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Abstract: This study proposes a novel method for image registration and fusion via commonly
used visible light and infrared integrated cameras mounted on medium-altitude unmanned aerial
vehicles (UAVs).The innovation of image registration lies in three aspects. First, it reveals how
complex perspective transformation can be converted to simple scale transformation and translation
transformation between two sensor images under long-distance and parallel imaging conditions.
Second, with the introduction of metadata, a scale calculation algorithm is designed according to
spatial geometry, and a coarse translation estimation algorithm is presented based on coordinate
transformation. Third, the problem of non-strictly aligned edges in precise translation estimation
is solved via edge–distance field transformation. A searching algorithm based on particle swarm
optimization is introduced to improve efficiency. Additionally, a new image fusion algorithm is
designed based on a pulse coupled neural network and nonsubsampled contourlet transform to meet
the special requirements of preserving color information, adding infrared brightness information,
improving spatial resolution, and highlighting target areas for unmanned aerial vehicle (UAV)
applications. A medium-altitude UAV is employed to collect datasets. The result is promising,
especially in applications that involve other medium-altitude or high-altitude UAVs with similar
system structures.

Keywords: image registration; image fusion; UAV; metadata; visible light and infrared
integrated camera

1. Introduction

1.1. Background

1.1.1. Medium-Altitude UAV and Multi-Sensor-Based Remote Sensing

Medium-altitude unmanned aerial vehicles (UAVs) are an important information acquisition
platform in the integrated Earth observation network [1]. UAVs offer the advantages of flexibility
and rapid response. Compared with manned aerial vehicles, medium-altitude UAVs can work in
high-risk areas to accomplish detection missions. They are also capable of flying long distances
and feature a wide detection range and an operation time that lasts longer than that of low-altitude
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UAVs. Medium-altitude UAVs play an irreplaceable role in normal observation, disaster monitoring,
and battlefield detection applications.

Visible light cameras and infrared cameras are the most commonly used imaging devices
in medium-altitude UAVs. Visible light imaging offers the advantages of intuitive impression,
rich information, and high resolution, but it is susceptible to low-visibility atmospheric conditions.
By contrast, infrared imaging is not significantly affected by atmospheric conditions, and it can identify
hidden or disguised heat source targets. Given the complementarity of these two types of cameras,
most UAVs are equipped with visible light and infrared integrated cameras.

1.1.2. Utility of Visible and Infrared Image Fusion

With the development of imaging sensors, image fusion has become a hot research topic in
image processing, pattern recognition, and computer vision. Image fusion combines different sets
of information from two or more images of a given scene acquired at different situations with one
or multiple sensors [2]. In the past decade, visible and infrared image fusion was widely used
in both military and civil applications. In the military, visible and infrared image fusion plays an
increasingly important role in UAV autonomous navigation [3], target detection [4], environment
perception [5], and military information monitoring [6]. In the civilian realm, many applications,
including national environmental protection [7], agricultural remote sensing [8], wildlife multispecies
remote sensing [9], safety surveillance [10], and saliency detection [11,12], significantly benefited from
information enhancement after visible and infrared image fusion.

1.1.3. Problems of Visible and Infrared Image Registration and Fusion for UAV Applications

Registration and fusion are two of the most crucial technologies in the applications of image
fusion mentioned.

Image registration [13] is the process of matching two or more images obtained at different times
by different sensors (imaging equipment) or under different conditions (weather, illumination, position,
and perspective); this technology has been widely used in computer vision, pattern recognition,
medical image analysis, and remote sensing image analysis. Compared with homologous image
registration, the registration of visible and infrared images involves certain difficulty and particularity.
First, the remote sensing images of the same area obtained by different sensors show different
resolutions, pixel values, spectral phases, and scene characteristics because of different imaging
mechanisms. Second, the particularity of medium-altitude UAV imaging brings some adverse effects
to image registration. Visible images may be degraded under long-distance imaging conditions because
of atmospheric effects, which could reduce the number of extracted image features. Large motion
between image frames could increase the time consumption of image search.

The purpose of image fusion is to process multi-source redundant data in space and time according
to certain algorithms, obtain more accurate and more abundant information than any single dataset,
and generate combination images with new space, spectrum, and time characteristics. Image fusion
is not only a simple combination of data, but it also emphasizes the optimization of information
to highlight useful and interesting information and eliminate or suppress irrelevant information.
Despite the availability of many image fusion algorithms, improving the resulting image resolution
and enhancing the saliency of interesting areas in images remain problematic.

1.2. Related Work

1.2.1. Image Registration

Popular registration methods usually depend on image information. These methods can be
divided into the following two categories according to various similarity measures: intensity-based
methods and feature-based methods. Intensity-based methods include gray information-based
methods and transform domain-based methods.
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Gray information-based methods measure similarity using the gray statistical information of an
image itself. These algorithms are convenient to implement, but the application scope is narrow, and the
computation is significantly large. The correlation method can match input images with similar scale
and gray information based on gray information [14,15]. A novel and robust statistic as a similarity
measure for robust image registration was proposed in [14]. The statistic is called the increment sign
correlation because it is based on the average evaluation of the incremental tendency of brightness
in adjacent pixels. Tsin and Kanade [15] extended the correlation technique to point set registration
using a method called kernel correlation. Another classical registration algorithm is based on mutual
information. Mutual information is obtained by calculating the entropy of two variables and their
joint entropy, which can be used in image registration. On the basis of traditional mutual information
registration, Zhuang et al. [16] proposed a novel hybrid algorithm that combines the particle swarm
optimization (PSO) algorithm and Powell search method to obtain improved performance in terms
of time and precision. In [17], a novel infrared and visual image registration method based on phase
grouping and mutual information of gradient orientation was presented. The visible and infrared
registration method proposed in [18] combines a bilateral filter and cross-cumulative residual entropy.

Image registration methods based on the transform domain mostly use Fourier transform.
They are limited by the invariance of the Fourier transform, which is only suitable for the images
of corresponding definitions (such as rotation, translation, etc.) in Fourier transform. Pohitand
Sharma [19] developed an algorithm based on Fourier slice theorem to measure the simultaneous
rotation and translation of an object in a 2D plane. Niu H. et al. [20] proposed a novel method based on
the combination of fractional Fourier transform (FRFT) and a conventional phase correlation technique.
Compared with conventional fast Fourier transform-based methods, the proposed method employs
called FRFT contains both spatial and frequency information. Li, Zhang, and Hu [21] proposed a
registration scheme for multispectral systems using phase correlation and scale invariant feature
matching. This scheme uses phase correlation method to calculate the parameters of a coarse-offset
relationship between different band images and then detects the scale invariant feature transform
(SIFT) points for image matching. In addition to the Fourier transform, a uniform space was used in a
new registration method for non-rigid images proposed in [22]. The key point is normalized mapping,
which transforms any image into an intermediate space. Under a uniform space, the anatomical feature
points of different images are matched via rotation and scaling.

