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Abstract: Recently, sparse and low-rank graph-based discriminant analysis (SLGDA) has yielded
satisfactory results in hyperspectral image (HSI) dimensionality reduction (DR), for which sparsity
and low-rankness are simultaneously imposed to capture both local and global structure of
hyperspectral data. However, SLGDA fails to exploit the spatial information. To address this
problem, a tensor sparse and low-rank graph-based discriminant analysis (TSLGDA) is proposed
in this paper. By regarding the hyperspectral data cube as a third-order tensor, small local patches
centered at the training samples are extracted for the TSLGDA framework to maintain the structural
information, resulting in a more discriminative graph. Subsequently, dimensionality reduction is
performed on the tensorial training and testing samples to reduce data redundancy. Experimental
results of three real-world hyperspectral datasets demonstrate that the proposed TSLGDA algorithm
greatly improves the classification performance in the low-dimensional space when compared to
state-of-the-art DR methods.
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1. Introduction

A hyperspectral image contains a wealth of spectral information about different materials by
collecting the reflectance of hundreds of contiguous narrow spectral bands from the visible to infrared
electromagnetic spectrum [1–3]. However, the redundant information in a hyperspectral image
not only increases computational complexity but also degrades classification performance when
training samples are limited. Some research has demonstrated that the redundancy can be reduced
without a significant loss of useful information [4–7]. As such, reducing the dimensionality of
hyperspectral images is a reasonable and important preprocessing step for subsequent analysis and
practical applications.

Dimensionality reduction (DR) aims to reduce the redundancy among features and simultaneously
preserve the discriminative information. In general, existing DR methods may belong to one of three
categories: unsupervised, supervised, and semisupervised. The unsupervised methods do not take the
class label information of training samples into consideration. The most commonly used unsupervised
DR algorithm is principal component analysis (PCA) [8], which is to find a linear transformation by
maximizing the variance in the projected subspace. Linear discriminant analysis (LDA) [9], as a simple
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supervised DR method, is proposed to maximize the trace ratio of between-class and within-class
scatter matrices. To address the application limitation in data distribution of LDA, local Fisher’s
discriminant analysis (LFDA) [10] is developed. In order to overcome the difficulty that the number of
training samples is usually limited, some semisupervised DR methods in [11,12] are proposed.

The graph, as a mathematical data representation, has been successfully embedded in the
framework of DR, resulting in the development of many effective DR methods. Recently, a general
graph embedding (GE) framework [13] has been proposed to formulate most of the existing DR
methods, in which an undirected graph is constructed to characterize the geometric information of the
data. k-nearest neighbors and ε-radius ball [14] are two traditional methods to construct adjacency
graphs. However, these two methods are sensitive to the noise and may lead to incorrect data
representation. To construct an appropriate graph, a graph-based discriminant analysis with spectral
similarity (GDA-SS) measurement was recently proposed by considering curves changing description
among spectral bands in [15]. Sparse representation (SR) [16,17] has attracted much attention because
of its benefits of data-adaptive neighborhoods and noise robustness. Based on this work, a sparse graph
embedding (SGE) model [18] was developed by exploring the sparsity structure of the data. In [19],
a sparse graph-based discriminant analysis (SGDA) model was developed for hyperspectral image
dimensionality reduction and classification by exploiting the class label information, improving the
performance of SGE. In [20], a weighted SGDA integrated both the locality and sparsity structure
of the data. To reduce the computational cost, collaborative graph-based discriminant analysis
(CGDA) [21] was introduced by imposing an l2 regularization on sparse coefficient vector. In [22],
Laplacian regularization was imposed on CGDA, resulting in the LapCGDA algorithm. SR is able to
reveal the local structure but fails in capturing the global structure. To solve this problem, a sparse and
low-rank graph-based discriminant analysis (SLGDA) [23] was proposed to simultaneously preserve
the local and global structure of hyperspectral data.

However, the aforementioned graph-based DR methods only deal with spectral vector-based
(first-order) representations, which do not take the spatial information of hyperspectral data into
consideration. Aiming to overcome this shortcoming, simultaneous sparse graph embedding (SSGE)
was proposed to improve the classification performance in [24]. Although SSGE has obtained enhanced
performance, it still puts the spectral-spatial feature into first-order data for analysis and ignores the
cubic nature of hyperspectral data that can be taken as a third-order tensor. Some researchers have
verified the advantage of tensor representation when processing the hyperspectral data. For example,
multilinear principal component analysis (MPCA) [25] was integrated with support vector machines
(SVM) for tensor-based classification in [26]. A group based tensor model [27] by exploiting clustering
technique was developed for DR and classification. In addition, a tensor discriminative locality
alignment (TDLA) [28] algorithm was proposed for hyperspectral image spectral-spatial feature
representation and DR, which has been extended in [29] by combining with well-known spectral-spatial
feature extraction methods (such as extended morphological profiles (EMPs) [30], extended attribute
profiles (EAPs) [31], and Gabors [32]) for classification. Though the previous tensor-based DR methods
have achieved great improvement on performance, they do not consider the structure property from
other perspectives, such as representation-based and graph-based points.

In this context, we propose a novel DR method, i.e., tensor sparse and low-rank graph-based
discriminant analysis (TSLGDA), for hyperspectral data, in which the information from three
perspectives (tensor representation, sparse and low-rank representation, and graph theory) is exploited
to present the data structure for hyperspectral image. It is noteworthy that the proposed method aims
to exploit the spatial information through tensor representation, which is different from the work
in [23] only considering the spectral information. Furthermore, tensor locality preserving projection
(TLPP) [33] is exploited to obtain three projection matrices for three dimensions (one spectral dimension
and two spatial dimensions) in TSLGDA, while SLGDA [23] only considers one spectral projection
matrix by locality preserving projection. The contributions of our work lie in the following aspects:
(1) tensor representation is utilized in the framework of sparse and low-rank graph-based discriminant
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analysis for DR of hyperspectral image. To the best of our knowledge, this is the first time that
tensor theory, sparsity, and low-rankness are combined in graph embedding framework; (2) Tensorial
structure contains the spectral-spatial information, sparse and low-rank representation reveals both
local and global structure and a graph preserves manifold structure. The integration of these
three techniques remarkably promotes discriminative ability of reduced features in low-dimensional
subspaces; (3) The proposed method can effectively deal with small training size problem, even for the
class with only two labeled samples.

The rest of this paper is organized as follows. Section 2 briefly describes the tensor basics and some
existing DR methods. The proposed TSLGDA algorithm for DR of hyperspectral imagery is provided in
detail in Section 3. Parameters discussions and experimental results compared with some state-of-the-art
methods are given in Section 4. Finally, Section 5 concludes this paper with some remarks.

