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Abstract: The fusion of spatial and spectral information in hyperspectral images (HSIs) is useful for
improving the classification accuracy. However, this approach usually results in features of higher
dimension and the curse of the dimensionality problem may arise resulting from the small ratio
between the number of training samples and the dimensionality of features. To ease this problem, we
propose a novel algorithm for spatial-spectral feature extraction based on hypergraph embedding.
Firstly, each HSI pixel is regarded as a vertex and the joint of extended morphological profiles (EMP)
and spectral features is adopted as the feature associated with the vertex. A hypergraph is then
constructed by the K-Nearest-Neighbor method, in which each pixel and its most K relevant pixels
are linked as one hyperedge to represent the complex relationships between HSI pixels. Secondly, the
hypergraph embedding model is designed to learn a low dimensional feature with the reservation
of geometric structure of HSI. An adaptive hyperedge weight estimation scheme is also introduced
to preserve the prominent hyperedges by the regularization constraint on the weight. Finally, the
learned low-dimensional features are fed to the support vector machine (SVM) for classification. The
experimental results on three benchmark hyperspectral databases are presented. They highlight the
importance of spatial–spectral joint features embedding for the accurate classification of HSI data.
The weight estimation is better for further improving the classification accuracy. These experimental
results verify the proposed method.

Keywords: feature extraction; hypergraph learning; morphological profiles; hyperedge weight estimation

1. Introduction

Hyperspectral imaging is an important mode of remote sensing imaging, which has been widely
used in a diverse range of applications, including environment monitoring, urban planning, precision
agriculture, geological exploration, etc. [1–3]. Most of these applications depend on the key problem
of classifying the image pixels within hyperspectral imagery (HSI) into multiple categories, i.e., HSI
classification, and extensive research efforts have been focused on this problem [4–9].

In HSI, each pixel contains hundreds of spectral bands from the visible to the infrared range of
the electromagnetic spectrum. In general, the spectral signature of each pixel can be directly used
as the feature for classification. However, due to the noise corruption and high correlation between
spectral bands, the using of the spectral feature alone is often unable to obtain good classification
results. It is well accepted that the HSI pixels within a small spatial neighborhood are often made
up of the same materials. Thus, spatial contextual information is also useful for classification [10,11].
Landgrebe and Ketting proposed the well-known extraction and classification of homogeneous objects
(ECHO) approach that partitioned the HSI pixels into homogeneous object and classified homogeneous

Remote Sens. 2017, 9, 506; doi:10.3390/rs9050506 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
http://dx.doi.org/10.3390/rs9050506
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2017, 9, 506 2 of 14

object as different categories [12]. Later, Markov random field (MRF) modeling was widely adopted to
capture the interpixel dependency through the neighbor system [13,14]. However, the optimization
of MRF-based methods is very time-consuming. Due to the high dimensionality of HSI data, the
computationally effective algorithm is desirable. In this sense, Pesaresi and Benediktsson [15] proposed
the use of morphological transformations to build a morphological profile (MP) for extracting the
structural information. Palmason et al. [16] extended the method proposed in [15] to the high-resolution
hyperspectral data classification. They first extracted several principal components of the hyperspectral
data. Then, the MP is constructed based on each selected principal component. At last, all MPs are
jointed as extended MP (EMP), which is input into a neural network for classification. However, EMP
was primarily designed for classification of urban structures and it did not fully utilize the spectral
information in the data. Regrading this issue, Fauvel et al. [17] proposed fusing the morphological
information and the original hyperspectral data, i.e., the two vectors of attributes are concatenated
into one feature vector. The final classification is achieved by using a support vector machine classifier.
Many other spectral and spatial joint features [18–22], such as 3D wavelet [18], spatial and spectral
kernel [19], matrix-based discriminant subspace analysis [20], etc. are used for classification.

