DTM

Change (cm)

Standard
Deviation

(cm)

Absolute Erosion
Bridge Change Minus

DTM Change (cm)

Change
Difference
RMSE (cm)

95% Confidence
Interval (cm)

Lower Upper

1 249 0.3 0.5 −0.7 1.9 1.0 2.4 2.0 2.6 −3.6 5.8
2 292 0.5 0.7 0.2 1.4 0.2 2.4 1.6 2.4 −4.4 5.0
3 298 0.8 1.0 −0.8 1.5 1.7 1.9 2.1 2.6 −2.0 5.5
4 278 −0.1 1.1 −0.1 1.9 0.0 4.4 2.3 4.4 −8.8 8.6
5 285 0.4 0.7 0.0 1.3 0.3 2.1 1.6 2.2 −3.9 4.6
6 255 0.6 0.7 −0.1 1.6 0.8 2.1 1.9 2.2 −3.4 5.0

All 1657 0.4 0.8 −0.2 1.6 0.7 2.7 1.9 2.8 −4.7 6.1
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4. Discussion

4.1. Comparison with Other Studies

The vertical accuracy of our UAS-based SfM DTMs were quite similar to other studies using
very fine spatial resolution imagery. Gonçalves and Henriques [17] had a vertical RMSE of
2.7–4 cm comparing DTMs to independent check points measured with GNSS. Lucieer et al. [29]
reported a vertical RMSE of 4.4 cm comparing DTMs to ground check points measured with GNSS.
Stöcker et al. [31] comparing DTMs to ground check points measured with a total station found RMSE
of Z coordinates to be 1.6 cm. Eltner and Schneider [32] reported a 3D RMSE of 9 mm compared to
ground check points measured with a total station and 3D RMSE of 8.7 mm compared to terrestrial laser
scanning. Glendell et al. [73] compared vertically differenced DEMs using terrestrial laser scanning
methods against UAS image reconstructions, both with 2 cm GSD. They found vertical difference
RSMEs as low as 5 and 6 cm.

Directly comparing the accuracy of different studies is generally not possible due to the multitude
of acquisition and processing specifications. Some of the differences included the original scale of the
imagery, overlap, the density of the point clouds, and the methods they used to create a benchmark
that have varying levels of inherent accuracies (i.e., GNSS, Total Station, Laser Scanning). However,
even with minor mismatches comparing accuracy between studies, it is clear from the literature
and this study that fine-scale terrain can be surveyed from UAS-based SfM to accuracies within a
few centimeters.

Repeatability of UAS-based SfM DTMs is less reported in the literature for very fine spatial
resolution image studies. Our DTMs (absolute mean difference ±1.8 cm) were quite similar to a
study by Lucieer et al. [13] who looked at static ground areas totaling 205,000 pixels and found the
absolute mean difference between two DTMs to be ±1.7 cm. Clapuyt et al. [30] created replications of
DTMs using different image sets at one point in time and found mean vertical precision to be ±6 cm.
This lower precision was possibly due to less precise GNSS coordinates of check points and sparser
point clouds, so it is not directly comparable to our study. Neugirg et al. [28] reported repeatability of
DTMs having a standard deviation of 6.2 cm which was less precise than our DTMs (2.3 cm).

4.2. Topographic Surveying for Soil Erosion

Our results from comparing SfM-generated DTMs to check points, and strong agreement with
erosion bridge measurements suggests repeat UAS imagery and SfM processing could replace
erosion bridges for a more synoptic landscape assessment of shifting soil surfaces for some studies.
For example, with soil surface DTM differencing it may be possible to view landscape-scale effects of the
TRAC driving treatments including cumulative effects downstream of the disturbance. Gillan et al. [5],
using DTM differencing to estimate soil erosion across the study area following vegetation removal
treatments in southern Utah, USA, showed that soil movement to neighboring treatments potentially
violated assumptions of treatment independence and was not adequately captured by in-situ
soil-surface sampling. The ability to map areas of soil erosion and deposition in landscapes could
help increase understanding of soil loss patterns due to road networks and potentially improve our
ability to model these dynamic processes. Owing to the difficulty in setting up and calibrating erosion
bridges, it is possible only to sample a small portion of the same landscape. Even then, it takes much
longer to set up the erosion bridges and take measurements than it does to acquire and process UAS
images of the same plots.

However, there is tradeoff between geographic extent and pixel size (i.e., spatial resolution)
for surveying soil elevation change. The ability to discern topographic change from UAS-based
SfM DTM differencing is lower than that of erosion bridge measurements, meaning SfM DTM
differencing requires a larger vertical change of soil to be detectable as it was implemented in this
study. Using our strict change threshold (95% CI), we could detect soil erosion greater than 4.7 cm and
deposition greater than 6.1 cm from UAS-based DTM differencing at this image scale. Whether this
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level of precision is suitable for studying or monitoring dryland soil erosion depends on the objective
and the cost of making Type I and Type II errors [74]. For the TRAC study, our implementation of
a strict threshold was appropriate to avoid Type I errors (i.e., falsely attributing a linkage between
vehicle driving and erosion processes). In a monitoring context, the cost of not detecting soil movement
may be great enough to warrant relaxing the threshold (i.e., accepting a lower C.I.), thereby improving
the detectability of soil movement. An approach that leverages the advantages of both the aerial and
ground methods could be workable in some situations. For example, the aerial DTM differencing
method we employed could be used to cover a large geographic extent to identify potential problem
areas at a coarse resolution. Once the areas have been identified, more precise erosion monitoring
methods (lower flying UAS; in situ measurements) could be used to more closely monitor those areas.