2. Related Work

In this paper, if not specified otherwise, lowercase italic letters denote scalars, e.g., i, j, k,
bold lowercase letters denote vectors, e.g., x, y, bold uppercase letters denote matrices, e.g., U, X,
and bold uppercase letters with underline denote tensors, e.g., A, X.

2.1. Tensor Basics

A multidimensional array is defined as a tensor, which is represented as A ∈ RI1×...In×...IN .
We regard A ∈ RI1×...In×...IN as an N-order tensor, corresponding to an N-dimensional data array,
with its element denoted as Ai1 ...in ...iN

, where 1 ≤ in ≤ In, and 1 ≤ n ≤ N. Some basic definitions
related to tensor operation are provided as follows [28,33,34].

Definition 1. (Frobenius norm): The Frobenius norm of a tensor A is defined as
‖A‖F = (∑i1 ...iN

(Ai1 ...iN
)2)1/2.

Definition 2. (Mode-n matricizing): The n-mode vector of an N-order tensor A ∈ RI1×...In×...IN is defined as
an n-dimensional vector by fixing all indices except in. The n-mode matrix is composed of all the n-mode vectors
in column form, denoted as An ∈ RIn×(I1 ...In−1 In+1 ...IN). The obtained n-mode matrix is also known as n-mode
unfolding of a tensor A.

Definition 3. (Mode-n product): The mode-n product of a tensor A with a matrix U ∈ RI
′
n×In yields

C = A×n U, and C ∈ RI1 ...In−1 I
′
n In+1 ...IN , whose entries are computed by

Ci1 ...in−1i′nin+1 ...iN
=

In

∑
in=1

Ai1 ...in−1inin+1 ...iN
Ui′nin

(1)

where ik = 1, 2, . . . , Ik, (k 6= n) and i
′
n = 1, 2, . . . , I

′
n. Note that the n-mode product can also be expressed in

terms of unfolding tensor
C = A×n U⇔ Cn = UAn (2)

where ×n denotes mode-n product between a tensor and a matrix.

Definition 4. (Tensor contraction): The contraction of tensors A ∈ R
I1×...×IN×I

′
1×...×I

′
N′ and

B ∈ R
I1×...×IN×I

′′
1 ×...×I

′′
N′′ is defined as

[A⊗ B; (1 : N)(1 : N)]i1,i2,...,iN =
I1

∑
i1=1
· · ·

IN

∑
iN=1

Ai1,...,iN ,i′1,...,i′
N′

Bi1,...,iN ,i′′1 ,...,i′′
N′′

(3)



Remote Sens. 2017, 9, 452 4 of 20

The condition for tensor contraction is that both two tensors should have the same size at the specific
mode. For example, when the contraction is conducted on all indices except for the index n on tensors
A, B ∈ RI1×...In×...IN , this operation can be denoted as [A⊗ B; (n)(n)]. According to the property of tensor
contraction, we have

[A⊗ B; (n)(n)] = AnBnT (4)

2.2. Sparse and Low-Rank Graph-Based Discriminant Analysis

In [19], sparse graph-based discriminant analysis (SGDA), as a supervised DR method,
was proposed to extract important features for hyperspectral data. Although SGDA can successfully
reveal the local structure of the data, it fails to capture the global information. To address this problem,
sparse and low-rank graph-based discriminant analysis (SLGDA) [23] was developed to preserve local
neighborhood structure and global geometrical structure simultaneously by combining the sparse and
low-rank constraints. The objective function of SLGDA can be formulated as

arg min
W(l)

1
2
‖X(l) − X(l)W(l)‖2

F + β‖W(l)‖∗ + λ‖W(l)‖1,

s.t. diag(W(l)) = 0
(5)

where β and λ are two regularization parameters to control the effect of low-rank term and sparse term,
respectively, X(l) represents samples from the lth class in a vector-based way, and l = [1, 2, . . . , c],
in which c is the number of total classes. After obtaining the complete graph weight matrix
W = diag(W(1), W(2), . . . , W(c)), the projection operator can be solved as

P∗ = arg min
PTXLpXTP

∑
i 6=j
‖PTxi − PTxj‖2

2Wij

= arg min
PTXLpXTP

tr(PTXLsXTP)
(6)

where Ls = D−W is defined as the Laplacian matrix, D is a diagonal matrix with the ith diagonal
entry being Dii = ∑N

j=1 Wij, and Lp may be a simple scale normalization constraint [13].
The projection can be further formulated as

P∗ = arg min
P

|PTXLsXTP|
|PTXLpXTP| (7)

which can be solved as a generalized eigendecomposition problem

XLsXTpb = λbXLpXTpb (8)

The bth projection vector pb is the eigenvector corresponding to the bth smallest nonzero
eigenvalue. The projection matrix can be formed as P = [p1, . . . , pB] ∈ Rd×B, B � d. Finally,
the reduced features are denoted as X̂ = PTX ∈ RB×M.

2.3. Multilinear Principal Component Analysis

In order to obtain a set of multilinear projections that will map the original high-order tensor data
into a low-order tensor space, MPCA performs to directly maximize the total scatter matrix on the
subspace Ui(i 6= n)

max
UnUT

n=In

tr(UnSn
TUT

n ) = max
UnUT

n=In

tr
(

Un(
M

∑
k=1

Xn
k XnT

k )UT
n

)
, (9)

where Sn
T = ∑M

k=1 Xn
k XnT

k and Xn
k is the n-mode unfolding matrix of tensor Xk.



Remote Sens. 2017, 9, 452 5 of 20

The optimal projections of MPCA can be obtained from the eigendecomposition

Sn
TUT

n = UT
n Dn (10)

where Un = [u1
n, . . . , udn

n ] is the eigenvector matrix and Dn = diag(λ1
n, . . . , λdn

n ) is the eigenvalue
matrix of Sn

T , in which the eigenvalues are ranked in descending order, and λ
j
n is the eigenvalue

corresponding to the eigenvector uj
n. The optimal projection matrix for mode-n is composed of the

eigenvectors corresponding to the first Bn largest eigenvalues, e.g., Un = [u1
n, . . . , uBn

n ]. After obtained
the projection matrix for each mode, the reduced features can be formulated as

X̂k = Xk ×1 U1 . . .×N UN (11)

where Ui ∈ RBn×In(Bn ≤ In).