These joint features usually have a high dimension. In order to avoid the Hughes
phenomenon, feature extraction and dimensionality reduction must be conducted before classification.
Principal component analysis (PCA) and Fisher’s linear discriminant analysis (LDA) [23] are two simple
and effective approaches for dimension reduction. PCA aims at projecting the data along the directions
of maximal variance. LDA is designed to generate the optimal linear projection matrix by maximizing
the between-class distance while minimizing the within-class distance. Apart from these linear methods,
many nonlinear versions have been developed, such as kernel PCA [24] and kernel LDA [25]. Some other
feature extraction techniques have also been proposed, e.g., locality preserving projection (LPP) [26],
independent component analysis (ICA) [27,28], and locally linear embedding (LLE) [29]. In particular,
Yan et al. [30] proposed a general graph embedding (GE) model that seamlessly includes many existing
feature extraction techniques. In this GE model, each data point is visualized as a vertex and a pairwise
edge is used to represent the association relationship between two data points. They consider each
feature extraction algorithm as an undirected weighted graph that describes geometric structures of
data. GE algorithms have been widely explored for dimension reduction of HSI. Besides the geometric
structures of data, sparsity is also explored to construct the graph embedding model. Luo et al.
proposed constructing a graph with the sparse coefficients that reveals the sparse properties of data,
and the transformation matrix is obtained for feature reduction [31]. In addition, by regarding different
band sets as different views of land covers, multiview graph ensemble-based graph embedding is also
utilized to promote the performance of graph embedding for hyperspectral image classification [32].

A hypergraph is a generalization of a pairwise graph. Different from pairwise graphs, each edge
in a hypergraph is capable of connecting more than two vertices [33]. Thus, the complex relationships
of the dataset can be captured by a hypergraph, and hypergraphs have been gaining more and more
attention in recent years. Bu et al. [34] presented a hypergraph learning based music recommendation
method with the use of hyperedges to exploit the complex social media information. A hypergraph
semi-supervised learning model [35] was also proposed for image classification. Yuan et al. [36] utilized
a hypergraph embedding model for HSI feature reduction, in which the spatial hypergraph models
(SHs) are construed by selecting the K-nearest neighbors within the spatial region of the centroid pixel.
Experimental results demonstrated that SH outperformed many existing feature extract methods for
HSI classification, including raw spectral feature (RAW), PCA, LPP, LDA, nonparametric weighted
feature extraction (NWFE) [37] and semi-supervised local discriminant analysis (SELD) [38]. However,
SH is designed to learn the projection matrix for reducing the spectral feature. The spatial structure
is not exploited for hypergraph embedding, which is not capable of simultaneously extracting the
spectral-spatial features. Furthermore, the hyperedge weight is computed in advance and fixed in the
hypergraph embedding procedure. As the discussion stated in [39,40], all of the hyperedges do not
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have the same effect on the learning procedure. Some hyperedges are not as informative as others. The
hypergraph embedding should be enhanced by estimating the hyperedge weights adaptively.

In order to cope with these issues, we propose a novel algorithm for HSI spatial-spectral joint
feature extraction. We combine the EMP and spectral features and adopt the KNN method to construct
a hypergraph, where each sample and its K nearest neighbors are enclosed in one hyperedge.
Similar to [36], a linear projection matrix P can be learnt by solving the hypergraph embedding
model. However, in [36], the hyperedges’ weights in the hypergraph embedded model are fixed.
Inspired by [39,40], we introduce a scheme to update the weights adaptively to preserve the prominent
hyperedge and further learn the low-dimensional structure. It helps improve the accuracy of the
final HSI classification to a certain extent. Finally, the leaned low-dimensional features are fed to the
SVM for classification. The flowchart of the proposed method is shown in Figure 1. Experiments
conducted on three widely used types of HSI demonstrate that the proposed method achieves superior
performance over many other feature extract methods for HSI classification.
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Figure 1. The flowchart of the proposed method.

2. Hypergraph Model

Denote a hypergraph as G = (V,E,W), which consists of a set of vertices V, a family of hyperedge
E and a weight matrix W of hyperedges. Different from pairwise graphs (For convenience, we call
it a simple graph in the following), every hyperedge ei can contain multiple vertices and is assigned
a weight w(ei). As shown in Figure 2b, hyperedge e1 is composed of vertices v1, v2 and v3. e2

is composed of vertices v3 and v4. e3 is composed of vertices v4, v5, v6 and v7. W is a diagonal
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matrix of the hyperedge weights. The connection relationship of hypergraph G can be represented by
an incidence matrix H ∈ R|V|×|E|, which can be defined as:

Hij = H(vi, ej) =

{
1, if vi ∈ ej,

0, if vi /∈ ej.
(1)

The degree of vertex v and hyperedge e can be respectively represented as:

d(vi) = ∑
ej∈E

w(e)H(vi, ej), (2)

δ(ej) = δj = ∑
vi∈V

H(vi, ej). (3)

(a) Simple graph (b) Hypergraph G
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Figure 2. The example of graph and hypergraph (a) simple graph, each edge consists of only two
data points; (b) hypergraph G, each hyperedge is marked by an ellipse and consists of at least two
data points; (c) taking the seven vertices as example, H is the incidence matrix of G, whose values are
usually binary.