Feature-based methods are the most common category in image registration. These methods
depend on image points [23–26], line segments [27,28], regions [29], and other features [30], and they
show a wide range of applications. SIFT [23,24] is one of the most widely used features with satisfactory
performance. Based on SIFT, several studies [25] conducted improved, extended, and in-depth research
on visible and infrared image registration. An image registration method based on speeded up robust
features was proposed in view of the slow speed of SIFT [26]. In [27], a new general registration method
for images of varying nature was presented. Edge images are processed to extract straight linear
segments, which are then grouped to form triangles. To solve the feature matching problem, wherein
the interest points extracted from both images are not always identical, Han et al. [28] emphasized the
geometric structure alignment of features (lines) instead of focusing on descriptor-based individual
feature matching. In [29], Liu et al. proposed an edge-enhanced, maximally stable extremal region
method in multi-spectral image registration. An image registration method based on visually salient
(VS) features was introduced [30]. A VS feature detector based on a modified visual attention model
was presented to extract VS points. This detector combines the information of infrared images and its
negative image to overcome the contrast reverse problem between visible and infrared images, thereby
facilitating the search for corresponding points on visible/infrared images.

Other new methods emerged in addition to these three methods, and they include diffusion
map-based method [31], alignment metric-based method [32], hybrid image feature-based method [33],
nonsubsampled contourlet transform (NSCT) and gradient mirroring-based method [34], and the
random projection and sparse representation-based method [35]. Some of these studies achieved good
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results in visible and infrared image registration and they provide new ideas to solve the problem of
multimodal image registration.

These studies achieved great successes in the area of image registration. However, most of
them are based only on image information and attempt to establish correspondence between visible
and infrared images, thereby establishing matching transformation between the two images. In fact,
they explore two vital issues of homonymy feature detection and feature matching. Given the different
spectra and imaging mechanisms, homonymy feature detection is a difficult problem for multimodal
images. From the aerial perspective, the transformation between two sets of image features is required
to meet perspective invariance, which increases the difficulty of image feature matching.

For UAV applications, image registration methods still depend on image information despite the
rapid development of visible and infrared sensors. Rich metadata from imaging sensors and other
equipment of UAV systems are insufficiently exploited.

1.2.2. Image Fusion

Image fusion can be conducted at three different levels, namely, the pixel layer, feature layer,
and decision level [36]. This study mainly explores pixel layer-based fusion methods.

Image fusion methods based on pixel levels are traditionally divided into spatial domain
methods and transform domain methods. Spatial domain-based methods operate directly on
the gray values of images; they mainly include the gray weighted method, principal component
analysis (PCA) method [37], color mapping method [38], contrast or gray adjustment method,
Markov random field method [39], Bayesian optimization method [40], double modal neural network
method [41], and pulse coupled neural network (PCNN) method [42]. In the transform domain
fusion, the images should be transformed into the transform domain space before the fusion of the
coefficients is conducted. This type of methods mainly include the Laplace pyramid transform-based
method [43], wavelet transform-based method [44], ridgelet transform-based method [45], contourlet
transform-based method [46], NSCT-based method [47], compressed sensing-based method [48],
and sparse representation-based method [49].

In recent years, several scholars introduced effective methods for multi-modality image fusion.
Zhang et al. [50] proposed a systematic review of sparse representation-based multi-sensor image
fusion literature, which highlighted the pros and cons of each category of approaches. Han et al. [51]
presented a saliency-aware fusion algorithm for integrating infrared and visible light images (or videos)
to enhance the visualization of the latter. The algorithm involves saliency detection followed by biased
fusion. The goal of saliency detection is to generate a saliency map for the infrared image to highlight
the co-occurrence of high brightness values and motion. Markov random fields are used to combine
these two sources of information. Liu et al. [52] introduced a novel method to fuse infrared and visible
light images based on region segmentation. Region segmentation is used to determine important
regions and background information in input images.

For UAV applications, visible light sensors can capture relatively abundant spectral information
with clear texture and high spatial resolution, but in poor light conditions, image quality declines
significantly. By contrast, infrared sensors can penetrate smoke and fog and perform effective detection
under poor light conditions; however, the obtained image shows low contrast, fuzzy scene, and poor
details. Based on the requirements of UAV applications, the fusion of visible and infrared images need
to combine the two types of image feature data. This method can obtain a high spatial resolution of
scene information and interesting target areas can be highlighted.

1.3. Present Work

This study aims to develop a method of visible and infrared image registration and fusion for
medium-altitude UAV applications. The research scope is applicable to widely used visible light and
infrared integrated cameras, which include two aspects of registration and fusion.
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In image registration, our method attempts to solve the problem from the UAV system level
instead of using image information alone. Three main problems are studied. The first problem is
the transformation between two images under long distance aerial imaging with visible light and
infrared integrated cameras. In addition to image information, the second problem is the use of the
rich metadata of UAV systems to estimate the transformation between visible and infrared images.
The third problem is the detection and matching of homonymy features in multimodal images to
obtain precise image registration with the aid of metadata.

Based on image registration, image fusion for UAV applications should not only obtain high
spatial resolution and extensive scene information and highlight interesting target areas. Thus, a new
pixel layer-based image fusion method using PCNN and NSCT is examined in this study.

2. Methodology

2.1. UAV System with a Visible Light and Infrared Integrated Camera

In this study, we employ a medium-altitude UAV, which is used in earthquake emergency and
rescue to collect images of disaster areas effectively and accurately with the aid of imaging devices
(Figure 1). The specific parameters are described in Table 1.
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Figure 1. UAV system for earthquake emergency and rescue including: (1) unmanned aerial vehicle
(UAV); (2) ground control system; (3) information processing center; and (4) launcher.

Table 1. Main parameters of employed medium-altitude UAV.

Item Description

Wing Span 4.0 m
Length 1.85 m
Height 0.7 m
Service Ceiling 5000 m
Maximum Payload 5 kg
Maximum Takeoff Weight 35 kg
Flight Speed 80–140 km h−1

Control Radius 60 km
Endurance 5 h
ImagingDevice VisibleLight and Infrared
Control Mode Remote, Program or Autonomous
Takeoff Mode Catapulted Launching
Recovery Parachute
Engine Piston Engine
Navigation Mode BD2/GPS and INS
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A visible light and infrared integrated camera platform is mounted on the front belly of the UAV,
as shown in Figure 2. The two optical axes of the visible and infrared imaging sensors are parallel.
The visible image resolution is 1392 × 1040, and the infrared image resolution is 640 × 512. The UAV
features three degrees of freedom (DOF), and the imaging device features two DOF relative to the
UAV body. Equipped with GPS (Global Position System), INS (Inertial Navigation System), and an
altimeter, the UAV can measure position and orientation.
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Figure 2. UAV airborne visible light and infrared integrated camera platform with two degrees
of freedom.