3. Tensor Sparse and Low-Rank Graph-Based Discriminant Analysis

Consider a hyperspectral image as a third-order tensor A ∈ RI1×I2×I3 , in which I1 and I2 refer to
the width and height of the data cube, respectively, and I3 represents the number of spectral bands,
I3 = d. Assume that the kth small patch is composed of the kth training sample and its i1× i2 neighbors,
which is denoted as Xk ∈ Ri1×i2×d. M patches construct the training set {Xk}M

k=1. The training patches
belonging to the lth class are expressed as {Xk,l}

Ml
k=1, where Ml represents the number of patches

belonging to the lth class and l ∈ {1, 2, . . . , c}. For the purpose of convenient expression, a fourth-order
tensor X(l) ∈ Ri1×i2×d×Ml is defined to represent these Ml patches, and X ∈ Ri1×i2×d×M denotes all
training patches for c classes, where M = ∑c

l=1 Ml . A visual illustration of 3-mode vectors, 3-mode
unfolding, and 3-mode product is shown in Figure 1.

HSI Cube X 2 RI1£I2£d

3-mode vectors

3-mode unfolding

3-mode product

Figure 1. Visual illustration of n-mode vectors, n-mode unfolding, and n-mode product of a third-order
tensor from a hyperspectral image.

3.1. Tensor Sparse and Low-Rank Graph

The previous SLGDA framework can capture the local and global structure of hyperspectral
data simultaneously by imposing both sparse and low-rank constraints. However, it may lose some
important structural information of hyperspectral data, which presents an intrinsic tensor-based data
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structure. To overcome this drawback, a tensor sparse and low-rank graph is constructed with the
objective function

arg min
W(l)

1
2
‖X(l) − X(l) ×4 W(l)‖2

F + β‖W(l)‖∗ + λ‖W(l)‖1,

s.t. diag(W(l)) = 0,
(12)

where W(l) ∈ RMl×Ml denotes the graph weigh matrix using labeled patches from the lth class only.
As such, with the help of class-specific labeled training patches, the global graph weigh matrix W can
be designed as a block-diagonal structure

W =

 W(1) 0
. . .

0 W(c)

 (13)

To obtain the lth class graph weight matrix W(l), the alternating direction method of multipliers
(ADMM) [35] is adopted to solve problem (12). Two auxiliary variables Z(l) and J(l) are first introduced
to make the objective function separable

arg min
Z(l),J(l),W(l)

1
2
‖X(l) − X(l) ×4 W(l)‖2

F + β‖Z(l)‖∗ + λ‖J(l)‖1,

s.t. W(l) = Z(l), W(l) = J(l) − diag(J(l))
(14)

The augmented Lagrangian function of problem (14) is given as

L(Z(l), J(l), W(l), D1, D2)

=
1
2
‖X(l) − X(l) ×4 W(l)‖2

F + β‖Z(l)‖∗ + λ‖J(l)‖1 + 〈D1, W(l) − Z(l)〉+ 〈D2, W(l) − J(l) + diag(J(l))〉

+
µ

2
(‖W(l) − Z(l)‖2

F + ‖W(l) − J(l) + diag(J(l))‖2
F)

(15)

where D1 and D2 are Lagrangian multipliers, and µ is a penalty parameter.
By minimizing the function L(Z(l), J(l), W(l)), each variable is alternately updated with other

variables being fixed. The updating rules are expressed as

Z(l)
t+1 = arg min

Z(l)
β‖Z(l)‖∗ + 〈D1,t, W(l)

t − Z(l)〉+ µt

2
‖W(l)

t − Z(l)‖2
F

= arg min
Z(l)

β

µt
‖Z(l)‖∗ +

1
2
‖Z(l) − (W(l)

t +
D1,t

µt
)‖2

F

= Ω β
µt
(W(l)

t +
D1,t

µt
)

(16)

J(l)t+1 = arg min
J(l)

λ‖J(l)‖1 + 〈D2,t, W(l)
t − J〉+ µt

2
‖W(l)

t − J(l)‖2
F

= arg min
J(l)

λ

µt
‖J(l)‖1 +

1
2
‖J(l) − (W(l)

t +
D2,t

µt
)‖2

F

= S λ
µt
(W(l)

t +
D2,t

µt
),

J(l)t+1 = J(l)t+1 − diag(J(l)t+1),

(17)
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where µt denotes the learning rate, Ωτ(∆) = QSτ(∑)VT is the singular value thresholding operator
(SVT), in which Sτ(x) = sgn(x)max(|x| − τ, 0) is the soft thresholding operator [36]. By fixing Z(l)

t+1

and J(l)t+1, the formulation of W(l)
t+1 can be written as

W(l)
t+1 = arg min

W(l)

1
2
‖X(l) − X(l) ×4 W(l)‖2

F + 〈D1,t, W(l) − Z(l)
t+1〉+ 〈D2,t, W(l) − J(l)t+1〉

+
µt

2
(‖W(l) − Z(l)

t+1‖
2
F + ‖W(l) − J(l)t+1‖

2
F)

= (H(l) + 2µtI)−1(H(l) + µtZ
(l)
t+1 + µtJ

(l)
t+1 − (D1,t + D2,t)),

(18)

where H(l) = [X(l) ⊗ X(l); (4)(4)] ∈ RMl×Ml , W(l) ∈ RMl×Ml , and I ∈ RMl×Ml is an identity matrix.
The global similarity matrix W will be obtained depending on Equation (13) when each

sub-similarity matrix corresponding to each class is calculated from problem (12). Until now, a tensor
sparse and low-rank graph G = {X, W} is completely constructed with vertex set X and similarity
matrix W. How to obtain a set of projection matrices {Un ∈ RBn×In , Bn ≤ In, n = 1, 2, . . . , N} is the
following task.

3.2. Tensor Locality Preserving Projection

The aim of tensor LPP is to find transformation matrices {U1, U2, . . . , UN}
to project high-dimensional data Xi into low-dimensional representation X̂i,
where X̂i = Xi ×1 U1 ×2 U2 · · · ×N UN .

The optimization problem for tensor LPP can be expressed as

arg min J(U1, U2, . . . , UN) = ∑
i,j
‖X̂i − X̂j‖2Wij

= ∑
i,j
‖Xi ×1 U1 · · · ×N UN − Xj ×1 U1 · · · ×N UN‖2Wij

s.t. ∑
i
‖Xi ×1 U1 · · · ×N UN‖2Cii = 1

(19)

where Cii = ∑j Wij. It can be seen that the corresponding tensors X̂i and X̂j in the embedded tensor
space are expected to be close to each other if original tensors Xi and Xj are greatly similar.