According to the above definition, the main difference between hypergraphs and simple graphs is
that every hyperedge can link more than two vertexes. Therefore, hypergraph is suitable to represent
local group information and the high-order relationship of data. For example, considering seven
vertices in Figure 2b, they are attributed to three groups and the corresponding incidence matrix is
shown in Figure 2c. In terms of building a simple graph with these seven data points, the complex
relations within the group are broken into multiple pairwise links. Some valuable information may be
lost in this procedure; therefore, a simple graph can not describe the group structure well.

3. Hypergraph Embedding of Spatial-Spectral Joint Features

As shown in Figure 1, our algorithm mainly consists of three steps: spatial-spectral joint feature
construction, hypergraph embedding and SVM classification.

3.1. Spatial-Spectral Joint Feature Construction

Following [16], we first extract several PCs from the original HSI I(x) and then build an MP from
each of the PCs:

MP (x) =
{

CPn (x) , . . . , I (x) , . . . , OPn (x)
}

, (4)

where n is the number of the circular structural element (SE) with different radius sizes, OPn(x) and
CPn(x) are the opening profile (OP) and the closing profile (CP) at the pixel x with an SE of a size n,
respectively. Specifically, we have CP0(x) = OP0(x) = I(x). The MP of I contains the original image I,
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n opening profile and n closing profile. Therefore, each MP is a (2n + 1)-dimensional vector. Finally,
all MPs are stacked together in one as EMP:

EMP (x) =
{

MPPC1 (x) , MPPC2 (x) , . . . , MPPCm (x)
}

, (5)

where m represents the number of PCs. The EMP is defined as an m(2n + 1)-dimensional vector.
After obtaining the EMP feature, we represent the spatial and spectral joint feature of the i-th HSI

pixel as

vi =

[
xi

EMP(xi)

]
∈ Rm(2n + 1)+d, (6)

where d is the number of the spectral bands. Denote the spectral features matrix of HSI as
X = [x1, x2, . . . , xN ] ∈ Rd×N , EMP matrix of HSI as EMP = [EMP(x1), · · · , EMP(xN)], where xi
is the i-th pixel, and N is the number of HSI pixels. Then, the joint feature matrix of HSI can be

represented as: V =

[
X

EMP

]
∈ R(m(2n + 1) + d)×N .

3.2. Hypergraph Embedding

We take each pixel of HSI as a vertex and construct a hypergraph G = (V, E, W) to represent
the correlation between HSI pixels. Each vertex vi is associated with the spatial and spectral joint
feature defined in Equation (6). The hypergraph G is constructed by the K-nearest neighbor method.
In detail, each pixel vi and its K nearest neighbors are enclosed as hyperedge ei. Thus, hyperedge set
E = {e1, e2, . . . , eN} contains N hyperedges. Meanwhile, the weight w(ei) of hyperedge ei is defined as:

w (ei) = ∑
vi ,vj∈ei

exp

−∥∥vj − vi
∥∥2

2
2σ2

, (7)

where σ is the mean distance between all vertices and can be calculated by σ = 1
N2 ∑

i
∑
j

d
(
vi, vj

)
,

d
(
vi, vj

)
is the distance between vertex vi and vertex vj. The degree of vertex vi and the degree of

hyperedge ei can be computed by Equations (2) and (3), respectively. Based on this definition, the more
"compact" hyperedge (local group) is assigned with a higher weight.

