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Abstract:



Recently, sparse and low-rank graph-based discriminant analysis (SLGDA) has yielded satisfactory results in hyperspectral image (HSI) dimensionality reduction (DR), for which sparsity and low-rankness are simultaneously imposed to capture both local and global structure of hyperspectral data. However, SLGDA fails to exploit the spatial information. To address this problem, a tensor sparse and low-rank graph-based discriminant analysis (TSLGDA) is proposed in this paper. By regarding the hyperspectral data cube as a third-order tensor, small local patches centered at the training samples are extracted for the TSLGDA framework to maintain the structural information, resulting in a more discriminative graph. Subsequently, dimensionality reduction is performed on the tensorial training and testing samples to reduce data redundancy. Experimental results of three real-world hyperspectral datasets demonstrate that the proposed TSLGDA algorithm greatly improves the classification performance in the low-dimensional space when compared to state-of-the-art DR methods.
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1. Introduction


A hyperspectral image contains a wealth of spectral information about different materials by collecting the reflectance of hundreds of contiguous narrow spectral bands from the visible to infrared electromagnetic spectrum [1,2,3]. However, the redundant information in a hyperspectral image not only increases computational complexity but also degrades classification performance when training samples are limited. Some research has demonstrated that the redundancy can be reduced without a significant loss of useful information [4,5,6,7]. As such, reducing the dimensionality of hyperspectral images is a reasonable and important preprocessing step for subsequent analysis and practical applications.



Dimensionality reduction (DR) aims to reduce the redundancy among features and simultaneously preserve the discriminative information. In general, existing DR methods may belong to one of three categories: unsupervised, supervised, and semisupervised. The unsupervised methods do not take the class label information of training samples into consideration. The most commonly used unsupervised DR algorithm is principal component analysis (PCA) [8], which is to find a linear transformation by maximizing the variance in the projected subspace. Linear discriminant analysis (LDA) [9], as a simple supervised DR method, is proposed to maximize the trace ratio of between-class and within-class scatter matrices. To address the application limitation in data distribution of LDA, local Fisher’s discriminant analysis (LFDA) [10] is developed. In order to overcome the difficulty that the number of training samples is usually limited, some semisupervised DR methods in [11,12] are proposed.



The graph, as a mathematical data representation, has been successfully embedded in the framework of DR, resulting in the development of many effective DR methods. Recently, a general graph embedding (GE) framework [13] has been proposed to formulate most of the existing DR methods, in which an undirected graph is constructed to characterize the geometric information of the data. k-nearest neighbors and [image: there is no content]-radius ball [14] are two traditional methods to construct adjacency graphs. However, these two methods are sensitive to the noise and may lead to incorrect data representation. To construct an appropriate graph, a graph-based discriminant analysis with spectral similarity (GDA-SS) measurement was recently proposed by considering curves changing description among spectral bands in [15]. Sparse representation (SR) [16,17] has attracted much attention because of its benefits of data-adaptive neighborhoods and noise robustness. Based on this work, a sparse graph embedding (SGE) model [18] was developed by exploring the sparsity structure of the data. In [19], a sparse graph-based discriminant analysis (SGDA) model was developed for hyperspectral image dimensionality reduction and classification by exploiting the class label information, improving the performance of SGE. In [20], a weighted SGDA integrated both the locality and sparsity structure of the data. To reduce the computational cost, collaborative graph-based discriminant analysis (CGDA) [21] was introduced by imposing an [image: there is no content] regularization on sparse coefficient vector. In [22], Laplacian regularization was imposed on CGDA, resulting in the LapCGDA algorithm. SR is able to reveal the local structure but fails in capturing the global structure. To solve this problem, a sparse and low-rank graph-based discriminant analysis (SLGDA) [23] was proposed to simultaneously preserve the local and global structure of hyperspectral data.



However, the aforementioned graph-based DR methods only deal with spectral vector-based (first-order) representations, which do not take the spatial information of hyperspectral data into consideration. Aiming to overcome this shortcoming, simultaneous sparse graph embedding (SSGE) was proposed to improve the classification performance in [24]. Although SSGE has obtained enhanced performance, it still puts the spectral-spatial feature into first-order data for analysis and ignores the cubic nature of hyperspectral data that can be taken as a third-order tensor. Some researchers have verified the advantage of tensor representation when processing the hyperspectral data. For example, multilinear principal component analysis (MPCA) [25] was integrated with support vector machines (SVM) for tensor-based classification in [26]. A group based tensor model [27] by exploiting clustering technique was developed for DR and classification. In addition, a tensor discriminative locality alignment (TDLA) [28] algorithm was proposed for hyperspectral image spectral-spatial feature representation and DR, which has been extended in [29] by combining with well-known spectral-spatial feature extraction methods (such as extended morphological profiles (EMPs) [30], extended attribute profiles (EAPs) [31], and Gabors [32]) for classification. Though the previous tensor-based DR methods have achieved great improvement on performance, they do not consider the structure property from other perspectives, such as representation-based and graph-based points.



In this context, we propose a novel DR method, i.e., tensor sparse and low-rank graph-based discriminant analysis (TSLGDA), for hyperspectral data, in which the information from three perspectives (tensor representation, sparse and low-rank representation, and graph theory) is exploited to present the data structure for hyperspectral image. It is noteworthy that the proposed method aims to exploit the spatial information through tensor representation, which is different from the work in [23] only considering the spectral information. Furthermore, tensor locality preserving projection (TLPP) [33] is exploited to obtain three projection matrices for three dimensions (one spectral dimension and two spatial dimensions) in TSLGDA, while SLGDA [23] only considers one spectral projection matrix by locality preserving projection. The contributions of our work lie in the following aspects: (1) tensor representation is utilized in the framework of sparse and low-rank graph-based discriminant analysis for DR of hyperspectral image. To the best of our knowledge, this is the first time that tensor theory, sparsity, and low-rankness are combined in graph embedding framework; (2) Tensorial structure contains the spectral-spatial information, sparse and low-rank representation reveals both local and global structure and a graph preserves manifold structure. The integration of these three techniques remarkably promotes discriminative ability of reduced features in low-dimensional subspaces; (3) The proposed method can effectively deal with small training size problem, even for the class with only two labeled samples.



The rest of this paper is organized as follows. Section 2 briefly describes the tensor basics and some existing DR methods. The proposed TSLGDA algorithm for DR of hyperspectral imagery is provided in detail in Section 3. Parameters discussions and experimental results compared with some state-of-the-art methods are given in Section 4. Finally, Section 5 concludes this paper with some remarks.




2. Related Work


In this paper, if not specified otherwise, lowercase italic letters denote scalars, e.g., [image: there is no content], bold lowercase letters denote vectors, e.g., [image: there is no content], [image: there is no content], bold uppercase letters denote matrices, e.g., [image: there is no content], [image: there is no content], and bold uppercase letters with underline denote tensors, e.g., [image: there is no content], [image: there is no content].