To solve the optimization problem (19), an iterative scheme is employed [33]. First, we assume that
{U1, . . . , Un−1, Un+1, . . . , UN} are known, then, let X̂i,(n) = Xi ×1 U1 . . .×n−1 Un−1×n+1 Un+1 . . .×N UN.
With properties of tensor and trace, the objective function (19) is rewritten as

arg min Jn(Un) = ∑
i,j
‖X̂i,(n) ×n Un − X̂j,(n) ×n Un‖2Wij

= ∑
i,j
‖UnX̂n

i −UnX̂n
j ‖2Wij

= ∑
i,j

tr
(

Un
(
(X̂n

i − X̂n
j )(X̂

n
i − X̂n

j )
TWij

)
UT

n

)

= tr
(

Un
(
∑
i,j
(X̂n

i − X̂n
j )(X̂

n
i − X̂n

j )
TWij

)
UT

n

)
,

s.t. tr
(
Un(∑

i
X̂n

i X̂nT
i Cii)UT

n
)
= 1,

(20)
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where X̂n
i denotes the n-mode unfolding of tensor X̂i,(n). Finally, the optimal solution of problem (20) is

the eigenvectors corresponding to the first Bn smallest nonzero eigenvalues of the following generalized
eigenvalue problem (

∑
i,j
(X̂n

i − X̂n
j )(X̂

n
i − X̂n

j )
TWij

)
u = λ

(
∑

i
X̂n

i X̂nT
i Cii

)
u (21)

Assume Φ = ∑i,j(X̂n
i − X̂n

j )(X̂
n
i − X̂n

j )
TWij, Ψ = ∑i X̂n

i X̂nT
i Cii, then, problem (21) can be

transformed into
Φu = λΨu (22)

To solve this problem, the function eig(·) embedded in the MATLAB software (R2013a,
The MathWorks, Natick, Massachusetts, USA) is adopted, i.e., [u, Λ] = eig(Φ, Ψ), and the eigenvectors
in u corresponding to the first Bn smallest nonzero eigenvalues in Λ are chosen to form the projection
matrix. The other projection matrices can be obtained in a similar manner. The complete TSLGDA
algorithm is outlined in Algorithm 1.

Algorithm 1: Tensor Sparse and Low-Rank Graph-Based Discriminant Analysis for Classification.

Input: Training patches X = [X(1), X(2), . . . , X(c)], testing patchesY, regularization parameters β and λ,
reduced dimensionality {B1, B2, B3}.

Initialize: Z(l)
0 = J(l)0 = W(l)

0 = 0, Y1,0 = Y2,0 = 0, µ0 = 0.1, µmax = 103, ρ0 = 1.1, ε1 = 10−4, ε2 = 10−3,
maxIter = 100, t = 0.

1. for l = 1, 2, . . . , c do
2. repeat
3. Compute Z(l)

t+1, J(l)t+1, and W(l)
t+1 according to (16)–(18).

4. Update the Lagrangian multipliers:
Y1,t+1 = Y1,t + µt(W

(l)
t+1 − Z(l)

t+1), Y2,t+1 = Y2,t + µt(W
(l)
t+1 − J(l)t+1).

5. Update µ: µt+1 = min(ρµt, µmax), where

ρ =

{
ρ0, i f µt max(‖W(l)

t+1 −W(l)
t ‖F, ‖Z(l)

t+1 − Z(l)
t ‖F, ‖J(l)t+1 − J(l)t ‖F)/‖X̂

(l)‖F < ε2,
1, otherwise.

6. Check convergence conditions: ‖W(l)
t+1 − Z(l)

t+1‖∞ < ε1, ‖W(l)
t+1 − J(l)t+1‖∞ < ε1.

7. t← t + 1.
8. until convergence conditions are satisfied or t >maxIter.
9. end for
10. Construct the block-diagonal weight matrix W according to (13).
11. Compute the projection matrices {U1, U2, U3} according to (21).
12. Compute the reduced features:

X̂ = X×1 U1 ×2 U2 ×3 U3, Ŷ = Y×1 U1 ×2 U2 ×3 U3.
13. Determine the class label of Ŷ by NN classifier.
14. Output: The class labels of test patches.

4. Experiments and Discussions

In this section, three hyperspectral datasets are used to verify the performance of the proposed
method. The proposed TSLGDA algorithm is compared with some state-of-the-art approaches,
including unsupervised methods (e.g., PCA [8], MPCA [25]) and supervised methods (e.g., LDA [9],
LFDA [10], SGDA [19], GDA-SS [15], SLGDA [23], G-LTDA (local tensor discriminant analysis with
Gabor filters) [29]). SGDA is implemented using the SPAMS (SPArse Modeling Software) toolbox [38].
The nearest neighbor classifier (NN classifier) is exploited to classify the projected features obtained
by these DR methods. The class-specific accuracy , overall accuracy (OA), average accuracy (AA),
and kappa coefficient (κ) are reported for quantitative assessment after ten runs. All experiments are
implemented on an Inter Core i5-4590 CPU personal computer (Santa Clara, CA, USA).
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4.1. Experimental Datasets

The first dataset [39] was acquired by Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
sensor over northwest Indiana’s Indian Pine test site in June 1992. The AVIRIS sensor generates the
wavelength range of 0.4–2.45-µm covered 220 spectral bands. After removing 20 water-absorption
bands (bands 104–108, 150–163, and 220), a total of 200 bands is used in experiments. The image with
145 × 145 pixels represents a rural scenario having 16 different land-cover classes. The numbers of
training and testing samples in each class are listed in Table 1.

Table 1. Number of training and testing samples for the Indian Pines and University of Pavia datasets.

Indian Pines University of Pavia

Class Name Training Testing Name Training Testing

1 Alfalfa 5 41 Asphalt 40 6591
2 Corn-notill 143 1285 Meadows 40 18,609
3 Corn-mintill 83 747 Gravel 40 2059
4 Corn 24 213 Tree 40 3024
5 Grass-pasture 48 435 Painted metal sheets 40 1305
6 Grass-trees 73 657 Bare Soil 40 4989
7 Grass-pasture-mowed 3 25 Bitumen 40 1290
8 Hay-windrowed 48 430 Self-blocking bricks 40 3642
9 Oats 2 18 Shadows 40 907

10 Soybean-notill 97 875
11 Soybean-mintill 246 2209
12 Soybean-clean 59 534
13 Wheat 21 184
14 Woods 127 1138
15 Buildings-Grass-Trees-Drive 39 347
16 Stone-Steel-Towers 9 84

Total 1027 9222 360 42,416

The second dataset [39] is the University of Pavia collected by the Reflective Optics System
Imaging Spectrometer (ROSIS) sensor in Italy. The image has 103 bands after removing 12 noisy bands
with a spectral coverage from 0.43 to 0.86 µm, covering a region of 610 × 340 pixels. There are nine
ground-truth classes, from which we randomly select training and testing samples as shown in Table 1.