Denote Dv and De as two diagonal matrices of the vertex degrees and the hyperedge degrees,
respectively, and P ∈ R(m(2n+1)+d)×u (generally, m (2n + 1) + d >> u) as the linear projection matrix.
The objective of hypergraph embedding model is to learn the projection matrix P for reducing the
feature dimension with the preservation of geometric property in the original space. The objective
function is formulated as:

min
PTVDvVTP=1

1
2 ∑

e∈E
∑

vi ,vj∈e

w (e) h (vi, e) h
(
vj, e

)
δ (e)

∥∥∥PTvi − PTvj

∥∥∥2

2

=
1
2

N

∑
k=1

N

∑
i,j=1

wkhikhjk

δk

∥∥∥PTvi − PTvj

∥∥∥2

2

= trace
(

PTVLVTP
)

,

(8)

where L = Dv −HWD−1
e HT is the hypergraph laplacian matrix. The constraint PTVDvVTP = 1 is

used for scale normalization of the low-dimensional representations. This objective function induces
the constraint that if vi and vj are similar and belong to the same hyperedge, they should also be
adjacent in embedded space. In addition, an efficient hypergraph weight estimation scheme is proposed
to preserve the prominent hyperedges. Assuming that w = (w1, w2, . . . , wN)

T is composed of the
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elements lying in the main diagonal of W, we enforce 1T
Nw = 1 and add an l2 norm regularizer on w.

Then, our proposed embedding model is finally defined as:

{P∗, w∗} = arg min
PTVDvVTP=1

{
trace

(
PTVLVTP

)
+ λ‖w‖2

}
s.t. 1T

Nw = 1. (9)

3.3. Optimization Algorithm

The objective function Equation (9) is a multiple variables optimization problem, and it is
non-convex with respect to w and P jointly. However, it is convex with either of them individually when
the other is fixed. Thus, an alternative iteration strategy is adopted to get the solution of Equation (9).
We first initialize w according to Equation (7). With w fixed, we optimize P according to Equation (8).
The solution of Equation (8) is to find the eigenvectors corresponding to the first u largest eigenvalues
of the matrix

(
VLVT)−1 (VDvVT).

Next, fix P and optimize w:

arg min
w

{
trace

(
PTVLVTP

)
+ λ‖w‖2

}
s.t. 1T

Nw = 1. (10)

In this paper, we employ the Lagrangian algorithm to optimize the Equation (10). The Lagrangian
function of the objective function (10) is defined as:

ψ (w, c)= trace
(

PTVLVTP
)
+ λwTw + c

(
1T

Nw− 1
)

=
1
2

N

∑
k=1

N

∑
i,j=1

wkhikhjk

δk

∥∥∥PTvi − PTvj

∥∥∥2

2
+ λwTw + c

(
1T

Nw− 1
)

.
(11)

The partial derivatives of ψ w.r.t. wi, i = 1, 2, · · · , M are given by:

∂ψ (w, c)
∂wk

=
1
2

N

∑
i,j=1

hikhjk

δk

∥∥∥PTvi − PTvj

∥∥∥2

2
+ 2λwk + c = 0. (12)

By simplifying Equation (12), wk can be calculated as:

wk = −

1
2

N
∑

i,j=1

hikhjk
δk

∥∥PTvi − PTvj
∥∥2

2 + c

2λ
. (13)

According to the constraint 1T
Nw = 1, the Lagrange multiplier can be calculated as:

c = − 1
N

[
1
2

N

∑
k=1

N

∑
i,j=1

hikhjk

δk

∥∥∥PTvi − PTvj

∥∥∥2

2
+ 2λ

]
. (14)

By substituting Equation (14) into Equation (13), we can obtain w finally.
Following this iteration process, w and P are alternately optimized until the maximal iteration

number is reached or the relative difference of objective function value of Equation (9) is smaller than
a given tolerance const ε, i.e.,

| f (t + 1)− f (t)|
| f (t)| 6 ε, (15)

where f (t + 1) and f (t) is the function value of Equation (9) at iteration t + 1 and t, respectively. In
addition, we can obtain the final projection matrix P∗. At last, the joint feature set V is reduced as
a low-dimensional feature set Y =

[
(P∗)Tv1, . . . , (P∗)TvN

]
, which is then transmitted into an SVM

classifier. Based on the above analysis, the proposed method can be summarized in Algorithm 1.
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Algorithm 1: The proposed method ( denoted as SSHG*) for HSI classification.
Input: Data matrix X, the reduced dimensionality u, the nearest neighbors number K and

regularization parameter λ.
Output: The class-label vector f .