2.1. Tensor Basics


A multidimensional array is defined as a tensor, which is represented as [image: there is no content]. We regard [image: there is no content] as an N-order tensor, corresponding to an N-dimensional data array, with its element denoted as [image: there is no content], where [image: there is no content], and [image: there is no content]. Some basic definitions related to tensor operation are provided as follows [28,33,34].



Definition 1.

(Frobenius norm): The Frobenius norm of a tensor [image: there is no content] is defined as [image: there is no content].





Definition 2.

(Mode-n matricizing): The n-mode vector of an N-order tensor [image: there is no content] is defined as an n-dimensional vector by fixing all indices except [image: there is no content]. The n-mode matrix is composed of all the n-mode vectors in column form, denoted as [image: there is no content]. The obtained n-mode matrix is also known as n-mode unfolding of a tensor [image: there is no content].





Definition 3.

(Mode-n product): The mode-n product of a tensor [image: there is no content] with a matrix U∈RIn′×In yields [image: there is no content], and C̲∈RI1…In-1In′In+1…IN, whose entries are computed by


C̲i1…in-1in′in+1…iN=∑in=1InA̲i1…in-1inin+1…iNUin′in



(1)




where [image: there is no content] and in′=1,2,…,In′. Note that the n-mode product can also be expressed in terms of unfolding tensor


[image: there is no content]



(2)




where [image: there is no content] denotes mode-n product between a tensor and a matrix.





Definition 4.

(Tensor contraction): The contraction of tensors A̲∈RI1×…×IN×I1′×…×IN′′ and B̲∈RI1×…×IN×I1′′×…×IN′′′′ is defined as


[A̲⊗B̲;(1:N)(1:N)]i1,i2,…,iN=∑i1=1I1⋯∑iN=1INA̲i1,…,iN,i1′,…,iN′′B̲i1,…,iN,i1′′,…,iN′′′′



(3)




The condition for tensor contraction is that both two tensors should have the same size at the specific mode. For example, when the contraction is conducted on all indices except for the index n on tensors [image: there is no content], this operation can be denoted as [image: there is no content]. According to the property of tensor contraction, we have


[image: there is no content]



(4)










2.2. Sparse and Low-Rank Graph-Based Discriminant Analysis


In [19], sparse graph-based discriminant analysis (SGDA), as a supervised DR method, was proposed to extract important features for hyperspectral data. Although SGDA can successfully reveal the local structure of the data, it fails to capture the global information. To address this problem, sparse and low-rank graph-based discriminant analysis (SLGDA) [23] was developed to preserve local neighborhood structure and global geometrical structure simultaneously by combining the sparse and low-rank constraints. The objective function of SLGDA can be formulated as


argminW(l)12||X(l)-X(l)W(l)||F2+β||W(l)||*+λ||W(l)||1,s.t.diag(W(l))=0



(5)




where [image: there is no content] and [image: there is no content] are two regularization parameters to control the effect of low-rank term and sparse term, respectively, [image: there is no content] represents samples from the lth class in a vector-based way, and [image: there is no content], in which c is the number of total classes. After obtaining the complete graph weight matrix [image: there is no content], the projection operator can be solved as


P*=argminPTXLpXTP∑i≠j||PTxi-PTxj||22Wij=argminPTXLpXTPtr(PTXLsXTP)



(6)




where [image: there is no content] is defined as the Laplacian matrix, [image: there is no content] is a diagonal matrix with the ith diagonal entry being [image: there is no content], and [image: there is no content] may be a simple scale normalization constraint [13].



The projection can be further formulated as


[image: there is no content]



(7)




which can be solved as a generalized eigendecomposition problem


[image: there is no content]



(8)







The bth projection vector [image: there is no content] is the eigenvector corresponding to the bth smallest nonzero eigenvalue. The projection matrix can be formed as [image: there is no content], [image: there is no content]. Finally, the reduced features are denoted as [image: there is no content].




2.3. Multilinear Principal Component Analysis


In order to obtain a set of multilinear projections that will map the original high-order tensor data into a low-order tensor space, MPCA performs to directly maximize the total scatter matrix on the subspace [image: there is no content]


[image: there is no content]



(9)




where [image: there is no content] and [image: there is no content] is the n-mode unfolding matrix of tensor [image: there is no content].



The optimal projections of MPCA can be obtained from the eigendecomposition


[image: there is no content]



(10)




where [image: there is no content] is the eigenvector matrix and [image: there is no content] is the eigenvalue matrix of [image: there is no content], in which the eigenvalues are ranked in descending order, and [image: there is no content] is the eigenvalue corresponding to the eigenvector [image: there is no content]. The optimal projection matrix for mode-n is composed of the eigenvectors corresponding to the first [image: there is no content] largest eigenvalues, e.g., [image: there is no content]. After obtained the projection matrix for each mode, the reduced features can be formulated as


[image: there is no content]



(11)




where [image: there is no content].





3. Tensor Sparse and Low-Rank Graph-Based Discriminant Analysis


Consider a hyperspectral image as a third-order tensor [image: there is no content], in which [image: there is no content] and [image: there is no content] refer to the width and height of the data cube, respectively, and [image: there is no content] represents the number of spectral bands, [image: there is no content]. Assume that the kth small patch is composed of the kth training sample and its [image: there is no content] neighbors, which is denoted as [image: there is no content]. M patches construct the training set [image: there is no content]. The training patches belonging to the lth class are expressed as [image: there is no content], where [image: there is no content] represents the number of patches belonging to the lth class and [image: there is no content]. For the purpose of convenient expression, a fourth-order tensor [image: there is no content] is defined to represent these [image: there is no content] patches, and [image: there is no content] denotes all training patches for c classes, where [image: there is no content]. A visual illustration of 3-mode vectors, 3-mode unfolding, and 3-mode product is shown in Figure 1.


Figure 1. Visual illustration of n-mode vectors, n-mode unfolding, and n-mode product of a third-order tensor from a hyperspectral image.