The third dataset [39] was also collected by the AVIRIS sensor over the Valley of Salinas,
Central Coast of California, in 1998. The image comprises 512 × 217 pixels with a spatial resolution
of 3.7 m, and only preserves 204 bands after 20 water-absorption bands removed. Table 2 lists
16 land-cover classes and the number of training and testing samples.

Table 2. Number of training and testing samples for the Salinas dataset.

Salinas

Class Name Training Testing

1 Brocoli-green-weeds-1 40 1969
2 Brocoli-green-weeds-2 75 3651
3 Fallow 40 1936
4 Fallow-rough-plow 28 1366
5 Fallow-smooth 54 2624
6 Stubble 79 3880
7 Celery 72 3507
8 Grapes-untrained 225 11,046
9 Soil-vinyard-develop 124 6079

10 Corn-senesced-green-weeds 66 3212
11 Lettuce-romaine-4wk 21 1047
12 Lettuce-romaine-5wk 39 1888
13 Lettuce-romaine-6wk 18 898
14 Lettuce-romaine-7wk 21 1049
15 Vinyard-untrained 145 7123
16 Vinyard-vertical-trellis 36 1771

Total 1083 53,046
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4.2. Parameters Tuning

For the proposed method, four important parameters (i.e., regularization parameters β and λ,
window size, and the number of spectral dimension) that can be divided into three groups need
to be determined before proceeding to the following experiments. β and λ control the effect of
sparse term and low-rank term in the objective function, respectively, which can be tuned together,
while window size and the number of spectral dimension are another two groups that can be
determined separately. When analyzing one group specific parameter, the other group parameters
are fixed on their corresponding chosen values. According to many existing DR methods [22–24] and
tensor-based research [26,28], window size is the first set as 9 for the Indian Pines and Salinas datasets,
and 7 for the University of Pavia dataset; the initial value for the number of spectral dimension is given
as 30 for all three datasets, and the performance basically reaches steady state with this dimension.

4.2.1. Regularization Parameters for TSLGDA

With the initial values of window size and the number of spectral dimension fixed, β and λ

are first tuned to achieve better classification performance. Figure 2 shows the overall classification
accuracy with respect to different β and λ by fivefold cross validation for three experimental datasets.
It can be clearly seen that the OA values can reach the maximum values for some β and λ. Accordingly,
for the Indian Pines dataset, the optimal values of β and λ can be set as (0.01, 0.1), which is also an
appropriate choice for the University of Pavia dataset, while (0.001, 0.1) is chosen for the Salinas data.
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Figure 2. Parameter tuning of β and λ for the proposed TSLGDA algorithm using three datasets:
(a) Indian Pines; (b) University of Pavia; (c) Salinas.

4.2.2. Window Size for Tensor Representation

For tensor-based DR methods, i.e., MPCA and TSLGDA, window size (or patch size) is another
important parameter. Note that small windows may fail to cover enough spatial information, whereas
large windows may contain multiple classes, resulting in complicated analysis and heavy computational
burden. Therefore, the window size is searched in the range of {3× 3, 5× 5, 7× 7, 9× 9}. β and λ are
fixed on the tuned values, while the numbers of spectral dimension are still set as initial values for
three datasets, respectively. Figure 3 presents the variation of classification performances of MPCA and
TSLGDA with different window sizes for experimental datasets. It can be seen that the window sizes
for MPCA and TSLGDA can be both chosen as 9× 9 for the Indian Pines and Salinas datasets, while the
optimal values are 5× 5 and 7× 7, respectively, for the University of Pavia dataset. This may be because
the formers represent a rural scenario containing large spatial homogeneity while the Pavia University
data is obtained from an urban area with small homogeneous regions. To evaluate the classification
performance using the low-dimensional data, 1NN classifier is adopted in this paper.
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Figure 3. Parameter tuning of window size for MPCA and TSLGDA using three datasets:
(a) Indian Pines; (b) University of Pavia; (c) Salinas.

4.2.3. The Number of Spectral Dimension for TSLGDA

According to [28], {1, 1} is set as the reduced dimensionality of the first two dimensions
(i.e., two spatial dimensions). The third dimension (i.e., spectral dimension) is considered carefully by
keeping the tuned values of β, λ, and window size is fixed. Figure 4 shows the overall classification
accuracy with respect to spectral dimension for three hyperspectral datasets. Obviously, due to the
spatial information contained in tensor structure, tensor-based DR methods (i.e., MPCA, TSLGDA)
outperform vector-based DR methods (i.e., PCA, SGDA, GDA-SS, SLGDA). According to [29,37],
G-LTDA can automatically obtain the optimal reduced dimensions during the optimization procedure;
therefore, the number of spectral dimension for G-LTDA is not discussed here. For the Indian Pines
dataset, the performances of all considered methods increase when the spectral dimension increases,
and then keep stable at the maximum values. The similar results can also be observed from the
University of Pavia and Salinas datasets. In any case, TSLGDA outperforms other DR methods
even when the spectral dimension is as low as 5. In the following assessment, {1, 1, 30} and {1, 1, 20}
dimensions are used to conduct classification for two AVIRIS datasets and one ROSIS dataset, respectively.

5 10 15 20 25 30 35 40 45 50
55

60

65

70

75

80

85

90

95

100

The number of spectral dimension

O
ve

ra
ll 

ac
cu

ra
cy

 (
 %

 )

 

 

NN
PCA
SGDA
GDA−SS
SLGDA
MPCA
TSLGDA

(a)

5 10 15 20 25 30 35 40 45 50
60

65

70

75

80

85

90

95

The number of spectral dimension

O
ve

ra
ll 

ac
cu

ra
cy

 (
 %

 )

 

 

NN
PCA
SGDA
GDA−SS
SLGDA
MPCA
TSLGDA

(b)

5 10 15 20 25 30 35 40 45 50
84

86

88

90

92

94

96

98

100

The number of spectral dimension

O
ve

ra
ll 

ac
cu

ra
cy

 (
 %

 )

 

 

NN
PCA
SGDA
GDA−SS
SLGDA
MPCA
TSLGDA

(c)

Figure 4. Overall accuracy versus the reduced spectral dimension for different methods using three
datasets: (a) Indian Pines; (b) University of Pavia; (c) Salinas.

