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Abstract: Nowadays, 3D imaging of plants not only contributes to monitoring and managing plant
growth, but is also becoming an essential part of high-throughput plant phenotyping. In this paper,
an inexpensive (less than 70 USD) and portable platform with binocular stereo vision is established,
which can be controlled by a laptop. In the stereo matching step, an efficient cost calculating
measure—AD-Census—is integrated with the adaptive support-weight (ASW) approach to improve
the ASW’s performance on real plant images. In the quantitative assessment, our stereo algorithm
reaches an average error rate of 6.63% on the Middlebury datasets, which is lower than the error rates
of the original ASW approach and several other popular algorithms. The imaging experiments using
the proposed stereo system are carried out in three different environments including an indoor lab, an
open field with grass, and a multi-span glass greenhouse. Six types of greenhouse plants are used in
experiments; half of them are ornamentals and the others are greenhouse crops. The imaging accuracy
of the proposed method at different baseline settings is investigated, and the results show that the
optimal length of the baseline (distance between the two cameras of the stereo system) is around
80 mm for reaching a good trade-off between the depth accuracy and the mismatch rate for a plant
that is placed within 1 m of the cameras. Error analysis from both theoretical and experimental sides
show that for an object that is approximately 800 mm away from the stereo platform, the measured
depth error of a single point is no higher than 5 mm, which is tolerable considering the dimensions of
greenhouse plants. By applying disparity refinement, the proposed methodology generates dense
and accurate point clouds of crops in different environments including an indoor lab, an outdoor
field, and a greenhouse. Our approach also shows invariance against changing illumination in
a real greenhouse, as well as the capability of recovering 3D surfaces of highlighted leaf regions.
The method not only works on a binocular stereo system, but is also potentially applicable to a
SFM-MVS (structure-from-motion and multiple-view stereo) system or any multi-view imaging
system that uses stereo matching.

Keywords: 3D imaging; greenhouse plants; stereo matching; remote sensing; point cloud

1. Introduction

Greenhouse cultivation, which is a kind of highly integrated facility agriculture, is becoming
increasingly important in raising the efficiency of agricultural production and solving the world’s food
shortage. Despite its significance, modern greenhouse cultivation still faces challenges to increase
output and meanwhile reduce energy consumption. For this purpose, an economic, efficient, and
intelligent greenhouse environment control method is needed to guarantee a temperate environment
for each plant during its whole growth period, and to accomplish high yields and economic benefits.
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As a branch of remote sensing, 3D imaging uses the most direct manner to fully present the continuous
growth of greenhouse plants via imaged shapes and spatial structures. The technique not only helps
to monitor and manage plant growth, but also provides visual cues that optimize the intelligent
greenhouse environment control system, which controls the greenhouse actuators such as roof
windows, shading nets, ventilations, and so on.

Plant phenotyping is the quantitative analysis of the structure and function of plants. With rapid
advances in DNA sequencing technologies, plant phenotyping is becoming a bottleneck in cultivating
crops with higher yields [1]. Currently, most solutions for plant phenotyping are way too expensive
for practical use. Even though some of them can be affordable, many are designed for their own
specific tasks, resulting in low generality in application. The fast developing 3D sensing technology is
arousing attentions from both academics and industry; it is now an essential tool to obtain information
for plant phenotyping. Low-cost and efficient 3D imaging methods facilitate the development of
high-throughput plant phenotyping, and the obtained 3D features of plants are also helpful in variety
selection and the breeding process in modern agriculture. In some cases, phenotypic features of crops
also imply economic meaning. 3D sensors can automatically recognize good samples in fruit and
vegetable sorting. A 3D imaging system is also able to classify better shaped ornamentals that are later
sold at a higher price.