These types of visible light and infrared integrated cameras have been widely used for medium-
altitude UAVs. Therefore, our research shows extensive application potential and practical value.

2.2. Scheme of Visibleand Infrared Image Registration and Fusion

2.2.1. Long-Distance Integrated Parallel Vision

According to the visible light and infrared integrated camera of a medium-altitude UAV, this study
attempts to reveal the principle of integrated parallel vision. Most medium-altitude UAV systems
are mounted with visible light and infrared integrated cameras, which integrate two types of sensors,
as shown in Figure 2. In the integrated structure, the optical axes of the visible sensor and infrared
sensor are parallel to each other, and the imaging model can be approximated as a pinhole model [53]
under the condition of long-distance imaging over thousands of meters.

Figure 3 shows that the image planes of the two sensors are parallel to each other and the
two optical axes are also parallel. With camera rotation, the two sensors always point in the same
direction and they have a common field of view (FOV), which is reflected as an overlapping area in
the two images. In aerial images, this transformation between two image planes should be described
using a perspective transformation. However, under long-distance imaging conditions, only scale
transformation and translation transformation exist between the visible and infrared images obtained
from the integrated camera at the same moment.
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Figure 3. Visible light and infrared integrated camera, in which the two imaging axes are parallel to
each other.

The assumption is that the visible and infrared image planes are parallel to the ground, similar to
the imaging relationship principle. Line agbgcgdg represents the FOV of the two sensors, and line bgcg

is the common FOV. fv and fi are the focal lengths of the two sensors. Ov and Oi are the two foci. Da is
the distance between two imaging axes. Dvg and Dig denote the distances from the image plane to
the ground. Based on the pinhole imaging principle, Equations (1) and (2) are obtained according to
triangle similarity.

bgcg

cvbv
=

Dvg − fv

fv
(1)

bgcg

cibi
=

Dig − fi

fi
(2)

Dvg and Dig are approximately equal under long-distance imaging conditions. Dg could be
introduced to represent the distance from the image plane to the ground in Equation (3).

cibi

cvbv
=

Dg − fv

fv
× fi

Dg − fi
(3)

Then, Equation (4) can be inferred as{
cibi = kcvbv

k =
Dg− fv
Dg− fi

× fi
fv

(4)

where k is a constant. This equation proves that the overlapping regions of cibi and cvbv have the same
direction and scale size. Hence, only translation transformation and scale transformation exist between
the two image planes.

According to the above analysis, a complex perspective transformation of image registration could
be converted to scale and translation transformation under long-distance integrated parallel vision.
This principle is applicable to all of the visible light and infrared integrated cameras of medium-altitude
UAVs. This equation breaks the conventional problem of perspective transformation through a direct
solution via image feature detection and matching, which is difficult in most cases and sometimes
impossible due to the different imaging mechanisms of multimodal images.
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2.2.2. Visibleand Infrared Image Registration

According to the long-distance integrated parallel vision in Section 2.2.1, only scale
transformationand translation transformation exist between the visible image and infrared image.
The transformation from the infrared image to the visible image can be expressed as Equation (5){

Iv = MIi

M = MTMS
(5)

where Iv denotes a visible image and Ii denotes an infrared image. M is the transformation matrix
from the infrared image to the visible image; it is composed of two parts, namely, the scale matrix MS

and translation matrix MT, which are defined in Equations (6) and (7).

MS =

 sx 0 0
0 sy 0
0 0 1

 (6)

MT =

 1 0 tx

0 1 ty

0 0 1

 (7)

where sx, sy, tx, and ty are transformation parameters. The translation matrix MT is solved in two steps
of Equation (8) to improve efficiency and accuracy.

MT = MTpMTc (8)

where MTc is the coarse registration matrix from the visible image to the infrared image based on
metadata and MTp is the precise registration matrix based on the image matching method.

Accordingly, the problem of visible and infrared image registration can be decomposed into scale
calculation, coarse translation estimation, and precise translation estimation. The overall solution
process is shown in Figure 4.
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Figure 4. Process of visible and infrared image registration, including scale calculation, coarse
translation estimation, and precise translation estimation.

Scale calculation is based on spatial geometry using pixel size and the focal length of two sensors.
Translation calculation is divided into metadata-based coarse translation estimation and image-based
precise translation estimation. In coarse translation estimation, the transformation from the image
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plane to the ground plane is established according to the theory of photogrammetry and coordinate
transformation. We then attempt to detect the same name points of two images in the ground coordinate
system through geographical information and obtain the translation from the infrared image center to
the visible image center. Precise translation estimation is based on image features. Edge features are
selected for good structure expression in multimodal images to ensure the accuracy and computation
efficiency in registration.

2.2.3. Visible and Infrared Image Fusion

To meet the four requirements of UAV image fusion, namely, preserving color information, adding
infrared brightness information, improving spatial resolution, and highlighting target areas, this study
presents a new image fusion method based on NSCT and PCNN. The main features of the method
include the following:

1. The IHS transform is used to extract H and S to preserve the color information, and the NSCT
multi-scale decomposition is designed to resolve the declining resolution of fusion images caused
by the direct substitution of the I channel.

2. The lowpass sub-band of the infrared image obtained via NSCT decomposition is processed by
gray stretch to enhance the contrast between the target and the background and highlight the
interesting areas.

3. In view of the PCNN neuron with synchronous pulse and global coupling characteristics, which
can realize automatic information transmission and fusion, an algorithm of visible and infrared
bandpass sub-band fusion-based PCNN model is proposed.

The process of visible and infrared image fusion based on PCNN and NSCT is shown in Figure 5.
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Figure 5. Process of visible and infrared image fusion based on PCNN and NSCT.

The fusion algorithm is implemented in seven steps: (1) IHS transform of visible image; (2) NSCT
transform of infrared image and I channel of visible image; (3) enhancement of lowpass subband of
infrared image; (4) lowpass subband fusion; (5) bandpass subband fusion; (6) NSCT inverse transform
using fusion lowpass subband and fusion bandpass subband; and (7) IHS inverse transform using
H channel, S channel, and new I channel.