[image: Remotesensing 09 00452 g001]






3.1. Tensor Sparse and Low-Rank Graph


The previous SLGDA framework can capture the local and global structure of hyperspectral data simultaneously by imposing both sparse and low-rank constraints. However, it may lose some important structural information of hyperspectral data, which presents an intrinsic tensor-based data structure. To overcome this drawback, a tensor sparse and low-rank graph is constructed with the objective function


argminW(l)12||X̲(l)-X̲(l)×4W(l)||F2+β||W(l)||*+λ||W(l)||1,s.t.diag(W(l))=0,



(12)




where [image: there is no content] denotes the graph weigh matrix using labeled patches from the lth class only. As such, with the help of class-specific labeled training patches, the global graph weigh matrix [image: there is no content] can be designed as a block-diagonal structure


W=W(1)0⋱0W(c)



(13)







To obtain the lth class graph weight matrix [image: there is no content], the alternating direction method of multipliers (ADMM) [35] is adopted to solve problem (12). Two auxiliary variables [image: there is no content] and [image: there is no content] are first introduced to make the objective function separable


argminZ(l),J(l),W(l)12||X̲(l)-X̲(l)×4W(l)||F2+β||Z(l)||*+λ||J(l)||1,s.t.W(l)=Z(l),W(l)=J(l)-diag(J(l))



(14)







The augmented Lagrangian function of problem (14) is given as


L(Z(l),J(l),W(l),D1,D2)=12||X̲(l)-X̲(l)×4W(l)||F2+β||Z(l)||*+λ||J(l)||1+⟨D1,W(l)-Z(l)⟩+⟨D2,W(l)-J(l)+diag(J(l))⟩+μ2(||W(l)-Z(l)||F2+||W(l)-J(l)+diag(J(l))||F2)



(15)




where [image: there is no content] and [image: there is no content] are Lagrangian multipliers, and [image: there is no content] is a penalty parameter.



By minimizing the function [image: there is no content], each variable is alternately updated with other variables being fixed. The updating rules are expressed as


Zt+1(l)=argminZ(l)β||Z(l)||*+⟨D1,t,Wt(l)-Z(l)⟩+μt2||Wt(l)-Z(l)||F2=argminZ(l)βμt||Z(l)||*+12||Z(l)-(Wt(l)+D1,tμt)||F2=Ωβμt(Wt(l)+D1,tμt)



(16)






Jt+1(l)=argminJ(l)λ||J(l)||1+⟨D2,t,Wt(l)-J⟩+μt2||Wt(l)-J(l)||F2=argminJ(l)λμt||J(l)||1+12||J(l)-(Wt(l)+D2,tμt)||F2=Sλμt(Wt(l)+D2,tμt),Jt+1(l)=Jt+1(l)-diag(Jt+1(l)),



(17)




where [image: there is no content] denotes the learning rate, [image: there is no content] is the singular value thresholding operator (SVT), in which [image: there is no content] is the soft thresholding operator [36]. By fixing [image: there is no content] and [image: there is no content], the formulation of [image: there is no content] can be written as


Wt+1(l)=argminW(l)12||X̲(l)-X̲(l)×4W(l)||F2+⟨D1,t,W(l)-Zt+1(l)⟩+⟨D2,t,W(l)-Jt+1(l)⟩+μt2(||W(l)-Zt+1(l)||F2+||W(l)-Jt+1(l)||F2)=(H(l)+2μtI)-1(H(l)+μtZt+1(l)+μtJt+1(l)-(D1,t+D2,t)),



(18)




where [image: there is no content], [image: there is no content], and [image: there is no content] is an identity matrix.



The global similarity matrix [image: there is no content] will be obtained depending on Equation (13) when each sub-similarity matrix corresponding to each class is calculated from problem (12). Until now, a tensor sparse and low-rank graph [image: there is no content] is completely constructed with vertex set [image: there is no content] and similarity matrix [image: there is no content]. How to obtain a set of projection matrices [image: there is no content] is the following task.




3.2. Tensor Locality Preserving Projection


The aim of tensor LPP is to find transformation matrices [image: there is no content] to project high-dimensional data [image: there is no content] into low-dimensional representation [image: there is no content], where [image: there is no content].



The optimization problem for tensor LPP can be expressed as


argminJ(U1,U2,…,UN)=∑i,j||X^̲i-X^̲j||2Wij=∑i,j||X̲i×1U1⋯×NUN-X̲j×1U1⋯×NUN||2Wijs.t.∑i||X̲i×1U1⋯×NUN||2Cii=1



(19)




where [image: there is no content]. It can be seen that the corresponding tensors [image: there is no content] and [image: there is no content] in the embedded tensor space are expected to be close to each other if original tensors [image: there is no content] and [image: there is no content] are greatly similar.



To solve the optimization problem (19), an iterative scheme is employed [33]. First, we assume that [image: there is no content] are known, then, let [image: there is no content]. With properties of tensor and trace, the objective function (19) is rewritten as


argminJn(Un)=∑i,j||X^̲i,(n)×nUn-X^̲j,(n)×nUn||2Wij=∑i,j||UnX^in-UnX^jn||2Wij=∑i,jtrUn((X^in-X^jn)(X^in-X^jn)TWij)UnT=trUn(∑i,j(X^in-X^jn)(X^in-X^jn)TWij)UnT,s.t.tr(Un(∑iX^inX^inTCii)UnT)=1,



(20)




where [image: there is no content] denotes the n-mode unfolding of tensor [image: there is no content]. Finally, the optimal solution of problem (20) is the eigenvectors corresponding to the first [image: there is no content] smallest nonzero eigenvalues of the following generalized eigenvalue problem


[image: there is no content]



(21)







Assume [image: there is no content], [image: there is no content], then, problem (21) can be transformed into


[image: there is no content]



(22)







To solve this problem, the function [image: there is no content] embedded in the MATLAB software (R2013a, The MathWorks, Natick, Massachusetts, USA) is adopted, i.e., [image: there is no content], and the eigenvectors in [image: there is no content] corresponding to the first [image: there is no content] smallest nonzero eigenvalues in [image: there is no content] are chosen to form the projection matrix. The other projection matrices can be obtained in a similar manner. The complete TSLGDA algorithm is outlined in Algorithm 1.





	Algorithm 1: Tensor Sparse and Low-Rank Graph-Based Discriminant Analysis for Classification.



	Input: Training patches [image: there is no content], testing patches [image: there is no content], regularization parameters [image: there is no content] and [image: there is no content],



	            reduced dimensionality [image: there is no content].



	Initialize: [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content],



	            maxIter = 100, [image: there is no content].



	1.   for [image: there is no content]do



	2.         repeat



	3.             Compute [image: there is no content], [image: there is no content], and [image: there is no content] according to (16)–(18).



	4.             Update the Lagrangian multipliers:



	Y1,t+1=Y1,t+μt(Wt+1(l)-Zt+1(l)),  [image: there is no content].



	5.             Update [image: there is no content]: [image: there is no content], where



	ρ=ρ0,ifμtmax(||Wt+1(l)-Wt(l)||F,||Zt+1(l)-Zt(l)||F,||Jt+1(l)-Jt(l)||F)/||X^̲(l)||F<ε2,1,otherwise.



	6.             Check convergence conditions: [image: there is no content].



	7.             [image: there is no content].