Since the early 1990s, researchers have been using imaging tools to monitor and analyze plant
growth, and methods based on 2D images are widely investigated for the first time for agricultural
purposes such as identifying plants and weeds [2–4], leaf recognition [5–7], fruit detection [8], and
advanced warning of plant diseases and pests [9]. Scharr et al. made a recent survey [10] of
state-of-the-art 2D methods for leaf segmentation in plant phenotyping, and evaluated the results
of the IPK 3D histograms [11], Nottingham SLIC superpixels [12], MSU Chamfer matching [13,14],
and Wageningen watersheds segmentation on Arabidopsis (Arabidopsis thaliana (L.) Heynh.) and
tobacco plants (Nicotiana tabacum L.). Fernández et al. [15] designed an automatic system that
combines RGB and 2D multispectral imagery for discriminating grapevine crop organs such as
leaves, branches, and fruits in field tests. Li et al. [16] developed a method to identify blueberry
fruits in several different growth stages in 2D images acquired under natural scenes. 2D techniques
are popular for ease of use and flexible equipment requirements. Nevertheless, they have several
disadvantages: (1) environmental light changes can easily interfere with the imaging process and cause
image degradation; (2) 2D techniques usually have restrictions on relative positions and directions
between the device and the plant; and (3) an ordinary image loses the depth information about the
scene, hence it is hard to fully characterize the spatial distributions of a sample plant. In order to
faithfully reveal how a plant grows, it is necessary to capture its complicated 3D structure, especially
in the canopy area. 3D imaging is essentially a kind of non-destructive remote sensing methodology.
3D sensors generally operate by projecting electromagnetic energy onto an object and then record
the reflected energy (active form) [17], or by directly acquiring transmitted electromagnetic energy
from scenes (passive form) to depict spatial objects and surfaces. Prevailing 3D imaging methods can
be classified into several categories such as Time-of-Flight, laser scanning, structured light systems,
light-field imaging, and stereo vision.

A Time-of-Flight (ToF) camera measures the time of the light that travels between the sensor and
an object, and then estimates the distance between them to plot the depth map. In order to detect
vegetation in the field of view, Nguyen et al. used a ToF camera and a CMOS camera to construct
a multi-sensor imaging platform for a mobile robot [18]. Alenya et al. [19] used a ToF camera that
attached to a robot to automatically measure plants, and they obtained satisfactory 3D point clouds of
leaves. Fernández et al. [20] proposed a multisensory system including a ToF camera that provides
fast acquisition of depth maps for localization of fruits on crops.

3D laser scanning uses the Lidar to project laser beams onto the surface, and uses triangulation
to measure the reflected laser beams for reconstructing a dense 3D point cloud. Although
commercial 3D laser scanners have very high accuracy, the high price greatly limits their application.
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Garrido et al. [21] used several 2D Lidars to form overlapped point clouds for 3D maize plant
reconstruction. Seidel et al. [22] used a terrestrial Lidar to estimate the above-ground biomass of some
potted juvenile trees. Xu et al. [23] used a laser scanner to image trees; they first reconstructed a tree
skeleton containing main branches from scanned data, and then added 3D leaves to visualize a realistic
tree. Dassot et al. [24] used terrestrial laser scanner to estimate wood solid volume in a forest in a
non-destructive way, and the estimated value is close to the labor-intensive destructive measurements.

Structured light systems first project structured light patterns onto the object, and then capture the
reflected pattern to compute the 3D geometry of the object surface. Dornbusch et al. used structured
light technique to scan barley plant for graphic 3D reconstruction [25]. Li et al. used structured light
systems to scan spatial–temporal point cloud data of growing plants, and successfully detected growth
events such as budding and bifurcation [26].

Recently, emerging commercial 3D imaging sensors such as Kinect and light-field cameras have
attracted attention from plant phenotyping community due to their low cost and high efficiency.
Paulus et al. [27] compared 3D imaging results of a Kinect with results from a laser scanning system,
and carried out phenotyping of beetroot and wheat. Chene et al. [28] used a Kinect sensor to conduct
phenotyping experiments on a rosebush, and obtained perfect top-view depth maps. Li et al. [29]
adopted Kinect for side-view imaging of two varieties of tomato plants in consecutive growth periods;
vivid 3D visualization of tomato plants was realized after analyzing the digitized tomato organ
samples. Yamamoto et al. [30] constructed a Kinect-based system for 3D measurement of a community
of strawberries cultivated on a 1-meter-long bench in greenhouse. Schima et al. [31] applied the Lytro
LF, an innovative low-cost light-field camera to monitor plant growth dynamics and plant traits,
showing that this device could be a tool for on-site remote sensing. Phytotyping 4D [32], a light-field
camera system was built by Apelt et al. for accurately measuring the morphological and growth-related
features of plants.