1 Normalize all the features to [0,1].
2 Build the MP from each of the PCs: MP (x) = {CPn (x) , . . . , I (x) , . . . , OPn (x)}.
3 Obtain the EMP by stacking all MPs: EMP (x) = {MPPC1 (x) , MPPC2 (x) , . . . , MPPCm (x)}.
4 Represent the new stacked joint feature set as:

V = [X; EMP] = [v1, v2, . . . , vN ] ∈ R(m(2n+1)+d)×N .
5 Compute the incidence matrix H ∈ R|V|×|E|by KNN, set H(v, e) = 1, if v ∈ e, otherwise,

H(v, e) = 0.
6 Construct the hypergraph G and Calculate the weight of hyperedge ei:

w (ei) = ∑
vj∈ei

exp
(
−‖vj−vi‖2

2
2σ2

)
, the vertex degree: d(vj) = ∑

ei∈E
w(ei)H(vj, ei), and the

hyperedge degree: δ(ei) = ∑
vj∈V

H(vj, ei).

7 Obtain the projection matrix P by optimizing Equation (8)
8 Solve Equation (10) and obtain the hyperedge weights computed as Equation (13).
9 With the new hyperedge weights, update Dv, L and W.

10 Repeat the steps 7–9 until the convergence criterion 15 is met or the maximal iteration number
is reached.

11 Find the final projection matrix P∗.

12 Project the joint feature set into a low-dimensional feature set: Y =
[
(P∗)Tv1, . . . , (P∗)TvN

]
.

13 Feed the learned low-dimensional feature set Y into the SVM for classification.
14 return the class-label vector f .

4. Experiments and Discussion

4.1. Data Sets

In order to verify the performance of our proposed method, we conduct the experiments on the
following three benchmark datasets.

(1) Indian Pines data set—the first data set was acquired by the AVIRIS sensor over the Indian
Pines test site in Northwestern Indiana, USA. The size of the image is 145 pixels × 145 pixels
with a spatial resolution of 20 m per pixel. Twenty water absorption bands (104–108, 150–163,
220) were removed, and the 200-band image is used for experiments. Sixteen classes of interest
are considered.

(2) Pavia University data set—the second data set was acquired by the ROSIS sensor during a flight
campaign over Pavia, northern Italy. The size of the image is 610 pixels × 340 pixels with a spatial
resolution of 1.3 m per pixel. Twelve channels were removed due to noise. The remaining 103
spectral bands are processed. Nine classes of interest are considered.

(3) Botswana data set—the third data set was acquired by the NASA EO-1 satellite over the Okavango
Delta, Botswana, in 2001. The size of the image is 1476 pixels× 256 pixels with a spatial resolution
of 30 m per pixel. Uncalibrated and noisy bands that cover water absorption features were
removed, and the remaining 145 bands are used for experiment. Fourteen classes of interest
are considered.

4.2. Experimental Setting

In order to demonstrate the effectiveness of adaptive weight estimation, we implement our
algorithm as two versions. One is SSHG, which only utilizes the KNN hypergraph model for dimension
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reduction of the stacked feature set without adaptive weight estimation. The other is SSHG* shown
in Algorithm 1. They are compared with the following feature extraction methods: (1) the method
by using PCA to extract spectral features (denoted as PCA); (2) the method by using EMP features
without dimension reduction (denoted as EMP); (3) the method [17] stacking the EMP and the spectral
features as feature without dimension reduction (denoted as EMPSpe); and (4) the spatial hypergraph
embedding method proposed in [36] (denoted as SH). In order to facilitate comparisons with these
competing feature extraction methods, we adopt the overall accuracy (OA), the average accuracy
(AA), the per-class accuracy and Kappa coefficient (κ) to evaluate the classification performance.
Furthermore, the SVM classifier with Gaussian kernel is adopted to classify all of the aforementioned
feature data of these feature extraction methods. The grid search tool is used to select the parameters
of the optimal penalty term and Gaussian kernel variance in SVM within the given sets

{
2−10, ..., 210}

and
{

2−10, ..., 210}, respectively. The one-against-all strategy is adopted for multi-class classification.
Regarding the three data sets, we select 15 samples from each class randomly to form a training set
and the remaining samples are used as the test set. The training sample selection and the classification
process are repeated ten times to reduce the bias induced by random sampling. We retain the average
results. The parameters setting of SH is the same as the original paper [36]. With respect to our
algorithm, the tolerance const ε is set as 1× 10−3 and the regularization parameter λ is set as 100. The
number of nearest neighbors K is selected as 10, 15, 5 for Indian Pines, Pavia University and Botswana
data sets, respectively.