2.3. Metadata-Based Scale Calculation

2.3.1. Metadata

Metadata represents a type of telemetry data produced simultaneously with images in a UAV
system. The most useful parameters are listed in Table 2. The parameter of terrain height is
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acquired from the geographic information system installed in a ground or airborne computer. Camera
installation translations are measured with special equipment before flight. Other parameters come
from airborne position and orientation sensors, such as GPS, INS, and altimeter.

Table 2. Useful metadata.

Name Notation Source Description Accuracy

Longitude L GPS Unit: ◦ 2.5 m
Latitude B GPS Unit: ◦ 2.5 m
Altitude Ha Altimeter Unit: m 0.1 m

Terrain Height Hg GIS Unit: m 1.0 m
Vehicle Heading hV INS Unit: ◦ 1◦

Vehicle Roll rV INS Unit: ◦ 0.2◦

Vehicle Pitch pV INS Unit: ◦ 0.2◦

Camera Installation Translation tx
C, ty

C, tz
C Measuring Equipment Unit: m 0.01 m

Camera Pan pC Camera Unit: ◦ 0.2◦

Camera Tilt tC Camera Unit: ◦ 0.2◦

Resolution u× v Camera u: Image Row
v: Image Column —

Focal Length f Camera Unit: m —
Pixel Size s Camera Unit: m —

2.3.2. Spatial Geometry-Based Scale Calculation

For image matching, one image should be scaled to the other. According to spatial geometry,
the scale transformation MS is only related to the pixel size and focal length, which can be expressed
as Equation (9)

MS =


si
sv
× fv

fi
0 0

0 si
sv
× fv

fi
0

0 0 1

 (9)

where si and sv denote the pixel sizes of the infrared sensor and visible light sensor, respectively;
and fi and fv represent the two focal lengths. Using MS, the infrared image Ii(xi, yi) could be
transformed to the scale-transformed image IiS(xiS, yiS), which is on the same plane of the visible
image Iv(xv, yv), by employing Equation (10)

IiS = MS Ii (10)

2.4. Metadata-Based Coarse Translation Estimation

Based on the theory of coordinate transformation [54,55], this section proposes a method for
estimating the transformation between the visible image and the infrared image using image metadata.
This estimation is coarse, but it could eliminate the global motion between the frames, reduce the
matching range of image registration, and greatly improve the efficiency.

2.4.1. Five Coordinate Systems

Coordinate transformation is the key aspect in the whole process of coarse translation estimation.
The following five coordinate systems are used as basis, as shown in Figure 6.
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• Image Coordinate System (ICS) OI − XIYIZI

ICS is defined as a rectangular coordinate system, which is related to pixels. The top left corner of
the image is considered the coordinate system origin. The values of xI, yI are related to the physical
size of the row u and column v of the image. The relationship is established by pixel size s. According
to different calculation modes, the value of zI could be set as the focal length of camera f or −f.

• Camera Coordinate System (CCS) OC − XCYCZC

CCS is the image coordinate system represented by physical units with respect to the center of
the image as the origin of the coordinate system, in which axis XC and axis YC are parallel to axis XI

and the axis YI. Axis ZC is upward along the optical axis direction. In this system, the unit is generally
in meters.

• Plane Coordinate System (PCS) OP − XPYPZP

The origin of the PCS is the center of the GPS device. In PCS, the direction of the axis XP is
positive when it points to the head of the plane, axis YP is perpendicular to axis Xp on the body plane,
and ZP is positive when it points upward.

• North–East–Up Coordinate System (NCS) ON − XNYNZN

The origin of the NCS is coincident with the origin of the PCS. The direction of axis XN is positive
when it points north, the direction of axis YN is positive when it points to the east, and axis ZN

points up.

• Ground Coordinate System (GCS) OG − XGYGZG

The Gauss–Kruger surface projection is used in the GCS. The coordinate system (xG, yG) is the
plane rectangular coordinate system in which national mapping involves the use of Gauss–Kruger
3
◦

or 6
◦

to project and zG is the absolute altitude. The system consists of a rectangular space and a
left-handed coordinate system.
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2.4.2. Metadata-Based Coordinate Transformation

Based on the five coordinate systems, the transformation from image II in the ICS to
image IG in the GCS should be implemented according to the coordinate system transformation.
The process is as follows: ICS → CCS → PCS → NCS → GCS. The transformations between
the above coordinate systems present translations and rotations, which can be expressed as
Equations (11) and (12), respectively.

T =

 1 0 Tx

0 1 Ty

0 0 1

 (11)

R =

 cos(γ) − sin(γ) 0
sin(γ) cos(γ) 0

0 0 1


 cos(β) 0 sin(β)

0 1 0
− sin(β) 0 cos(β)


 1 0 0

0 cos(α) − sin(α)
0 sin(α) cos(α)

 (12)

where Tx and Ty are translation parameters; and α, β, and γ are the three rotation parameters of the X,
Y, and Z axes.

The coordinate transformations in our UAV system are listed in Table 3. They can be calculated
with Equations (11) and (12) using relevant metadata.

Table 3. Coordinate transformations and relevant metadata.

Transformation Notation Description Relevant Metadata

ICS to CCS
RC

I Direction rotation of coordinate axis None
TC

I Translation of coordinate system center u, v, s

CCS to PCS
TP

C Translation of installation error tx
C, ty

C, tz
C

RP
C Rotation of two angles pC,tC

PCS to NCS RN
P Rotation of three angles hV, rV, pV

NCS to GCS TG
N Translation of coordinate system center L, B, Ha, Hg

Assuming that any ground point in the ICS, NCS, and GCS could be denoted as (xI, yI, zI),
(xN, yN, zN), and (xG, yG, zG), respectively, and the imaging center O in the ICS, NCS, and GCS are
denoted as (xO

I , yO
I , zO

I ), (xO
N, yO

N, zO
N), and (xO

G , yO
G, zO

G), respectively, the values can be computed via
coordinate transformation. Given that the NCS is parallel to the GCS, we can obtain the following
formula using the collinear equation according to the central projection model shown in Equation (13). xN − xO

N
yN − yO

N
zN − zO

N

 =
1
λ

 xG − xO
G

yG − yO
G

zG − zO
G

 (13)

Then, we can obtain any point transformation from the ICS to the GCS via Equations (14) and (15). xG

yG

zG

 = λMN
I


 xI

yI

zI

−
 xO

I
yO

I
zO

I


+ MG

I

 xO
I

yO
I

zO
I

 (14)

fT(XI) =
{

XG

∣∣∣XG = λMN
I

(
XI − XO

I

)
+ MG

I XO
I

}
(15)

where MN
I = RN

P RP
CTP

CTC
I RC

I , MG
I = TG

NRN
P RP

CTP
CTC

I RC
I , and ZI = − f . λ is a coefficient and could be

eliminated during computation. fT represents the transformation from image II in the ICS to image IG

in the GCS.
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2.4.3. Coordinate Transformation-Based Coarse Translation Estimation