Current 3D imaging methods still have several shortcomings when applied to crops or plants.
First, the equipment is usually costly; second, some methods are subject to strict limitations on the
ambient environment, whereas a greenhouse usually has a complex environment. Finally, it is hard
to strike a balance between efficiency and accuracy. For example, some laser scanners need hours
to complete a thorough scan, while commercial ToF cameras work in real time with very limited
resolution. As a popular research direction in machine vision and remote sensing, stereo vision has
advantages such as low cost and convenience; therefore, it may be a better choice for on-site 3D
plant imaging. Stereo vision is a passive 3D imaging method that synthesizes object images from
different views to reconstruct 3D surfaces. Biskup et al. [33] designed a stereo system that consists
of two digital single lens reflex (DSLR) cameras to study shape deformation of leaves in a period of
time. Teng et al. [34] first used multi-view stereo method to recover point clouds of leaves, and then
implemented a 2D/3D joint graph-cut algorithm to segment leaves from canopy. Hu et al. [35] applied
structure-from-motion (SFM) method and the multiple-view stereo (MVS) to generate dense point
cloud of experimental plants from images, showing comparable accuracy with laser scanned result.
Duan et al. [36] presented a similar workflow that contains SFM and MVS to characterize early plant
vigor in wheat genotypes.

The imaging procedure of a typical stereo vision system consists of four steps—(i) camera
calibration, (ii) stereo rectification, (iii) stereo matching, and (iv) 3D point cloud reconstruction.
Stereo matching is the central part of a binocular/multi-view stereo vision system because the stereo
correspondence search determines the quality of the point cloud or the depth image obtained. Common
stereo matching algorithms comprise two categories: energy-based stereo matching algorithms [37,38]
and filter-based algorithms [39,40]. In recent years, we have witnessed the filter-based stereo matching
algorithms taking a qualitative leap in accuracy due to their remarkable edge-aware ability in imaging
areas with abrupt depth changes. The adaptive support-weight approach (ASW) [39] is a powerful
local filtering algorithm that not only can be perceived with bilateral filtering, but also can be explained
by Gestalt psychology. The main idea of the ASW is to adjust the support weights of the pixels in a
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given window using color similarity and geometric proximity to reduce the ambiguity in matching [41].
In the original ASW framework, the truncated absolute differences (TAD) measure is used to calculate
the raw matching cost of ASW. Despite its fast calculation, TAD can easily be affected by problems in
real environments such as radiometric distortion and low-texture areas. The greenhouse usually has
complex illumination because of the shadows cast by greenhouse structures and occlusions between
plants. Plant leaves have similar green colors in the same canopy, resulting in ambiguous color feature
and homogeneous textures. To address these challenges, we first built an effective and low-cost stereo
vision system, and then incorporated the AD-Census cost measure [42] with the framework of ASW to
improve the disparity map. The main objectives of this article include:

(i) To build a highly feasible stereo platform that does not place harsh limitations on hardware and
imaged objects. We established an inexpensive (less than 70 USD) and portable binocular stereo
vision platform that can be controlled by a laptop. The platform is suitable for 3D imaging of
many kinds of plants in different environments such as an indoor lab, open field, and greenhouse.

(ii) To design an effective stereo matching algorithm that not only works on a binocular stereo system,
but is also potentially applicable to a SFM-MVS system or any multi-view imaging systems.
Improvements in the ASW stereo matching framework are made by replacing the TAD measure
with AD-Census measure. The proposed algorithm shows superior results in comparison with
the original ASW and several popular energy-based stereo matching algorithms.

(iii) To perform error analysis of the stereo platform from both theoretical and experimental sides.
Detailed investigation of the accuracy of the proposed platform under different parametric
configurations (e.g., baseline) is provided. For an object that is about 800 mm away from our
stereo platform, the measured depth error of a single point is no higher than 5 mm.