4.3. Experimental Results

The classification results of various methods upon three types of HSI are reported in Tables 1–3,
respectively. The best results are highlighted with bold fonts. The number in brackets corresponds
to the optimal dimensionality of reduced features. Classification maps of these different approaches
are shown in Figures 3–5, respectively. According to the experimental results, our proposed method
achieves the highest OA, AA, and κ among all of the competing methods, which shows the effectiveness
of our feature extraction algorithm. The effectiveness of our SSHG method owes much to the
hypergraph embedding of spatial and spectral joint features.

Table 1. Classification accuracy of various algorithms on the Indian Pines image.

Class PCA (25) EMP (27) EMPSpe (227) SH (22) SSHG (44) SSHG* (44)

1 91.61 98.71 99.03 94.87 98.06 98.06
2 47.36 61.46 64.28 82.59 72.53 73.96
3 48.60 78.75 77.14 73.50 84.06 84.85
4 68.29 95.90 91.76 91.32 96.76 97.21
5 75.75 87.78 88.85 92.12 89.83 90.32
6 85.37 91.48 92.36 98.22 93.93 94.04
7 91.54 99.23 99.23 100 100 100
8 79.52 98.47 98.92 98.31 99.57 99.63
9 96.00 100 100 100 100 100

10 56.22 74.23 71.61 87.51 76.81 77.68
11 49.62 69.51 71.02 64.41 75.65 75.57
12 45.43 75.67 77.40 84.31 84.33 84.79
13 93.47 98.68 99.00 99.49 99.37 99.37
14 69.55 93.25 94.83 94.84 97.57 97.58
15 46.42 95.96 95.85 75.07 97.74 97.76
16 89.62 97.56 98.46 98.75 99.74 99.87

OA 58.90 79.14 79.88 82.33 84.36 84.75
AA 70.90 88.54 88.73 89.71 91.62 91.92

kappa 53.88 76.42 77.24 80.06 82.27 82.73
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Figure 3. Indian Pines. (a) three-channel color composite image with bands 65, 52, 36; (b,c) ground-truth
map and class labels; (d–i) classification maps of PCA, EMP, EMPSpe, SH, SSHG, SSHG*, respectively.

Table 2. Classification accuracy of various algorithms on the Pavia university image.

Class PCA (10) EMP (27) EMPSpe (130) SH (30) SSHG (46) SSHG* (46)

1 66.21 82.40 81.57 70.33 81.67 82.70
2 65.14 83.44 84.09 82.13 92.02 91.44
3 70.00 77.04 77.79 72.37 80.47 80.08
4 85.26 97.42 97.44 89.58 93.93 94.90
5 99.37 99.76 99.75 99.61 99.79 99.80
6 69.16 78.91 80.16 91.76 86.50 89.63
7 90.45 94.07 93.28 92.68 94.16 94.44
8 71.34 86.12 85.30 72.16 83.07 84.06
9 99.72 96.04 97.44 99.51 98.26 98.15

OA 70.59 84.77 85.05 81.88 89.01 89.43
AA 79.63 88.35 88.53 85.57 89.99 90.58

kappa 63.20 80.38 80.78 76.80 85.64 86.24

Comparing the EMP and EMPSpe method, we can find that EMPSpe method is always slightly
better than EMP due to the fusion of EMP and spectral features for classification. As mentioned in [17],
the stacked EMP and spectral features are transformed to low dimensional features by the decision
boundary feature extraction (DBFE) and NWFE methods before classification. However, the DBFE
and NWFE did not bring about the effective improvement of algorithm performance. SH utilized
the hypergraph embedding model for feature reduction. Compared with PCA, the SH method has
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much better classification performance, which verifies the capacity of the hypergraph to capture
the intrinsic complex relationships between HSI pixels. However, SH utilized only the spectral
similarity for finding the nearest neighbors within a given spatial region. The superiority of SSHG
over SH demonstrates that the embedding of EMP and spectral features is better for HSI classification.
Specifically, our SSHG method can extract the rich spatial structures in the Pavia University data
and achieve the maximum improvement upon this data. SSHG* obtains better classification results
than SSHG, which demonstrates that adaptive hypergraph weight estimation is also beneficial for
improving the classification accuracy.