Given the same mode of center projection, the coordinate transformation is applicable to both
the visible image and infrared image. According to the inverse process of Equation (16), we can
conveniently obtain the corresponding pixel positions in the visible image and infrared image of
any point in the GCS. The overlapping image of the two sensors in the GCS could be denoted as
Iiv
G (xiv

G , yiv
G ), and the corresponding visible image and infrared image in the ICS are denoted as Iv

I (xv
I , yv

I )

and Ii
I(xi

I, yi
I), respectively. The following equation could then be established as Equation (16):{

Iv
I (xv

I , yv
I ) = fTv

−1(Iiv
G (xiv

G , yiv
G ))

Ii
I(xi

I, yi
I) = fTi

−1(Iiv
G (xiv

G , yiv
G ))

(16)

where fTv
−1 and fTi

−1 represent the transform from the GCS to the ICS of the two sensors; they show
different expressions because of the different parameters of the two sensors. Accordingly, the coarse
translation estimation MTc from the scale-transformed infrared image to the visible image can be
calculated using Equation (17).

MTc =

 1 0 xv
I − xi

I
0 1 yv

I − yi
I

0 0 1

 (17)

Based on the scale calculation in Section 2.3.2, MTc can be considered as the translation from the center
of the infrared scale-transformed image IiS

I (xi
I, yi

I) to the center of the original visible image Iv
I (x

v
I , yv

I ).

2.5. Image-Based Precise Translation Estimation

2.5.1. Edge Detection of Visible and Infrared Images

According to current studies, line and edge are robust features for the good representation of scene
structure information, and they are widely applied to scene registration and modeling. As described
in a study on video analysis [56], line features play an important role in fast 3D camera modeling.
In the present study, edge features are used in visible and infrared image registration. The Canny
operator [57] is one of the most popular edge detection algorithms. As the scene and illumination
of visible and infrared images change frequently, the high and low thresholds of the Canny operator
often change thereby leading to poor self-adaptation. In many cases, the conventional Canny operator
cannot obtain a satisfying detection result. In the present work, a self-adaptive threshold Canny
operator is used to detect enough real edges and avoid disconnected or false edges in detection [58].

2.5.2. Edge Distance Field Transformation of Visible Image

As a result of different imaging mechanisms, the edge features of visible and infrared images
show different characteristics. In the visible image, the edges appear relatively smooth, complete,
and less noisy. In the infrared image, the edges appear to be incomplete, rough, and noisy, as shown in
Figure 7. This characteristic indicates that the edges of the visible and infrared images are roughly the
same. However, some details are slightly biased, and they could be defined as the non-strictly aligned
characteristics of edges.
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To adapt to the non-strictly aligned characteristics of edges, this study proposes a new registration
method based on a Gaussian distance field. This method can extend the edge range with a certain
weight and convert the conventional edge-to-edge registration to the edge-to-field registration, which is
effective for non-strict matching.

Using the edge detection algorithm of Section 2.4.1, we can extract the edge feature image Ive

from the original visible image Iv, with the edge pixel value being 255 and the non-edge pixel value
being 0. In the edge feature image, the distance transformation of a point is defined as the distance
from the nearest edge point to the point itself, as shown in Equation (18).

D(p) = min
e

(d(p, pe)) (18)

where d(p, pe) represents the distance between two points of p in the distance field map of the visible
image and pe in the visible edge image Ive. Given that the points away from the edge exert little effect
on edge registration, distance transformation should only be performed in an edge-centered band
region. Specifically, the band threshold is set to R, and the distance transformation values of all pixels
larger than R are set to R + 1 via Equation (19).

D(p) =

{
R + 1 D(p) > R
D(p) D(p) ≤ R

(19)

In image matching, D(p) can be used to measure the similarity of the point in the infrared image
and the point in the visible image. A small value equates to great matching probability, which could
be expressed with a Gaussian model shown in Equation (20):

f(D(p)) =
1√
2πσ

e−
D2(p)

2σ2 (20)

where f(D(p)) represents the matching probability. Standard deviation is set to σ = R/3. In this paper,
R = 10, which could be different in specific situations. Based on Equation (20), the distance field map
Ivef of the visible image is established, as shown in Figure 8.Remote Sens. 2017, 9, 441  15 of 29 
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2.5.3. Non-Strict Registration Based on the Edge Distance Field

Similarity for Registration

Assuming that the template image to be registered Iiet is extracted from the infrared edge image Iie,
then the similarity between Iiet and the corresponding template image Iveft from the visible distance
field map Ivef can be expressed using Equation (21):

S = ∑
∫ R

D(p)
f(D(p))d(D(p)) (21)

where p(x, y) is any point in Iiet, and f(D(p)) is the function of the distance field transformation [59].

Infrared Template Image Extraction

Given that the edge distribution of the infrared image is unknown, the infrared template
image Iiet should be automatically extracted for matching. The position of Iiet can be calculated
using Equation (22): {

xiet = ∑ x/N
yiet = ∑ y/N

(22)

where N is the number of edge pixels in the infrared edge map Iie and (x, y) is any edge point.
As shown in Figure 9, the width and height of Iiet are defined as w and h, respectively. On the

x-axis, the edge pixels of the interval [xiet − 0.5w, xiet + 0.5w] occupy a certain proportion of the total
pixels of Iie. The edge pixels of the interval [yiet − 0.5h, yiet + 0.5h] account for the same proportion on
the y-axis.
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Searching Algorithm Based on Particle Swarm Optimization

As shown in Figure 9, a searching algorithm is used to find the best matching position in the
distance field map of visible edge Ivef according to the similarity of the template image Iiet and
the template image Iveft extracted from Ivef. The time-consuming performance of the algorithm
relative to conventional window searching should be improved, and the occasional accuracy deviation
of the metadata attributed to the large motion of the UAV body or camera should be addressed.
A novel searching algorithm with a time-varying inertia weight is proposed based on particle swarm
optimization (PSO) [60,61].