(iv) To prove the effectiveness of the proposed methodology on 3D plant imaging by testing with
real greenhouse crops. The proposed methodology generates satisfactory colored point clouds of
greenhouse crops in different environments with disparity refinement. It also shows invariance
against changing illumination, as well as a capability of recovering 3D surfaces of highlighted
leaf regions.

2. Materials

2.1. Stereo Vision Platform

The proposed stereo vision platform consists of two high-definition webcams (HD-3000 series,
Microsoft, Redmond, WA, USA). The camera incorporates a CMOS sensor supporting 720p HD video
recording. The two cameras are placed onto a supporting board (LP-01, Fotomate, Jiangmen City,
China) with a scale line, and the whole part is then mounted on a tripod (VCT-668RM, Yunteng
Photographic Equipment Factory, Zhongshang City, China). The supporting board allows the distance
(i.e., baseline) between the two cameras to be flexibly adjusted within a range from 40 mm to 110 mm.
The processing unit is a laptop (4830T series, Acer, New Taipei City, Taiwan) with 4GB RAM and an
Intel Core i5-2410M CPU. The structure of the system is shown in Figure 1. The price of the portable
stereo vision platform without the laptop is less than 70 USD, much cheaper than any other 3D imaging
devices or systems. The software environment includes VS2010 (Microsoft, Redmond, WA, USA)
with an OpenCV library (Itseez, San Francisco, CA, USA), VS2013 (Microsoft, Redmond, WA, USA)
with a PCL library (pointclouds.org), as well as MATLAB (MathWorks, Natick, MA, USA), and are all
operated in Windows 10.
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(Capsicum annuum L.), Monstera deliciosa L., cultivated strawberry (Fragaria × ananassa Duchesne), and 
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Aglaonema modestum, and pepper plants were used in 3D imaging experiments in the lab environment. 
A potted Monstera deliciosa sample was used in 3D imaging experiments in an open field. The 
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Figure 1. The established low-cost, portable binocular stereo vision system.

2.2. Sample Plants and Environments

Six types of greenhouse plants are adopted as experiment subjects in this paper, including
Epipremnum aureum (Linden & André) G.S. Bunting, Aglaonema modestum Schott ex Engl., pepper
(Capsicum annuum L.), Monstera deliciosa L., cultivated strawberry (Fragaria × ananassa Duchesne),
and turnip (Raphanus sativus L.), half of which are greenhouse ornamentals and the other half are
greenhouse crops. Images of the six types of plants are exhibited in Figure 2. Epipremnum aureum,
Aglaonema modestum, and pepper plants were used in 3D imaging experiments in the lab environment.
A potted Monstera deliciosa sample was used in 3D imaging experiments in an open field.
The strawberry and turnip crops were used for experiments in a real greenhouse.
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Figure 2. Six types of greenhouse plants were used in experiments. (a) Epipremnum aureum;
(b) Aglaonema modestum; (c) pepper plant; (d) Monstera deliciosa; (e) greenhouse strawberry plants; and
(f) greenhouse turnip plants.
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The imaging experiments using the proposed stereo system were carried out in three
different environments: an indoor lab (Donghua University, Shanghai, China), an open field
with grass (Donghua University, Shanghai), and a multi-span glass greenhouse (Tongji University,
Shanghai) under fully automated control. Images of the three environments are given in Figure 3.
A hygrothermograph was used to record the temperature and relative humidity of each environment.
During the experimentations, the average temperature of the indoor lab was 25.0 ◦C, and the relative
humidity was 41%. The measured temperature and the relative humidity of the open field were 24.0 ◦C
and 30% in the experiment, respectively. A four-day experiment on strawberry crops and turnip
crops was conducted in the greenhouse. In order to test the proposed method’s robustness against
the illumination changes, our stereo system operated in both sunny weather and overcast weather.
The average temperature and the relative humidity in the greenhouse for strawberry plants were
22.5 ◦C and 57%, respectively, in the sunny day; and 20.5 ◦C and 58%, respectively, in overcast weather.
The average temperature and the relative humidity in the greenhouse for turnip crops were 22.0 ◦C
and 57%, respectively, when it was sunny, and 21.0 ◦C and 59%, respectively, in overcast weather.
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Figure 3. The 3D imaging experiments for sample plants were carried out in three environments: (a) an
indoor lab of Donghua University, (b) an open field in Donghua University, and (c) a multi-span glass
greenhouse in Tongji University.