	8.         until convergence conditions are satisfied or [image: there is no content]maxIter.



	9.   end for



	10. Construct the block-diagonal weight matrix [image: there is no content] according to (13).



	11. Compute the projection matrices [image: there is no content] according to (21).



	12. Compute the reduced features:



	      [image: there is no content], [image: there is no content].



	13. Determine the class label of [image: there is no content] by NN classifier.



	14. Output: The class labels of test patches.








4. Experiments and Discussions


In this section, three hyperspectral datasets are used to verify the performance of the proposed method. The proposed TSLGDA algorithm is compared with some state-of-the-art approaches, including unsupervised methods (e.g., PCA [8], MPCA [25]) and supervised methods (e.g., LDA [9], LFDA [10], SGDA [19], GDA-SS [15], SLGDA [23], G-LTDA (local tensor discriminant analysis with Gabor filters) [29]). SGDA is implemented using the SPAMS (SPArse Modeling Software) toolbox [38]. The nearest neighbor classifier (NN classifier) is exploited to classify the projected features obtained by these DR methods. The class-specific accuracy , overall accuracy (OA), average accuracy (AA), and kappa coefficient ([image: there is no content]) are reported for quantitative assessment after ten runs. All experiments are implemented on an Inter Core i5-4590 CPU personal computer (Santa Clara, CA, USA).



4.1. Experimental Datasets


The first dataset [39] was acquired by Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor over northwest Indiana’s Indian Pine test site in June 1992. The AVIRIS sensor generates the wavelength range of 0.4–2.45-[image: there is no content]m covered 220 spectral bands. After removing 20 water-absorption bands (bands 104–108, 150–163, and 220), a total of 200 bands is used in experiments. The image with 145 × 145 pixels represents a rural scenario having 16 different land-cover classes. The numbers of training and testing samples in each class are listed in Table 1.



Table 1. Number of training and testing samples for the Indian Pines and University of Pavia datasets.







	
Indian Pines

	
University of Pavia




	
Class

	
Name

	
Training

	
Testing

	
Name

	
Training

	
Testing






	
1

	
Alfalfa

	
5

	
41

	
Asphalt

	
40

	
6591




	
2

	
Corn-notill

	
143

	
1285

	
Meadows

	
40

	
18,609




	
3

	
Corn-mintill

	
83

	
747

	
Gravel

	
40

	
2059




	
4

	
Corn

	
24

	
213

	
Tree

	
40

	
3024




	
5

	
Grass-pasture

	
48

	
435

	
Painted metal sheets

	
40

	
1305




	
6

	
Grass-trees

	
73

	
657

	
Bare Soil

	
40

	
4989




	
7

	
Grass-pasture-mowed

	
3

	
25

	
Bitumen

	
40

	
1290




	
8

	
Hay-windrowed

	
48

	
430

	
Self-blocking bricks

	
40

	
3642




	
9

	
Oats

	
2

	
18

	
Shadows

	
40

	
907




	
10

	
Soybean-notill

	
97

	
875

	

	

	




	
11

	
Soybean-mintill

	
246

	
2209

	

	

	




	
12

	
Soybean-clean

	
59

	
534

	

	

	




	
13

	
Wheat

	
21

	
184

	

	

	




	
14

	
Woods

	
127

	
1138

	

	

	




	
15

	
Buildings-Grass-Trees-Drive

	
39

	
347

	

	

	




	
16

	
Stone-Steel-Towers

	
9

	
84

	

	

	




	
Total

	

	
1027

	
9222

	

	
360

	
42,416










The second dataset [39] is the University of Pavia collected by the Reflective Optics System Imaging Spectrometer (ROSIS) sensor in Italy. The image has 103 bands after removing 12 noisy bands with a spectral coverage from 0.43 to 0.86 [image: there is no content]m, covering a region of 610 × 340 pixels. There are nine ground-truth classes, from which we randomly select training and testing samples as shown in Table 1.



The third dataset [39] was also collected by the AVIRIS sensor over the Valley of Salinas, Central Coast of California, in 1998. The image comprises 512 × 217 pixels with a spatial resolution of 3.7 m, and only preserves 204 bands after 20 water-absorption bands removed. Table 2 lists 16 land-cover classes and the number of training and testing samples.



Table 2. Number of training and testing samples for the Salinas dataset.







	
Salinas




	
Class

	
Name

	
Training

	
Testing






	
1

	
Brocoli-green-weeds-1

	
40

	
1969




	
2

	
Brocoli-green-weeds-2

	
75

	
3651




	
3

	
Fallow

	
40

	
1936




	
4

	
Fallow-rough-plow

	
28

	
1366




	
5

	
Fallow-smooth

	
54

	
2624




	
6

	
Stubble

	
79

	
3880




	
7

	
Celery

	
72

	
3507




	
8

	
Grapes-untrained

	
225

	
11,046




	
9

	
Soil-vinyard-develop

	
124

	
6079




	
10

	
Corn-senesced-green-weeds

	
66

	
3212




	
11

	
Lettuce-romaine-4wk

	
21

	
1047




	
12

	
Lettuce-romaine-5wk

	
39

	
1888




	
13

	
Lettuce-romaine-6wk

	
18

	
898




	
14

	
Lettuce-romaine-7wk

	
21

	
1049




	
15

	
Vinyard-untrained

	
145

	
7123




	
16

	
Vinyard-vertical-trellis

	
36

	
1771




	
Total

	

	
1083

	
53,046











4.2. Parameters Tuning


For the proposed method, four important parameters (i.e., regularization parameters [image: there is no content] and [image: there is no content], window size, and the number of spectral dimension) that can be divided into three groups need to be determined before proceeding to the following experiments. [image: there is no content] and [image: there is no content] control the effect of sparse term and low-rank term in the objective function, respectively, which can be tuned together, while window size and the number of spectral dimension are another two groups that can be determined separately. When analyzing one group specific parameter, the other group parameters are fixed on their corresponding chosen values. According to many existing DR methods [22,23,24] and tensor-based research [26,28], window size is the first set as 9 for the Indian Pines and Salinas datasets, and 7 for the University of Pavia dataset; the initial value for the number of spectral dimension is given as 30 for all three datasets, and the performance basically reaches steady state with this dimension.



4.2.1. Regularization Parameters for TSLGDA


With the initial values of window size and the number of spectral dimension fixed, [image: there is no content] and [image: there is no content] are first tuned to achieve better classification performance. Figure 2 shows the overall classification accuracy with respect to different [image: there is no content] and [image: there is no content] by fivefold cross validation for three experimental datasets. It can be clearly seen that the OA values can reach the maximum values for some [image: there is no content] and [image: there is no content]. Accordingly, for the Indian Pines dataset, the optimal values of [image: there is no content] and [image: there is no content] can be set as [image: there is no content], which is also an appropriate choice for the University of Pavia dataset, while [image: there is no content] is chosen for the Salinas data.