PSO is a relatively new population-based evolutionary computation technique. This approach
uses M particles to construct a group of particles and search for the optimal solution via iteration in the
D dimensional space. Each particle comprises several parameters, including current position, velocity,
and the best position found by the particles. For a D dimensional search space, these parameters are
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represented with D dimensional vectors. The position and velocity of the k particle are presented in
Equation (23): {

xk = (xk1, xk2, ..., xkD)

vk = (vk1, vk2, ..., vkD)
(23)

At the n iteration step, the position and velocity of particle i are updated according to Equation (24).{
xi(n) = xi(n− 1) + vi(n)

vk(n) = ωvk(n− 1) + c1r1(pi − xi(n− 1)) + c2r2(pg − xi(n− 1))
(24)

where ω is the inertia weight; r1 and r2 are two distinct random values between 0 and 1; c1 and c2 are
the acceleration constants known as cognitive and social scaling parameters, respectively; pi is the
best previous position of the particle itself; and pg denotes the best previous position of all particles of
the swarm. A large value of ω facilitates global exploration with increased diversity, whereas a small
value promotes local exploitation [62].

In terms of image registration, xk(xk1, xk2) is the center of image Iveft, and pg is the searching

result serving as the best matching position of image Iiet and image Iveft. As a result of the complex
motion of medium-altitude UAVs and cameras, the translational motion between the visible image and
the infrared image presents a certain vibration, which requires the search algorithm to automatically
adjust the inertia weight ω. A time-varying ω is then proposed in Equation (25):

ω(t) = ω0 + rω1 + (
∣∣xg1(t− 1)− xg1(t− 2)

∣∣+∣∣xg2(t− 1)− xg2(t− 2)
∣∣)/(4uv + 4vv) (25)

where t represents the time of image capture. The first item ω0 is the constant inertia weight, which
denotes the confirmed global and local searching ability. The second item rω1 is the stochastic
inertia weight. This item could allow the algorithm to jump out of local optimization to maintain
diversity and global exploration; r is a distinct random value between 0 and 1. The third item is
the motion adaptive inertia weight to balance global searching and local searching according to the
translation motion between the visible image and the infrared image. pt−1

g (xg1(t− 1), xg2(t− 1)) and
pt−2

g (xg1(t− 2), xg2(t− 2)) are the two best previous positions of all particles of the swarm at moments
t − 1 and t − 2, respectively. uv and vv are the row and column of the visible image, respectively.
In this study, ω0 = 0.5, and ω1 = 0.2.

As the result of the searching algorithm, pt
g(xg1(t), xg2(t)) is the best position at which the

similarity of image Iiet and image Iveft is the highest. The precise translation from scale and the coarse
translation-transformed infrared image to the visible image can then be expressed as Equation (26).

MTp =

 1 0 xg1(t)− xiet

0 1 xg2(t)− yiet

0 0 1

 (26)

2.6. PCNN- and NSCT-Based Visibleand Infrared Image Fusion

2.6.1. Simplified PCNN Model

PCNN is a type of feedback network used to explain the characteristics of the neurons in the
visual cortex of a cat. As a result of synchronous pulse and global coupling, PCNN neurons can realize
automatic information transmission and achieve good results in the field of image fusion. PCNN is
connected by a number of neurons, and each neuron corresponds to a pixel of the image. Owing to
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the complexity of the original PCNN model, a simplified PCNN model [63] is adopted in this study.
The mathematical equation is described in Equation (27).

Fij(n) = Iij(n)
Lij(n) = exp(−aL)Lij(n− 1) + ∑

p,q
Wij,pqYpq

Uij(n) = Fij(n)× (1 + βLij(n))

Yij =

{
1, Uij(n) > θij(n)
0, Uij(n) ≤ θij(n)

θij(n) = exp(−aθ)θij(n) + VθYij(n)

(27)

where n denotes the iteration times. Fij(n), Lij(n), and Yij(n) represent the feedback input, link input,
and output of the (i, j) neuron in the nth iteration, respectively. Iij, Uij, and θij are the external input
signal, internal activity term, and output of variable threshold function, respectively. β, W, Vθ , aL,
and aθ are the link strength, link weight coefficient matrix, threshold magnification factor, link input,
and time decay constant, respectively.

2.6.2. NSCT-Based Image Decomposition

Nonsubsampled contourlet transformation (NSCT) is developed based on contourlet
transformation. NSCT consists of two parts, namely, nonsubsampled pyramid filter banks (NSPFBs)
and nonsubsampled directional filter banks (NSDFBs). NSPFBs enable NSCT to acquire multiscale
characteristics. Through decomposition, the image can produce a lowpass subband and a bandpass
subband, and then each decomposition level is iterated on the lowpass subband. A nonsubsampled
directional filter bank (NSDFB) is a set of two channel nonsampled filter banks based on the sector
directional filter bank designed by Bamberger and Smit [64]. NSDFB can be used to carry out the
level direction decomposition of the bandpass subband gained by the NSPFB and obtain the direction
subband images with the same size as the original image. Three levels of NSCT transform are shown
in Figure 10. The number of subbands in each direction increases by up to two times.Remote Sens. 2017, 9, 441  18 of 29 
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2.6.3. Fusion Algorithm

Based on PCNN and NSCT, the scheme of the visible and infrared image fusion algorithm is
introduced in Section 2.2.3. The specific steps of the method are as follows.

1. IHS transform of visible image.

The IHS transform is used to preserve the color information of visible images, which could convert
an image from the RGB color space to the IHS color space with the aid of Equations (28)–(30): I

v1

v2

 =

 1/
√

3 1/
√

3 1/
√

3
1/
√

6 1/
√

6 −2/
√

6
1/
√

2 1/
√

2 0


 R

G
B

 (28)

H = tan−1(v2/v1) (29)

S =
√

v1
2 + v22 (30)

where I denotes intensity, H denotes hue, and S denotes saturation. H and S are preserved for finial
IHS inverse transform, and I is used to fuse with the infrared image.

2. NSCT transform of infrared image and I channel of visible image.

As the infrared sensor and visible light sensor can zoom individually, the spatial resolution of the
infrared image may be lower than that of the visible light image. Thus, the method of directly replacing
the I channel of the visible image with the infrared image may cause the spatial resolution of the fusion
image to decline. The NSCT multi-scale decomposition is used to solve this problem. The gray image
(8 bit) of the infrared image and the I channel (8 bit) of the visible image are decomposed by three
levels through the NSCT transform. One image can be decomposed into one lowpass sub-band and
some bandpass subbands. The lowpass represents the outline of the original image, and the bandpass
sub-bands represent the edges and textures of the image.

3. Enhancement of lowpass subband of infrared image

Based on NSCT transform, the lowpass subband of the infrared image is processed via histogram
equalization to enhance the contrast between the target and the background and to highlight the
interesting areas.

4. Lowpass subband fusion

During the lowpass sub-band fusion of the visible light and infrared image, the coefficients are
selected according to the principle of the maximum absolute value.