4.3. Classification Results

4.3.1. Classification Accuracy

Tables 3–5 present the classification accuracy of individual class, OA, AA, and kappa coefficient
for three experimental datasets, respectively. Obviously, the proposed method provides the best results
than other compared methods on almost all of classes; meanwhile, OA, AA, and kappa coefficient
are also better than those of other methods. Specifically, by comparing to all considered methods,
TSLGDA yields about 2% to 30%, 5% to 20%, and 2% to 12% gain in OA with limited training sets
for three datasets, respectively. Even for classes with few labeled training samples, such as class 1,
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class 7, and class 9 in the Indian Pines data, the proposed TSLGDA algorithm offers great improvement
in performance as well. Besides TSLGDA, MPCA and G-LTDA also obtain much higher accuracies
than other vector-based methods, which effectively demonstrates the advantage of tensor-based
techniques. In addition, SLGDA yields better results than SGDA (about 3%, 1%, and 0.6% gain) by
simultaneously exploiting the properties of sparsity and low-rankness, while GDA-SS is superior to
SGDA by considering the spectral similarity measurement based on spectral characteristics when
constructing the graph.

Table 3. Classification accuracy (%) and standard deviation of different methods for the Indian Pines
data when the reduced dimension is 30.

No. Origin PCA LDA LFDA SGDA GDA-SS SLGDA MPCA G-LTDA TSLGDA

1 39.02 54.15 33.66 44.88 65.04 49.59 48.78 71.34 92.20 91.71
±8.27 ±11.1 ±17.8 ±15.5 ±7.45 ±12.2 ±6.90 ±9.63 ±4.69 ±8.02

2 55.92 52.96 57.28 67.78 69.31 74.24 73.04 81.09 96.47 97.32
±2.68 ±1.53 ±2.13 ±3.56 ±2.37 ±3.95 ±1.93 ±2.74 ±1.01 ±0.68

3 49.83 50.15 58.34 66.75 62.65 69.57 67.00 82.26 93.98 97.51
±2.68 ±2.34 ±2.57 ±2.82 ±1.76 ±5.56 ±0.28 ±2.74 ±2.34 ±0.91

4 42.07 40.19 38.12 54.93 49.14 58.06 62.68 87.91 96.53 97.37
±7.75 ±4.56 ±4.00 ±7.69 ±5.40 ±8.24 ±12.3 ±4.65 ±3.93 ±1.90

5 82.95 84.47 81.20 88.25 89.55 92.03 93.32 91.13 93.15 97.00
±2.93 ±4.58 ±3.87 ±2.41 ±1.74 ±1.34 ±0.98 ±2.00 ±1.44 ±2.50

6 90.75 93.06 93.36 94.64 95.38 96.91 96.27 97.53 94.76 99.27
±1.00 ±2.95 ±1.47 ±1.59 ±0.61 ±0.89 ±0.11 ±1.14 ±2.94 ±0.46

7 81.60 72.00 76.00 79.20 88.00 88.00 88.00 94.00 95.20 96.80
±8.29 ±13.6 ±12.3 ±22.5 ±4.00 ±8.00 ±5.66 ±7.66 ±7.15 ±3.35

8 96.28 93.02 95.26 99.12 99.53 97.91 99.19 98.37 97.81 99.86
±1.78 ±1.52 ±2.71 ±1.47 ±0.40 ±2.02 ±0.49 ±1.66 ±0.67 ±0.31

9 26.67 34.44 25.56 43.33 50.00 37.04 25.00 54.17 78.89 93.33
±4.65 ±12.0 ±16.5 ±9.94 ±33.8 ±16.9 ±11.8 ±19.4 ±15.4 ±7.24

10 66.06 63.91 65.40 69.04 69.64 73.64 74.03 84.12 95.93 96.52
±2.04 ±3.49 ±3.61 ±3.05 ±5.81 ±3.02 ±0.32 ±1.32 ±1.35 ±1.56

11 71.75 71.41 73.65 72.43 78.18 79.45 79.52 90.30 96.32 98.53
±3.00 ±2.00 ±1.81 ±1.83 ±1.42 ±1.23 ±2.08 ±0.78 ±1.41 ±0.59

12 43.41 41.46 48.63 67.20 67.29 74.78 76.83 73.73 93.60 96.17
±6.34 ±2.55 ±3.25 ±1.56 ±2.19 ±4.59 ±1.99 ±2.38 ±1.70 ±1.75

13 91.41 94.02 93.59 98.70 96.01 97.83 98.64 98.23 91.85 99.46
±2.44 ±2.40 ±1.11 ±0.62 ±0.63 ±1.63 ±1.15 ±1.12 ±4.21 ±0.67

14 90.04 89.65 89.44 93.83 94.58 94.00 96.05 95.78 97.72 99.67
±1.96 ±2.10 ±2.16 ±1.56 ±0.89 ±1.18 ±0.87 ±0.40 ±0.66 ±0.43

15 37.98 36.54 41.15 61.04 48.90 56.20 56.48 88.26 95.91 98.67
±2.18 ±2.30 ±3.73 ±2.89 ±1.92 ±3.20 ±2.85 ±4.69 ±1.62 ±1.16

16 88.43 88.67 91.08 89.64 92.37 91.27 93.98 93.07 84.29 97.35
±6.30 ±3.02 ±3.47 ±5.56 ±3.03 ±2.99 ±1.70 ±4.33 ±8.68 ±1.32

OA 69.25 68.52 70.86 76.60 77.65 80.51 80.76 88.34 95.67 98.08
±1.16 ±0.88 ±0.76 ±0.82 ±1.44 ±0.31 ±0.08 ±0.51 ±0.49 ±0.30

AA 65.89 66.26 66.36 74.42 75.97 76.91 76.80 86.33 93.41 97.28
±1.19 ±1.62 ±2.30 ±1.79 ±2.37 ±2.38 ±1.98 ±1.17 ±0.56 ±0.85

κ 64.90 64.04 66.73 73.32 74.40 77.70 78.01 86.70 95.07 97.81
±1.30 ±0.98 ±0.92 ±0.93 ±1.68 ±0.38 ±0.14 ±0.59 ±0.56 ±0.34

Table 4. Classification accuracy (%) and standard deviation of different methods for the University of
Pavia data when the reduced dimension is 20.