Figure 2. Parameter tuning of [image: there is no content] and [image: there is no content] for the proposed TSLGDA algorithm using three datasets: (a) Indian Pines; (b) University of Pavia; (c) Salinas.
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4.2.2. Window Size for Tensor Representation


For tensor-based DR methods, i.e., MPCA and TSLGDA, window size (or patch size) is another important parameter. Note that small windows may fail to cover enough spatial information, whereas large windows may contain multiple classes, resulting in complicated analysis and heavy computational burden. Therefore, the window size is searched in the range of [image: there is no content]. [image: there is no content] and [image: there is no content] are fixed on the tuned values, while the numbers of spectral dimension are still set as initial values for three datasets, respectively. Figure 3 presents the variation of classification performances of MPCA and TSLGDA with different window sizes for experimental datasets. It can be seen that the window sizes for MPCA and TSLGDA can be both chosen as [image: there is no content] for the Indian Pines and Salinas datasets, while the optimal values are [image: there is no content] and [image: there is no content], respectively, for the University of Pavia dataset. This may be because the formers represent a rural scenario containing large spatial homogeneity while the Pavia University data is obtained from an urban area with small homogeneous regions. To evaluate the classification performance using the low-dimensional data, 1NN classifier is adopted in this paper.


Figure 3. Parameter tuning of window size for MPCA and TSLGDA using three datasets: (a) Indian Pines; (b) University of Pavia; (c) Salinas.
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4.2.3. The Number of Spectral Dimension for TSLGDA


According to [28], [image: there is no content] is set as the reduced dimensionality of the first two dimensions (i.e., two spatial dimensions). The third dimension (i.e., spectral dimension) is considered carefully by keeping the tuned values of [image: there is no content], [image: there is no content], and window size is fixed. Figure 4 shows the overall classification accuracy with respect to spectral dimension for three hyperspectral datasets. Obviously, due to the spatial information contained in tensor structure, tensor-based DR methods (i.e., MPCA, TSLGDA) outperform vector-based DR methods (i.e., PCA, SGDA, GDA-SS, SLGDA). According to [29,37], G-LTDA can automatically obtain the optimal reduced dimensions during the optimization procedure; therefore, the number of spectral dimension for G-LTDA is not discussed here. For the Indian Pines dataset, the performances of all considered methods increase when the spectral dimension increases, and then keep stable at the maximum values. The similar results can also be observed from the University of Pavia and Salinas datasets. In any case, TSLGDA outperforms other DR methods even when the spectral dimension is as low as 5. In the following assessment, [image: there is no content] and [image: there is no content] dimensions are used to conduct classification for two AVIRIS datasets and one ROSIS dataset, respectively.


Figure 4. Overall accuracy versus the reduced spectral dimension for different methods using three datasets: (a) Indian Pines; (b) University of Pavia; (c) Salinas.
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4.3. Classification Results


4.3.1. Classification Accuracy


Table 3, Table 4 and Table 5 present the classification accuracy of individual class, OA, AA, and kappa coefficient for three experimental datasets, respectively. Obviously, the proposed method provides the best results than other compared methods on almost all of classes; meanwhile, OA, AA, and kappa coefficient are also better than those of other methods. Specifically, by comparing to all considered methods, TSLGDA yields about 2% to 30%, 5% to 20%, and 2% to 12% gain in OA with limited training sets for three datasets, respectively. Even for classes with few labeled training samples, such as class 1, class 7, and class 9 in the Indian Pines data, the proposed TSLGDA algorithm offers great improvement in performance as well. Besides TSLGDA, MPCA and G-LTDA also obtain much higher accuracies than other vector-based methods, which effectively demonstrates the advantage of tensor-based techniques. In addition, SLGDA yields better results than SGDA (about 3%, 1%, and 0.6% gain) by simultaneously exploiting the properties of sparsity and low-rankness, while GDA-SS is superior to SGDA by considering the spectral similarity measurement based on spectral characteristics when constructing the graph.



Table 3. Classification accuracy (%) and standard deviation of different methods for the Indian Pines data when the reduced dimension is 30.







	
No.

	
Origin

	
PCA

	
LDA

	
LFDA

	
SGDA

	
GDA-SS

	
SLGDA

	
MPCA

	
G-LTDA

	
TSLGDA






	
1

	
39.02

	
54.15

	
33.66

	
44.88

	
65.04

	
49.59

	
48.78

	
71.34

	
92.20

	
91.71




	

	
±8.27

	
±11.1

	
±17.8

	
±15.5

	
±7.45

	
±12.2

	
±6.90

	
±9.63

	
±4.69

	
±8.02




	
2

	
55.92

	
52.96

	
57.28

	
67.78

	
69.31

	
74.24

	
73.04

	
81.09

	
96.47

	
97.32




	

	
±2.68

	
±1.53

	
±2.13

	
±3.56

	
±2.37

	
±3.95

	
±1.93

	
±2.74

	
±1.01

	
±0.68




	
3

	
49.83

	
50.15

	
58.34

	
66.75

	
62.65

	
69.57

	
67.00

	
82.26

	
93.98

	
97.51




	

	
±2.68

	
±2.34

	
±2.57

	
±2.82

	
±1.76

	
±5.56

	
±0.28

	
±2.74

	
±2.34

	
±0.91




	
4

	
42.07

	
40.19

	
38.12

	
54.93

	
49.14

	
58.06

	
62.68

	
87.91

	
96.53

	
97.37




	

	
±7.75

	
±4.56

	
±4.00

	
±7.69

	
±5.40

	
±8.24

	
±12.3

	
±4.65

	
±3.93

	
±1.90




	
5

	
82.95

	
84.47

	
81.20

	
88.25

	
89.55

	
92.03

	
93.32

	
91.13

	
93.15

	
97.00




	

	
±2.93

	
±4.58

	
±3.87

	
±2.41

	
±1.74

	
±1.34

	
±0.98

	
±2.00

	
±1.44

	
±2.50




	
6

	
90.75

	
93.06

	
93.36

	
94.64

	
95.38

	
96.91

	
96.27

	
97.53

	
94.76

	
99.27




	

	
±1.00

	
±2.95

	
±1.47

	
±1.59

	
±0.61

	
±0.89

	
±0.11

	
±1.14

	
±2.94

	
±0.46




	
7

	
81.60

	
72.00

	
76.00

	
79.20

	
88.00

	
88.00

	
88.00

	
94.00

	
95.20

	
96.80




	

	
±8.29

	
±13.6

	
±12.3

	
±22.5

	
±4.00

	
±8.00

	
±5.66

	
±7.66

	
±7.15

	
±3.35




	
8

	
96.28

	
93.02

	
95.26

	
99.12

	
99.53

	
97.91

	
99.19

	
98.37

	
97.81

	
99.86




	