5. Bandpass sub-band fusion

The bandpass sub-band fusion of the visible light and infrared image is based on PCNN.
The method chooses the regional energy that can reflect the local phase characteristics of the image
as the link strength β of the neuron. Assuming that (i, j) is the center of the region size of M× N,
the regional energy Ek

ij is expressed as Equation (31):

Ek
ij = ∑

m∈M,n∈N

[
Dk

ij(i + m, j + n)
]2

(31)

where Dk
ij represents the bandpass subband coefficient of the kth level at (i, j) of the image.

6. NSCT inverse transform using fusion lowpass subband and fusion bandpass sub-band

New fusion lowpass sub-band and bandpass subbands are generated based on Equations (4) and (5).
Then, a new I channel can be obtained according to the NSCT inverse transform.
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7. IHS inverse transform using H channel, S channel, and new I channel

Using the new I channel and the preserved H channel and S channel, the fusion image of the RGB
color space can be calculated with Equations (32)–(34): R

G
B

 =

 1/
√

3 1/
√

6 1/
√

2
1/
√

3 1/
√

6 −/
√

2
1/
√

3 −2/
√

6 0


 I

v1

v2

 (32)

v1 = S· cos(H) (33)

v2 = S· sin(H) (34)

3. Result and Discussion

3.1. Study Area and Dataset

The study area is located inland in Eastern China, as shown in Figure 11. The main types of
landforms include cities, villages, and open fields. After performing a number of flights, a database
that includes one hundred hours of visible light and infrared videos and metadata was established.
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3.2. Spatial Geometry-Based Scale Calculation

According to Section 2.3.2, the scale transformation from the infrared image to the visible image
is determined by pixel size and focal length of the two sensors. In the visible light and infrared
integrated camera, the focal length of the visible light sensor can be varied continuously in a certain
range, whereas the focal length of the infrared sensor has only two fixed values of 540 mm and 135 mm.
In this section, three experiments with different focal lengthsare designed to test the performance of
the spatial geometry-based scale calculation. The source data are shown in Table 4, and the results are
shown in Table 5 and Figures 12–14.

Table 4. Source data for scale calculation.

Item Resolution Focal Length (mm) Pixel Size (µm)

Group ID 1 2 3 1 2 3 1 2 3

Visible image 1392 × 1040 172 65.4 50.4 4.65
Infrared image 720 × 576 540 135 135 25
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Table 5. Infrared image after scale transformation.

Group ID 1 2 3

Result image resolution 1042 × 834 1666 × 1333 1284 × 1027
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(c) scale-transformed result of image (b); and (d) fusion image of images (a) and (c).
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In Figures 12–14, Figures 12c, 13c and 14c are the scale-transformed result of Figures 12b, 13b and 14b,
respectively, which could be obtained with Equation (10) in Section 2.3.2. Based on the artificial
registration of Figures 12a, 13a, 14a and Figures 12c, 13c, 14c, the fusion images of Figures 12d, 13d, 14d
are obtained with Equation (35), with Cv and Ci, which represent R, G, and B channels of the visible
image and infrared image and with C representing the responding channel of the fusion image.

C = (Cv + Ci)/2 (35)

According to the fusion results, the two images maintain consistency in shape and size,
as indicated by the clarity and lack of aliasing in the overlapping pixels. This result proves the
validity of the spatial geometry-based scale calculation.
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3.3. Coordinate Transformation-Based Coarse Translation Estimation

After scale calculation, the infrared image is converted to the same plane of the visible image.
According to Section 2.4, coarse translation estimation can calculate the translation MTc from the
infrared scale-transformed image IiS to the original visible image Iv. Then, the infrared image after
coarse translation transformation can be obtained with Equation (36).

IiSTc = MTc IiS (36)

Figure 15 shows the fusion image of the coarse translation-transformed infrared image IiSTc and
the original visible image Iv obtained with Equation (36).
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As shown in Figure 15 and Table 6, the coarse translation shows a positive effect on the registration
of the infrared image and visible image, but the result fails to reach high levels of accuracy. Moreover,
the error has some fluctuations.

Table 6. Results of coarse translation estimation.

Image Sequence Translation

Group ID 1 2 3

Actual Translation (−31,−29) (−6,−15) (−21,11)
Translation Estimation (−36,−37) (−20,−10) (−8,2)

Error 9.43 14.87 15.81

3.4. Image Edge-Based Translation Estimation

Precise translation estimation is performed based on image edge features to achieve an accurate
registration. In such estimation, the coarse translation-transformed infrared image IiSTc is converted to
the precise translation-transformed image IiSTcTp with Equation (37).

IiSTcTp = MTp IiSTc (37)

where MTp can be obtained following the description in Section 2.5.
Figure 16 shows the fusion image of the precise translation-transformed infrared image IiSTcTp

and the original visible image Iv obtained with Equation (37).
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Figure 16. Fusion image of the precise translation-transformed infrared image and the original visible
image: (a) first experiment image; (b) second experiment image; and (c) third experiment image.

Comparing Figures 15 and 16 indicates that the fusion image based on precise translation is better
than the fusion image based on coarse translation because of its clear edges in the overlapping region
and absence of aliasing. As indicated in Table 7, image registration accuracy is significantly improved.

Table 7. Results of precise translation estimation.

Image Sequence Translation

Group ID 1 2 3

Actual Translation (−31,−29) (−6,−15) (−21,11)
Translation Estimation (−30,−27) (−8,−13) (−20,9)

Error 2.24 2.83 2.24

3.5. PCNN- and NSCT-Based Image Fusion

3.5.1. Fusion of Visible Image and Low Spatial Infrared Image

When the spatial resolution of the infrared image (Figure 17b) is low, the method of directly
replacing the I channel of the visible image (Figure 17a) with the infrared image causes the spatial
resolution of the fusion image to decline (Figure 17c). The proposed NSCT- and PCNN-based method
can generate a fusion image with satisfactory spatial resolution (Figure 17d). As shown in Figure 17,
the spatial resolution of Figure 17 dis higher than that of Figure 17c.
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3.5.2. Fusion of Interesting Areas

Another important purpose of image fusion is to highlight target information. Figure 18 shows
the saliency analysis between the original image and the fusion image in two scenes. Figure 18a,b,d,e
shows the original images. Figure 18c,f shows the fusion results of the proposed method. The yellow
frame area represents the low salient areas in the visible image. The fusion results show that these
areas become increasingly salient.
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Figure 18. Fusion of interesting areas in two scenes: (a,b,d,e) original image; and (c,f) fusion image
based on the proposed method.