(a) (b)
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(c)

(d) (e) (f)

(g) (h) (i)

Figure 4. Pavia university. (a) three-channel color composite image with bands 102, 56, 31;
(b,c) ground-truth map and class labels; (d–i) classification maps of PCA, EMP, EMPSpe, SH, SSHG,
SSHG*, respectively.

There are two parameters, i.e., K and u, in our proposed method. The parameter K is the number
of nearest neighbors, which determines how many pixels are included in the hyperedge. u is the
dimensionality of the embedded low-dimensional feature. To evaluate their effects on the classification
performance, we conduct the experiments on the above three datasets. We firstly fix the reduced
dimensionality as u = 40 and evaluate the influence of different K on the OA. As seen in Figure 6,
when K is set as 10, 15, 5 for Indian Pines, Pavia University and Botswana data sets, respectively, the
OA achieves the highest value. Taken as a whole, [5, 15] is usually a good range for the selection of
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parameter K. We then fix the K as 10, 15, 5 for the three datasets, respectively, and evaluate the influence
of different us on the OA. Figure 7 shows the changes of OA with the reduced dimensions on three
types of HSI. We can see that the inflection point of classification results is around the dimensionality
25 for these three HSIs, and there was no significant improvement on the classification results if the
dimension continues to grow up.

Table 3. Classification accuracy of various algorithms on the Botswana image.

Class PCA (22) EMP (27) EMPSpe (172) SH (25) SSHG (34) SSHG* (34)

1 100 99.92 99.89 100 100 100
2 96.51 100 97.99 100 99.68 98.05
3 96.19 94.79 95.85 99.15 96.76 100
4 99.00 95.85 98.83 99.50 98.41 93.27
5 81.10 79.76 82.32 82.86 91.79 96.38
6 69.29 81.73 88.34 81.89 96.37 99.22
7 96.31 97.70 99.20 98.77 99.72 99.95
8 98.40 99.63 99.48 99.47 100 97.42
9 79.93 92.34 94.47 96.32 98.86 99.79

10 95.28 98.33 97.98 99.57 99.92 97.97
11 83.45 97.24 95.19 97.59 94.97 99.88
12 93.98 99.94 99.88 88.55 100 99.49
13 89.33 99.60 98.37 94.47 99.92 99.75
14 98.75 99.25 98.35 100 91.36 99.63

OA 89.83 94.69 95.65 95.10 97.79 98.38
AA 91.25 95.43 96.15 95.58 97.70 98.63

kappa 88.98 94.24 95.36 94.68 97.60 98.24

(a) (b)
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(d) (e) (f) (g) (h) (i)

Figure 5. Botswana. (a) three-channel color composite image with bands 65, 52, 36; (b,c) ground-truth
map and class labels; (d–i) classification maps of PCA, EMP, EMPSpe, SH, SSHG, SSHG*, respectively.
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Figure 6. Effects of the number K of nearest neighbors on OA. (a) Indian Pines; (b) Pavia University;
(c) Botswana.
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Figure 7. Effects on the reduced dimensions. (a) Indian Pines; (b) Pavia University; (c) Botswana.

5. Conclusions

In this paper, we propose a novel algorithm for spatial-spectral feature extraction based on
hypergraph learning. A hypergraph is constructed by the KNN method and the embedding operation
is conducted to transform the joint EMP and spectral features into the low-dimensional representation.
Meanwhile, an efficient hypergraph weight estimation scheme is adopted to preserve the prominent
hyperedges. Classification is performed with SVM using the embedded features. The experimental
results on three benchmark hyperspectral datasets verify that our embedded representation can
enhance the classification accuracy effectively. The hypergraph weight estimation can further improve
the accuracy of HSI classification.
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