	
±1.78

	
±1.52

	
±2.71

	
±1.47

	
±0.40

	
±2.02

	
±0.49

	
±1.66

	
±0.67

	
±0.31




	
9

	
26.67

	
34.44

	
25.56

	
43.33

	
50.00

	
37.04

	
25.00

	
54.17

	
78.89

	
93.33




	

	
±4.65

	
±12.0

	
±16.5

	
±9.94

	
±33.8

	
±16.9

	
±11.8

	
±19.4

	
±15.4

	
±7.24




	
10

	
66.06

	
63.91

	
65.40

	
69.04

	
69.64

	
73.64

	
74.03

	
84.12

	
95.93

	
96.52




	

	
±2.04

	
±3.49

	
±3.61

	
±3.05

	
±5.81

	
±3.02

	
±0.32

	
±1.32

	
±1.35

	
±1.56




	
11

	
71.75

	
71.41

	
73.65

	
72.43

	
78.18

	
79.45

	
79.52

	
90.30

	
96.32

	
98.53




	

	
±3.00

	
±2.00

	
±1.81

	
±1.83

	
±1.42

	
±1.23

	
±2.08

	
±0.78

	
±1.41

	
±0.59




	
12

	
43.41

	
41.46

	
48.63

	
67.20

	
67.29

	
74.78

	
76.83

	
73.73

	
93.60

	
96.17




	

	
±6.34

	
±2.55

	
±3.25

	
±1.56

	
±2.19

	
±4.59

	
±1.99

	
±2.38

	
±1.70

	
±1.75




	
13

	
91.41

	
94.02

	
93.59

	
98.70

	
96.01

	
97.83

	
98.64

	
98.23

	
91.85

	
99.46




	

	
±2.44

	
±2.40

	
±1.11

	
±0.62

	
±0.63

	
±1.63

	
±1.15

	
±1.12

	
±4.21

	
±0.67




	
14

	
90.04

	
89.65

	
89.44

	
93.83

	
94.58

	
94.00

	
96.05

	
95.78

	
97.72

	
99.67




	

	
±1.96

	
±2.10

	
±2.16

	
±1.56

	
±0.89

	
±1.18

	
±0.87

	
±0.40

	
±0.66

	
±0.43




	
15

	
37.98

	
36.54

	
41.15

	
61.04

	
48.90

	
56.20

	
56.48

	
88.26

	
95.91

	
98.67




	

	
±2.18

	
±2.30

	
±3.73

	
±2.89

	
±1.92

	
±3.20

	
±2.85

	
±4.69

	
±1.62

	
±1.16




	
16

	
88.43

	
88.67

	
91.08

	
89.64

	
92.37

	
91.27

	
93.98

	
93.07

	
84.29

	
97.35




	

	
±6.30

	
±3.02

	
±3.47

	
±5.56

	
±3.03

	
±2.99

	
±1.70

	
±4.33

	
±8.68

	
±1.32




	
OA

	
69.25

	
68.52

	
70.86

	
76.60

	
77.65

	
80.51

	
80.76

	
88.34

	
95.67

	
98.08




	

	
±1.16

	
±0.88

	
±0.76

	
±0.82

	
±1.44

	
±0.31

	
±0.08

	
±0.51

	
±0.49

	
±0.30




	
AA

	
65.89

	
66.26

	
66.36

	
74.42

	
75.97

	
76.91

	
76.80

	
86.33

	
93.41

	
97.28




	

	
±1.19

	
±1.62

	
±2.30

	
±1.79

	
±2.37

	
±2.38

	
±1.98

	
±1.17

	
±0.56

	
±0.85
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64.90

	
64.04

	
66.73

	
73.32

	
74.40

	
77.70

	
78.01

	
86.70

	
95.07

	
97.81




	

	
±1.30

	
±0.98

	
±0.92

	
±0.93

	
±1.68

	
±0.38

	
±0.14

	
±0.59

	
±0.56

	
±0.34










Table 4. Classification accuracy (%) and standard deviation of different methods for the University of Pavia data when the reduced dimension is 20.







	
No.

	
Origin

	
PCA

	
LDA

	
LFDA

	
SGDA

	
GDA-SS

	
SLGDA

	
MPCA

	
G-LTDA

	
TSLGDA






	
1

	
56.13

	
55.98

	
64.77

	
60.56

	
47.44

	
52.88

	
52.84

	
84.20

	
72.41

	
91.15




	

	
±1.99

	
±2.90

	
±2.11

	
±5.24

	
±2.00

	
±6.58

	
±1.98

	
±1.49

	
±2.03

	
±1.46




	
2

	
69.68

	
70.30

	
68.75

	
77.05

	
82.15

	
78.88

	
80.92

	
84.60

	
89.24

	
92.59




	

	
±5.59

	
±3.27

	
±3.44

	
±4.42

	
±2.71

	
±2.80

	
±3.74

	
±3.31

	
±0.93

	
±2.68




	
3

	
68.02

	
67.34

	
69.90

	
66.47

	
63.83

	
64.27

	
61.17

	
80.24

	
89.48

	
86.83




	

	
±3.95

	
±1.49

	
±3.10

	
±3.94

	
±10.5

	
±3.28

	
±3.26

	
±3.01

	
±5.68

	
±2.44




	
4

	
90.21

	
86.98

	
88.92

	
91.33

	
90.73

	
91.26

	
92.54

	
92.20

	
71.28

	
96.04




	

	
±4.43

	
±3.70

	
±2.23

	
±2.01

	
±2.25

	
±2.10

	
±0.07

	
±1.85

	
±4.90

	
±2.23




	
5

	
99.39

	
99.49

	
99.51

	
99.88

	
99.73

	
99.79

	
99.66

	
99.72

	
98.41

	
100




	

	
±0.38

	
±0.23

	
±0.25

	
±0.10

	
±0.18

	
±0.08

	
±0.27

	
±0.26

	
±1.10

	
±0.00




	
6

	
59.11

	
61.68

	
66.35

	
65.36

	
59.47

	
65.07

	
63.97

	
77.99

	
95.04

	
93.06




	

	
±2.25

	
±6.60

	
±6.62

	
±7.09

	
±5.18

	
±2.72

	
±0.50

	
±4.68

	
±2.35

	
±3.12




	
7

	
83.36

	
83.22

	
86.34

	
75.78

	
82.25

	
79.04

	
81.71

	
89.22

	
98.26

	
97.50




	

	
±4.59

	
±3.57

	
±2.25

	
±1.97

	
±5.40

	
±3.64

	
±1.75

	
±2.09

	
±1.37

	
±0.90




	
8

	
68.06

	
66.89

	
68.24

	
60.81

	
61.16

	
64.67

	
65.46

	
76.30

	
93.31

	
86.07




	