No. Origin PCA LDA LFDA SGDA GDA-SS SLGDA MPCA G-LTDA TSLGDA

1 56.13 55.98 64.77 60.56 47.44 52.88 52.84 84.20 72.41 91.15
±1.99 ±2.90 ±2.11 ±5.24 ±2.00 ±6.58 ±1.98 ±1.49 ±2.03 ±1.46

2 69.68 70.30 68.75 77.05 82.15 78.88 80.92 84.60 89.24 92.59
±5.59 ±3.27 ±3.44 ±4.42 ±2.71 ±2.80 ±3.74 ±3.31 ±0.93 ±2.68

3 68.02 67.34 69.90 66.47 63.83 64.27 61.17 80.24 89.48 86.83
±3.95 ±1.49 ±3.10 ±3.94 ±10.5 ±3.28 ±3.26 ±3.01 ±5.68 ±2.44

4 90.21 86.98 88.92 91.33 90.73 91.26 92.54 92.20 71.28 96.04
±4.43 ±3.70 ±2.23 ±2.01 ±2.25 ±2.10 ±0.07 ±1.85 ±4.90 ±2.23

5 99.39 99.49 99.51 99.88 99.73 99.79 99.66 99.72 98.41 100
±0.38 ±0.23 ±0.25 ±0.10 ±0.18 ±0.08 ±0.27 ±0.26 ±1.10 ±0.00
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Table 4. Cont.

No. Origin PCA LDA LFDA SGDA GDA-SS SLGDA MPCA G-LTDA TSLGDA

6 59.11 61.68 66.35 65.36 59.47 65.07 63.97 77.99 95.04 93.06
±2.25 ±6.60 ±6.62 ±7.09 ±5.18 ±2.72 ±0.50 ±4.68 ±2.35 ±3.12

7 83.36 83.22 86.34 75.78 82.25 79.04 81.71 89.22 98.26 97.50
±4.59 ±3.57 ±2.25 ±1.97 ±5.40 ±3.64 ±1.75 ±2.09 ±1.37 ±0.90

8 68.06 66.89 68.24 60.81 61.16 64.67 65.46 76.30 93.31 86.07
±2.72 ±4.34 ±3.24 ±4.18 ±8.92 ±4.21 ±2.87 ±3.07 ±1.32 ±3.27

9 95.94 95.90 97.00 83.95 84.04 87.81 85.17 99.49 88.00 98.39
±1.52 ±1.36 ±1.82 ±4.64 ±6.01 ±2.20 ±1.01 ±0.32 ±2.23 ±1.03

OA 69.47 69.65 71.38 73.04 72.59 73.01 73.80 84.30 86.92 92.33
±2.16 ±0.88 ±1.10 ±0.70 ±0.68 ±1.47 ±1.91 ±1.05 ±0.42 ±0.93

AA 76.66 76.42 78.86 75.69 74.53 75.96 75.94 87.11 88.38 93.52
±0.52 ±0.70 ±0.92 ±1.55 ±1.82 ±0.74 ±0.25 ±0.71 ±0.43 ±0.53

κ 61.22 61.43 63.79 65.31 64.39 65.22 66.10 79.57 82.88 89.93
±2.30 ±0.88 ±1.19 ±0.83 ±0.89 ±1.74 ±2.14 ±1.24 ±0.50 ±1.17

Table 5. Classification accuracy (%) and standard deviation of different methods for the Salinas data
when the reduced dimension is 30.

No. Origin PCA LDA LFDA SGDA GDA-SS SLGDA MPCA G-LTDA TSLGDA

1 98.07 98.73 98.98 99.44 99.49 99.39 99.61 98.00 96.94 99.92
±0.44 ±0.80 ±0.81 ±0.10 ±0.13 ±0.14 ±0.23 ±0.98 ±1.63 ±0.15

2 98.68 98.90 98.88 99.23 99.54 99.25 99.50 99.47 98.73 99.98
±0.38 ±0.25 ±0.29 ±0.17 ±0.28 ±0.21 ±0.37 ±0.55 ±0.81 ±0.03

3 96.20 96.85 95.13 99.16 99.28 99.59 99.57 98.17 93.65 99.97
±0.25 ±0.61 ±1.05 ±0.25 ±0.05 ±0.15 ±0.17 ±0.19 ±1.88 ±0.06

4 99.24 99.39 99.51 99.12 99.41 99.12 99.15 99.71 93.92 98.41
±0.08 ±0.35 ±0.18 ±0.46 ±0.13 ±0.41 ±0.30 ±0.87 ±3.27 ±0.68

5 94.55 93.45 95.63 98.79 98.64 98.42 99.03 97.95 96.50 98.87
±0.66 ±1.85 ±0.81 ±0.09 ±0.87 ±0.62 ±0.12 ±1.28 ±1.76 ±1.33

6 99.67 99.63 99.56 99.79 99.77 99.70 99.87 99.24 98.74 100
±0.16 ±0.25 ±0.11 ±0.21 ±0.05 ±0.13 ±0.13 ±1.27 ±0.52 ±0.00

7 98.87 99.40 99.34 99.43 99.44 99.64 99.64 98.18 96.21 99.99
±0.53 ±0.11 ±0.24 ±0.24 ±0.09 ±0.30 ±0.08 ±0.35 ±2.39 ±0.02

8 72.41 73.59 74.13 73.01 76.25 78.11 78.86 90.80 97.93 97.73
±2.03 ±2.33 ±0.49 ±3.40 ±4.74 ±0.42 ±1.50 ±0.19 ±0.60 ±0.22

9 97.82 97.91 98.79 98.92 99.10 98.78 99.65 99.54 98.71 100
±0.01 ±0.88 ±0.50 ±0.18 ±0.19 ±1.46 ±0.12 ±0.07 ±1.07 ±0.00

10 87.70 89.62 91.68 95.24 96.07 94.88 95.42 94.77 94.96 99.77
±4.21 ±0.33 ±1.05 ±0.44 ±1.28 ±1.65 ±1.12 ±0.67 ±2.25 ±0.37

11 93.82 96.85 93.47 95.03 96.49 95.61 97.29 94.58 90.58 100
±1.38 ±1.92 ±4.81 ±2.28 ±3.75 ±2.83 ±3.54 ±1.72 ±4.90 ±0.00

12 99.75 99.93 99.45 99.95 99.91 99.95 99.82 99.44 97.17 100
±0.16 ±0.12 ±0.46 ±0.09 ±0.06 ±0.07 ±0.17 ±0.98 ±1.53 ±0.00

13 97.29 96.14 97.14 98.36 97.84 97.94 98.59 99.74 95.01 100
±0.17 ±1.56 ±0.17 ±0.73 ±0.89 ±0.08 ±0.84 ±0.28 ±2.11 ±0.00

14 92.49 93.89 95.00 94.91 96.91 95.23 97.23 94.97 93.16 99.87
±1.53 ±0.87 ±0.98 ±1.63 ±1.39 ±2.02 ±0.25 ±2.23 ±5.57 ±0.15

15 62.04 58.38 64.37 69.36 67.05 67.51 66.31 88.63 96.22 96.77
±1.48 ±2.25 ±1.98 ±4.08 ±5.23 ±1.65 ±1.88 ±0.62 ±1.10 ±1.47