3.6. Performance Analysis

3.6.1. Performance Analysis of Image Registration

In the performance test experiments, we choose 257 groups of images and corresponding metadata
with three typical types of motions: translation, rotation, and scale. Based on the result of the scale
transformation, we tested the performance of the five methods: the proposed method of integrated
parallel vision-based registration (IPVBR), alignment metric-based registration (AMBR) [32], mutual
information-based registration (MIBR) [16], peak signal-to-noise ratio-based registration (PSNRBR),
and structural similarity-based registration (SSIMBR). PSNRBR and SSIMBR are two registration
methods that use PSNR and SSIM as the similarity standard [65].

Under each motion condition, the values of root mean square error (RMSE) are calculated using
Equation (38):  RMSE =

√
E2

1+E2
2+......+E2

n
n

Ei =
√
(xa − xc)

2 + (ya − yc)
2(i = 1, 2, 3, . . . . . .)

(38)

where the measurement error Ei denotes the pixel distance from the corresponding calculated matching
point (xc, yc) to the actual matching point (xa, ya) in the visible image. The error analysis results of the
three experiments are shown in Figures 19–21.Remote Sens. 2017, 9, 441  24 of 29 
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The average RMSE values of the five methods in the three experiments are shown in Table 8. 
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1 Translation (86) 3.98 3.19 3.24 2.63 1.55 
2 Rotation (80) 3.37 3.04 2.97 2.16 2.01 
3 Scale (91) 3.00 2.61 2.94 1.90 1.54 

Average RMSE 3.45 2.95 3.05 2.23 1.70 

As shown in Figures 19–21, the RMSE curve of IPVBR remains stable and low. The four other 
curves present different performances. The curve of SSIMBR presents good performance in 
Experiments 2 and 3, but it shows high vibration in Experiment 1. The curve of PSNRBR always 
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The average RMSE values of the five methods in the three experiments are shown in Table 8.

Table 8. Average RMSE of the five methods.

Index Test Data
(Frame Number)

AMBR
(RMSE)

MIBR
(RMSE)

PSNRBR
(RMSE)

SSIMBR
(RMSE)

Propose IVPBR
(RMSE)

1 Translation (86) 3.98 3.19 3.24 2.63 1.55
2 Rotation (80) 3.37 3.04 2.97 2.16 2.01
3 Scale (91) 3.00 2.61 2.94 1.90 1.54

Average RMSE 3.45 2.95 3.05 2.23 1.70

As shown in Figures 19–21, the RMSE curve of IPVBR remains stable and low. The four
other curves present different performances. The curve of SSIMBR presents good performance in
Experiments 2 and 3, but it shows high vibration in Experiment 1. The curve of PSNRBR always
maintains a certain vibration in Experiments1 and 3. The curve of AMBR indicates some high errors in
Experiment 2 and presents high vibrations in Experiments 1 and 3. The curve of MIBR shows no good
or bad performance. As shown in Table 8, the proposed IPVBR achieves the minimum average RMSE
in the three experiments. SSIMBP also has a low average RMSE, along with IPVBR.

Three points can be concluded from these three experiments.

1. Compared with the four other methods, the proposed IPVBR presents a stable and low MSER.
This result shows the high stability and precision of the proposed method.

2. SSIMBP is better than PSNRBP, which indicates that structure information is more reliable than
pixel information for multimodal image registration.

3. The two representative conventional methods of AMBR and MIBR fail to achieve good results
under the three motion conditions for medium-altitude UAV applications.

Three experiments are conducted based on the fact that all five algorithms can obtain nearly
correct results. In some cases, the compared image-based algorithms fail to solve the perspective
transform, and the proposed edge feature extraction and matching method is effective in translation
calculation. At this point, the result reflects the obvious advantages of the proposed method.
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3.6.2. Performance Analysis of Image Fusion

To analyze the performance, this study introduces three other methods: IHS transform-based
fusion (IHSBF), PCA-based fusion (PCABF) [66], and SIDWT-based fusion (SIDWTBF) [67].
These methods are compared with the proposed method in the experiment.

Using 10 sets of visible and infrared images of different scenes as the experiment data, we select
the average gradient (Equation (39)) and Shannon value (Equation (40)) as the evaluation indexes of
the four methods. The average gradient can sensitively reflect the ability of the image to express the
smallest details and can be used to evaluate the clarity of the image. A high average gradient equates
to a clear image. A high Shannon value equates to a large amount of information in the image:

G =
1

(M− 1)(N − 1)

M

∑
m=1

N

∑
n=1

√
( f (x + 1, y)− f (x, y))2 + ( f (x, y + 1)− f (x, y))2

2
(39)

where f (x, y) denotes the pixel value at (x, y) and M× N denotes the image resolution.

H = −
255

∑
0

Pi log2 Pi (40)

where i represents a sample in the image and Pi represents the probability of the sample.
The average gradient and Shannon results are shown in Figure 22, and the average values of the

four image fusion methods are listed in Table 9.
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Table 9. Average gradient and Shannon value of the four methods.

Index Evaluation Index IHSBF PCABF SIDWTBF Proposed

1 Average Gradient 1.67 1.59 1.78 1.97
2 Shannon 7.20 6.90 6.74 7.40

As shown in Figure 22a,b, the two group curves of our method are high and stable. Table 9 shows
that the average values of our method are higher than those of the other three methods. The results
also show that the fusion image obtained by our method has higher contrast, better details, and more
information than the images obtained with the other methods.

4. Conclusions

Visible and infrared image registration is a difficult problem in medium-altitude UAVs because
of different imaging mechanisms, poor image quality, and large amounts of motion in videos.
For the special requirements of UAV applications, an appropriate image fusion method becomes
a key technology.
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This study proposed a novel image registration method that uses both metadata and image
based on the imaging characteristic analysis of the most common visible light and infrared integrated
camera. The main contributions of this work are reflected in three aspects. First, we reveal the
principle of long-distance integrated parallel vision, which provides the theoretical foundation of
the conversion from a perspective transformation to scale and translation transformations. Second,
two new algorithms for scale calculation and coarse translation estimation are presented using the
image metadata of the UAV system according to spatial geometry and coordinate transformation.
Third, an edge distance field-based registration is proposed in precise translation estimation to solve
the non-strict edge alignment of the visible image and infrared image. A searching algorithm based on
PSO is also put forward to improve efficiency. In image fusion, this study designs a new method based
on PCNN and NSCT. This method can meet the four requirements of preserving color information,
adding infrared brightness information, improving spatial resolution, and highlighting target areas for
UAV applications.

A medium-altitude UAV is employed to collect experimental data, including three typical groups
of translation, rotation, and scale. Results show that the proposed method achieves encouraging
performance in image registration and fusion. These results can be applied to other medium-altitude
or high-altitude UAVs with a similar system structure. However, future work should focus on analysis
and experiments, such as the improved transformation of edge distance field and real time optimization
of image fusion.
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