	
±2.72

	
±4.34

	
±3.24

	
±4.18

	
±8.92

	
±4.21

	
±2.87

	
±3.07

	
±1.32

	
±3.27




	
9

	
95.94

	
95.90

	
97.00

	
83.95

	
84.04

	
87.81

	
85.17

	
99.49

	
88.00

	
98.39




	

	
±1.52

	
±1.36

	
±1.82

	
±4.64

	
±6.01

	
±2.20

	
±1.01

	
±0.32

	
±2.23

	
±1.03




	
OA

	
69.47

	
69.65

	
71.38

	
73.04

	
72.59

	
73.01

	
73.80

	
84.30

	
86.92

	
92.33




	

	
±2.16

	
±0.88

	
±1.10

	
±0.70

	
±0.68

	
±1.47

	
±1.91

	
±1.05

	
±0.42

	
±0.93




	
AA

	
76.66

	
76.42

	
78.86

	
75.69

	
74.53

	
75.96

	
75.94

	
87.11

	
88.38

	
93.52




	

	
±0.52

	
±0.70

	
±0.92

	
±1.55

	
±1.82

	
±0.74

	
±0.25

	
±0.71

	
±0.43

	
±0.53
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61.22

	
61.43

	
63.79

	
65.31

	
64.39

	
65.22

	
66.10

	
79.57

	
82.88

	
89.93




	

	
±2.30

	
±0.88

	
±1.19

	
±0.83

	
±0.89

	
±1.74

	
±2.14

	
±1.24

	
±0.50

	
±1.17










Table 5. Classification accuracy (%) and standard deviation of different methods for the Salinas data when the reduced dimension is 30.







	
No.

	
Origin

	
PCA

	
LDA

	
LFDA

	
SGDA

	
GDA-SS

	
SLGDA

	
MPCA

	
G-LTDA

	
TSLGDA






	
1

	
98.07

	
98.73

	
98.98

	
99.44

	
99.49

	
99.39

	
99.61

	
98.00

	
96.94

	
99.92




	

	
±0.44

	
±0.80

	
±0.81

	
±0.10

	
±0.13

	
±0.14

	
±0.23

	
±0.98

	
±1.63

	
±0.15




	
2

	
98.68

	
98.90

	
98.88

	
99.23

	
99.54

	
99.25

	
99.50

	
99.47

	
98.73

	
99.98




	

	
±0.38

	
±0.25

	
±0.29

	
±0.17

	
±0.28

	
±0.21

	
±0.37

	
±0.55

	
±0.81

	
±0.03




	
3

	
96.20

	
96.85

	
95.13

	
99.16

	
99.28

	
99.59

	
99.57

	
98.17

	
93.65

	
99.97




	

	
±0.25

	
±0.61

	
±1.05

	
±0.25

	
±0.05

	
±0.15

	
±0.17

	
±0.19

	
±1.88

	
±0.06




	
4

	
99.24

	
99.39

	
99.51

	
99.12

	
99.41

	
99.12

	
99.15

	
99.71

	
93.92

	
98.41




	

	
±0.08

	
±0.35

	
±0.18

	
±0.46

	
±0.13

	
±0.41

	
±0.30

	
±0.87

	
±3.27

	
±0.68




	
5

	
94.55

	
93.45

	
95.63

	
98.79

	
98.64

	
98.42

	
99.03

	
97.95

	
96.50

	
98.87




	

	
±0.66

	
±1.85

	
±0.81

	
±0.09

	
±0.87

	
±0.62

	
±0.12

	
±1.28

	
±1.76

	
±1.33




	
6

	
99.67

	
99.63

	
99.56

	
99.79

	
99.77

	
99.70

	
99.87

	
99.24

	
98.74

	
100




	

	
±0.16

	
±0.25

	
±0.11

	
±0.21

	
±0.05

	
±0.13

	
±0.13

	
±1.27

	
±0.52

	
±0.00




	
7

	
98.87

	
99.40

	
99.34

	
99.43

	
99.44

	
99.64

	
99.64

	
98.18

	
96.21

	
99.99




	

	
±0.53

	
±0.11

	
±0.24

	
±0.24

	
±0.09

	
±0.30

	
±0.08

	
±0.35

	
±2.39

	
±0.02




	
8

	
72.41

	
73.59

	
74.13

	
73.01

	
76.25

	
78.11

	
78.86

	
90.80

	
97.93

	
97.73




	

	
±2.03

	
±2.33

	
±0.49

	
±3.40

	
±4.74

	
±0.42

	
±1.50

	
±0.19

	
±0.60

	
±0.22




	
9

	
97.82

	
97.91

	
98.79

	
98.92

	
99.10

	
98.78

	
99.65

	
99.54

	
98.71

	
100




	

	
±0.01

	
±0.88

	
±0.50

	
±0.18

	
±0.19

	
±1.46

	
±0.12

	
±0.07

	
±1.07

	
±0.00




	
10

	
87.70

	
89.62

	
91.68

	
95.24

	
96.07

	
94.88

	
95.42

	
94.77

	
94.96

	
99.77




	

	
±4.21

	
±0.33

	
±1.05

	
±0.44

	
±1.28

	
±1.65

	
±1.12

	
±0.67

	
±2.25

	
±0.37




	
11

	
93.82

	
96.85

	
93.47

	
95.03

	
96.49

	
95.61

	
97.29

	
94.58

	
90.58

	
100




	

	
±1.38

	
±1.92

	
±4.81

	
±2.28

	
±3.75

	
±2.83

	
±3.54

	
±1.72

	
±4.90

	
±0.00




	
12

	
99.75

	
99.93

	
99.45

	
99.95

	
99.91

	
99.95

	
99.82

	
99.44

	
97.17

	
100




	

	
±0.16

	
±0.12

	
±0.46

	
±0.09

	
±0.06

	
±0.07

	
±0.17

	
±0.98

	
±1.53

	
±0.00




	
13

	
97.29

	
96.14

	
97.14

	
98.36

	
97.84

	
97.94

	
98.59

	
99.74

	
95.01

	
100




	

	
±0.17

	
±1.56

	
±0.17

	
±0.73

	
±0.89

	
±0.08

	
±0.84

	
±0.28

	
±2.11

	
±0.00




	
14

	
92.49

	
93.89

	
95.00

	
94.91

	
96.91

	
95.23

	
97.23

	
94.97

	
93.16

	
99.87




	

	
±1.53

	
±0.87

	
±0.98

	
±1.63

	
±1.39

	
±2.02

	
±0.25

	
±2.23

	
±5.57

	
±0.15




	
15

	
62.04

	
58.38

	
64.37

	
69.36

	
67.05

	
67.51

	
66.31

	
88.63

	
96.22

	
96.77




	