16 94.75 94.44 98.00 98.78 98.57 98.76 99.30 96.95 91.91 100
±1.41 ±0.85 ±0.58 ±0.40 ±0.31 ±0.16 ±0.46 ±1.68 ±7.30 ±0.00

OA 86.97 86.96 88.23 89.34 89.86 90.13 90.43 95.27 96.73 98.98
±0.63 ±0.49 ±0.27 ±0.79 ±0.45 ±0.42 ±0.07 ±0.04 ±0.89 ±0.15

AA 92.71 92.94 93.69 94.91 95.24 95.12 95.55 96.70 95.65 99.46
±0.58 ±0.23 ±0.40 ±0.43 ±0.38 ±0.24 ±0.18 ±0.06 ±1.41 ±0.08

κ 85.50 85.48 86.90 88.15 89.02 88.33 89.34 94.74 96.35 98.86
±0.70 ±0.53 ±0.30 ±0.88 ±0.49 ±0.46 ±0.08 ±0.05 ±0.99 ±0.16

4.3.2. Classification Maps

In order to show the classification results more directly, classification maps of all considered
methods are provided in Figures 5–7 for three experimental datasets, respectively. From Figure 5,
it can be clearly seen that the proposed method can obtain much smoother classification regions than
other methods, especially for class 1 (Alfalfa), class 2 (Corn-notill), class 3 (Corn-mintill), and class 12
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(Soybean-clean) whose spectral characteristics are highly correlated with other classes. The similar
results can also be observed from Figures 6 and 7, where class 1 (Asphalt), class 6 (Bare Soil),
and class 8 (Self-blocking bricks) in the second dataset, and class 8 (Grapes untrained), class 15
(Vineyard untrained) in the third dataset are labeled more precisely. These observations are consistent
with the quantitative results listed in Tables 3–5.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)
Alfalfa Corn-notill Corn-mintill Corn

Grass-pasture Grass-trees Grass-pasture-mowed Hay-windrowed
Oats Soybean-notill Soybean-mintill Soybean-clean
Wheat Woods Bldg-Grass-Trees-Drives Stone-Steel-Towers

Figure 5. Classification maps of different methods for the Indian Pines dataset: (a) ground truth;
(b) training set; (c) origin; (d) PCA; (e) LDA; (f) LFDA; (g) SGDA; (h) GDA-SS; (i) SLGDA; (j) MPCA;
(k) G-LTDA; and (l) TSLGDA.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)
Unlabeled Asphalt Meadows Gravel Trees

Metal sheets Bare soil Bitumen Bricks Shadows

Figure 6. Classification maps of different methods for the University of Pavia dataset: (a) ground truth;
(b) training set; (c) origin; (d) PCA; (e) LDA; (f) LFDA; (g) SGDA; (h) GDA-SS; (i) SLGDA; (j) MPCA;
(k) G-LTDA; and (l) TSLGDA.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)
Weeds1 Weeds2 Fallow Fallow rough plow

Fallow smooth Stubble Celery Grapes
Soil Corn Lettuce 4wk Lettuce 5wk

Lettuce 6wk Lettuce 7wk Vinyard untrained Vinyard trellis

Figure 7. Classification maps of different methods for the Salinas dataset: (a) ground truth;
(b) training set; (c) origin; (d) PCA; (e) LDA; (f) LFDA; (g) SGDA; (h) GDA-SS; (i) SLGDA; (j) MPCA;
(k) G-LTDA; and (l) TSLGDA.
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4.3.3. The Influence of Training Size

To show the influence of training size, some considered DR methods are tested. The results are
given in Figure 8, from which we can see that the OA values of all methods are improved when the
number of training samples increases for three datasets. Due to the spatial structure information
contained in the tensor, the proposed method always performs better than other methods in all
cases. In addition, with the label information, the supervised DR methods (i.e., SGDA, GDA-SS,
SLGDA, G-LTDA, TSLGDA) achieve better results than the corresponding unsupervised DR methods
(i.e., PCA, MPCA).
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Figure 8. Overall classification accuracy and standard deviation versus different numbers of training
samples per class for all methods using three datasets: (a) Indian Pines; (b) University of Pavia;
(c) Salinas.

4.3.4. The Analysis of Computational Complexity

For the comparison of computational complexity, we take the Indian Pines data as an example.
Table 6 shows the time requirements of all considered methods, from which it can be clearly
seen that traditional methods (e.g., PCA, LDA, LFDA) run faster than other recently proposed
methods. In addition, due to complicated tensor computation, tensor-based DR methods (e.g., MPCA,
G-LTDA, TSLGDA) cost more time than vector-based methods (e.g., SGDA, GDA-SS, SLGDA).
Although TSLGDA has the highest computational complexity, it yields the best classification
performance. In practice, the general-purpose graphics processing units (GPUs) can be adopted
to greatly accelerate the TSLGDA algorithm.

Table 6. Execution time (in seconds) of different methods for the Indian Pines data with different
training size.

Methods 6% 8% 10% 12% 14%

PCA 1.23 1.49 1.86 2.35 2.54

LDA 1.23 1.51 1.88 2.34 2.54

LFDA 1.24 1.57 1.93 2.40 2.62

SGDA 10.60 14.11 18.53 23.90 29.30

GDA-SS 1.13 1.36 1.67 2.15 2.45

SLGDA 3.24 4.81 7.20 10.19 13.09

MPCA 115.94 150.00 161.06 182.37 203.94

G-LTDA 30.96 40.24 49.86 62.41 74.83

TSLGDA 183.91 225.06 281.19 349.44 456.84
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5. Conclusions

In this paper, we have proposed a tensor sparse and low-rank graph-based discriminant analysis
method (i.e., TSLGDA) for dimensionality reduction of hyperspectral imagery. The hyperspectral data
cube is taken as a third-order tensor, from which sub-tensors (local patches) centered at the training
samples are extracted to construct the sparse and low-rank graph. On the one hand, by imposing
both the sparse and low-rank constraints on the objective function, the proposed method is capable of
capturing the local and global structure simultaneously. On the other hand, due to the spatial structure
information introduced by tensor data, the proposed method can improve the graph structure and
enhance the discriminative ability of reduced features. Experiments conducted on three hyperspectral
datasets have consistently confirmed the effectiveness of our proposed TSLGDA algorithm, even for
small training size. Compared to some state-of-the-art methods, the overall classification accuracy of
TSLGDA in the low-dimensional space improves about 2% to 30%, 5% to 20%, and 2% to 12% for three
experimental datasets, respectively, with increased computational complexity.
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