4.3. DTM Errors

Our calculated DTM differences showed that errors fell into two categories. The first were areas
of erroneous soil surface change in the edges or corners of some plots (e.g., Figure 4b, northwest corner
of Plot 5). This vertical error is likely due to a combination of sources. First, these errors could be
caused by slight “doming” affect as described by James and Robson [75] and Eltner and Schneider [32]
who showed that nadir-only image acquisitions coupled with SfM self-calibration can lead to poor
modeling of camera radial distortion expressed as incorrect lower elevations in the periphery of the 3D
scene. Alternatively, our observed areas of incorrect soil surface change could be due to the absence
of ground control in the scene periphery and illustrates decay of DTM accuracy outside the area
enclosed by the ground control network [51,52,58,76]. For our study plots, there does not appear to be
a consistent distance outside the enclosed area where accuracy begins to rapidly decline. Some plots
displayed increased error immediately outside enclosed area while other plots showed little DTM
difference errors for 10’s of meters. Variation amongst plots could be due to slight differences in image
overlap, accuracy of GCPs, or differences in the original photo alignment.

The second source of error in our DTM differences came from imperfect filtering of vegetation
and was expressed as large gains or losses of elevation immediately adjacent to shrubs (i.e., one or
both of the DTMs still contained vegetation and when differenced created large changes in elevation).
Vegetation filtering is still a significant challenge at this very fine scale and reduces our ability to
automate DTM difference processing. Our approach was to use the topographic position of points
in the cloud to identify ground points, however, other SfM studies have used a variety of methods
to filter vegetation with no clear consensus on a superior workflow [27,51,52,67,77]. In our semi-arid
shrubland study area, there is a distinct difference in color between the creosote/mesquite shrubs
and the bare ground. Coupling color separation with our current use of topographic position filtering
could be very successful in terms of separating vegetation from ground.

4.4. Limitations for Large Landscapes

There are two main technical constraints to currently adopting UAS-based DTM differencing
over large landscapes (>200 ha) in an operational capacity. The first challenge is the ground control
requirements. We achieved accuracy and precision RMSE < 3 cm within the envelope of 3 GCPs for
each of our 50 × 50 m plots, but expanding this methodology over the entire TRAC study area would
necessitate hundreds of GCPs to achieve this same level accuracy and precision. To make quality data
collection over large landscapes a more cost effective endeavor, GCP demand needs to be reduced or
eliminated. Fortunately, recent research is showing that direct georeferencing using onboard GNSS
differentially corrected with base station data can produce similar [78] or slightly worse [50,79] image
product accuracy compared with GCPs. More testing is needed with this technology to see if vertical
accuracy and precision RMSE < 3 cm is possible. Ground control demand may also be reduced by the
addition of oblique imagery [64,75], well-defined camera models, and proper weighting of tie point
and marker accuracy during bundle adjustments [59,80].
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Additionally, the time and computing resources required to replicate our method over the entire
TRAC study would also be prohibitive. Even with powerful desktop computers with high-end CPUs,
GPUs, and abundant RAM, SfM processing is computationally intensive and can take many days
to produce dense point clouds from a large imagery dataset. Additional research into optimization
of the number and type (i.e., nadir vs. oblique) of images for high-quality products from SfM is
needed. As we continue to collect remotely sensed data at an ever finer resolution and greater
extents, cyberinfrastructure that leverages high-performance computing [81] and distributed network
processing (i.e., cloud computing) such as Google Earth Engine (https://earthengine.google.com)
will become increasingly necessary for storing, processing, and interpreting data for natural resource
management in the age of big data.

5. Conclusions

Our results demonstrated the utility of SfM DTM differencing using UAS imagery for monitoring
changes in soil surface as an alternative to in situ measurements from traditional erosion bridges.
Accuracy of the DTMs as measured against erosion bridge was high (RMSE 2.9 cm and 3.2 cm in
2014 and 2015, respectively), and correspondence with change as measured by the erosion bridges
was also in high agreement (RMSE 2.8 cm). The technique we presented allows for a synoptic view
of soil movement which provides information on the spatial distribution of erosion and deposition
processes that was difficult and expensive to generate previously. However, while collecting the
UAS imagery and generating the SfM DTMs for this study was faster than collecting erosion bridge
measurements, technical challenges related to the need for ground control networks and image
processing requirements must be addressed before this technique could be applied effectively to
large landscapes.
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