	
±1.48

	
±2.25

	
±1.98

	
±4.08

	
±5.23

	
±1.65

	
±1.88

	
±0.62

	
±1.10

	
±1.47




	
16

	
94.75

	
94.44

	
98.00

	
98.78

	
98.57

	
98.76

	
99.30

	
96.95

	
91.91

	
100




	

	
±1.41

	
±0.85

	
±0.58

	
±0.40

	
±0.31

	
±0.16

	
±0.46

	
±1.68

	
±7.30

	
±0.00




	
OA

	
86.97

	
86.96

	
88.23

	
89.34

	
89.86

	
90.13

	
90.43

	
95.27

	
96.73

	
98.98




	

	
±0.63

	
±0.49

	
±0.27

	
±0.79

	
±0.45

	
±0.42

	
±0.07

	
±0.04

	
±0.89

	
±0.15




	
AA

	
92.71

	
92.94

	
93.69

	
94.91

	
95.24

	
95.12

	
95.55

	
96.70

	
95.65

	
99.46




	

	
±0.58

	
±0.23

	
±0.40

	
±0.43

	
±0.38

	
±0.24

	
±0.18

	
±0.06

	
±1.41

	
±0.08
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85.50

	
85.48

	
86.90

	
88.15

	
89.02

	
88.33

	
89.34

	
94.74

	
96.35

	
98.86




	

	
±0.70

	
±0.53

	
±0.30

	
±0.88

	
±0.49

	
±0.46

	
±0.08

	
±0.05

	
±0.99

	
±0.16











4.3.2. Classification Maps


In order to show the classification results more directly, classification maps of all considered methods are provided in Figure 5, Figure 6 and Figure 7 for three experimental datasets, respectively. From Figure 5, it can be clearly seen that the proposed method can obtain much smoother classification regions than other methods, especially for class 1 (Alfalfa), class 2 (Corn-notill), class 3 (Corn-mintill), and class 12 (Soybean-clean) whose spectral characteristics are highly correlated with other classes. The similar results can also be observed from Figure 6 and Figure 7, where class 1 (Asphalt), class 6 (Bare Soil), and class 8 (Self-blocking bricks) in the second dataset, and class 8 (Grapes untrained), class 15 (Vineyard untrained) in the third dataset are labeled more precisely. These observations are consistent with the quantitative results listed in Table 3, Table 4 and Table 5.


Figure 5. Classification maps of different methods for the Indian Pines dataset: (a) ground truth; (b) training set; (c) origin; (d) PCA; (e) LDA; (f) LFDA; (g) SGDA; (h) GDA-SS; (i) SLGDA; (j) MPCA; (k) G-LTDA; and (l) TSLGDA.
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Figure 6. Classification maps of different methods for the University of Pavia dataset: (a) ground truth; (b) training set; (c) origin; (d) PCA; (e) LDA; (f) LFDA; (g) SGDA; (h) GDA-SS; (i) SLGDA; (j) MPCA; (k) G-LTDA; and (l) TSLGDA.
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Figure 7. Classification maps of different methods for the Salinas dataset: (a) ground truth; (b) training set; (c) origin; (d) PCA; (e) LDA; (f) LFDA; (g) SGDA; (h) GDA-SS; (i) SLGDA; (j) MPCA; (k) G-LTDA; and (l) TSLGDA.
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4.3.3. The Influence of Training Size


To show the influence of training size, some considered DR methods are tested. The results are given in Figure 8, from which we can see that the OA values of all methods are improved when the number of training samples increases for three datasets. Due to the spatial structure information contained in the tensor, the proposed method always performs better than other methods in all cases. In addition, with the label information, the supervised DR methods (i.e., SGDA, GDA-SS, SLGDA, G-LTDA, TSLGDA) achieve better results than the corresponding unsupervised DR methods (i.e., PCA, MPCA).


Figure 8. Overall classification accuracy and standard deviation versus different numbers of training samples per class for all methods using three datasets: (a) Indian Pines; (b) University of Pavia; (c) Salinas.
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4.3.4. The Analysis of Computational Complexity


For the comparison of computational complexity, we take the Indian Pines data as an example. Table 6 shows the time requirements of all considered methods, from which it can be clearly seen that traditional methods (e.g., PCA, LDA, LFDA) run faster than other recently proposed methods. In addition, due to complicated tensor computation, tensor-based DR methods (e.g., MPCA, G-LTDA, TSLGDA) cost more time than vector-based methods (e.g., SGDA, GDA-SS, SLGDA). Although TSLGDA has the highest computational complexity, it yields the best classification performance. In practice, the general-purpose graphics processing units (GPUs) can be adopted to greatly accelerate the TSLGDA algorithm.



Table 6. Execution time (in seconds) of different methods for the Indian Pines data with different training size.







	
Methods

	
6%

	
8%

	
10%

	
12%

	
14%






	
PCA

	
1.23

	
1.49

	
1.86

	
2.35

	
2.54




	
LDA

	
1.23

	
1.51

	
1.88

	
2.34

	
2.54




	
LFDA

	
1.24

	
1.57

	
1.93

	
2.40

	
2.62




	
SGDA

	
10.60

	
14.11

	
18.53

	
23.90

	
29.30




	
GDA-SS

	
1.13

	
1.36

	
1.67

	
2.15

	
2.45




	
SLGDA

	
3.24

	
4.81

	
7.20

	
10.19

	
13.09




	
MPCA

	
115.94

	
150.00

	
161.06

	
182.37

	
203.94




	
G-LTDA

	
30.96

	
40.24

	
49.86

	
62.41

	
74.83




	
TSLGDA

	
183.91

	
225.06

	
281.19

	
349.44

	
456.84













5. Conclusions


In this paper, we have proposed a tensor sparse and low-rank graph-based discriminant analysis method (i.e., TSLGDA) for dimensionality reduction of hyperspectral imagery. The hyperspectral data cube is taken as a third-order tensor, from which sub-tensors (local patches) centered at the training samples are extracted to construct the sparse and low-rank graph. On the one hand, by imposing both the sparse and low-rank constraints on the objective function, the proposed method is capable of capturing the local and global structure simultaneously. On the other hand, due to the spatial structure information introduced by tensor data, the proposed method can improve the graph structure and enhance the discriminative ability of reduced features. Experiments conducted on three hyperspectral datasets have consistently confirmed the effectiveness of our proposed TSLGDA algorithm, even for small training size. Compared to some state-of-the-art methods, the overall classification accuracy of TSLGDA in the low-dimensional space improves about 2% to 30%, 5% to 20%, and 2% to 12% for three experimental datasets, respectively, with increased computational complexity.
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