3. Methodology

3.1. Framework

Binocular stereo vision is an important branch of machine vision and it is a technique aiming at
inferring depth information of a scene via two cameras. In a standard stereo camera model, the two
image planes are co-planar and are vertically aligned as shown in Figure 4. As we can see, b is called
baseline, which specifies the translation between the two projection centers. f is the focal length of
the two cameras. d stands for the disparity, i.e., the pixel difference between the x coordinates of two
corresponding points xL in the left image and xR in the right image. In principle, the technique is able
to recover the X, Y, and Z information of an object P by calculating the disparity of the corresponding
pixels between two images taken from different viewpoints.
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Figure 4. A plot of epipolar geometry of a binocular stereo vision system.

The imaging of a typical binocular stereo vision system consists of four steps: (i) camera calibration,
(ii) stereo rectification, (iii) stereo matching, and (iv) 3D point cloud reconstruction. The first step
computes camera parameters. The second step aligns epipolar lines in the left and right views, and
reduces the 2D correspondence searching to 1D. The stereo matching is the key step, which finds
pixel-wise correspondences between two images to generate a disparity map. The final step recovers
3D information from the disparity map by using triangulation and camera parameters. The four steps
are displayed in Figure 5.
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Figure 5. Working principle of the proposed binocular stereo vision system. The procedure of
imaging consists of four steps—(i) camera calibration, (ii) stereo rectification, (iii) stereo matching and
(iv) 3D point cloud reconstruction. The left column of this figure (a,c,e,g) shows the methodology
and equipment used in the four steps, and the right column (b,d,f,h) shows intermediate and final
results step by step. Figure 5a shows the stereo vision platform that contains two webcams and an
image pair of a chessboard used for calibration. (b) Records of the spatial positions of the camera
system and the chessboard during calibration, realized by using the Camera Calibration Toolbox for
Matlab [43]. Stereo rectification aligns the epipolar lines of the left and the right cameras and reduces
the camera distortion near the image boundaries, and after rectification, the correspondence search in
stereo matching can be reduced from 2D to 1D. (c) The stereo rectification corresponds to paralleling
the principal axis of a camera to the other. (d) After the rectification, the camera distortion around
image boundaries is reduced. (e) Disparity is formed by two different image planes; (f) the disparity
map generated by using stereo matching algorithms. (g) The mapping between the disparity map to
the real 3D space by triangulation; (h) the final 3D point cloud.
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3.2. Calibration

Cameras need to be calibrated for two reasons: (a) calculating intrinsic parameters (focal length
f , principle point coordinates and distortion coefficient) and extrinsic parameters (camera rotation
R and translation t with respect to the origin of the 3D world), and (b) correcting the lens distortion.
We adopted a calibration toolbox for Matlab [43] that uses Zhang’s calibration method [44] to calibrate
the cameras. This approach uses a pattern of the known dimensions observed from a number of the
unknown positions to calibrate the camera. In our implementation, a two-side chessboard (one side
has 10 by 10 grids with a grid side length of 41 mm, the other side has 8 by 8 grids with a grid side
length of 46 mm) is used as a calibration device. We capture 20 image pairs of the chessboard at each
scene by changing the chessboard orientation (Figure 6), then extract grid corners as the calibration
pattern by applying the toolbox.
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After calibrating the left and right cameras, stereo calibration is applied to compute the geometrical
relationship between the two cameras in the real world. The extrinsic parameters of the two cameras
are denoted as RL, tL, RR, and tR. The first two parameters represent the spatial position of the left
camera in the world coordinate system. The other two represent the spatial position of the right camera
in the world coordinate system. For a given 3D point P in the real world, pw is the homogeneous
coordinate of P in the world coordinate system; pL is the homogeneous coordinate of P in the left
camera coordinate system, while pR is the coordinate of point P in the right camera coordinate system.
Then we can get the following two equations of point P:

pL = RLpw + tL (1)

pR = RRpw + tR. (2)

The two camera coordinate systems can be related by the following equation:

pL = RT(pR − t), (3)



Remote Sens. 2017, 9, 508 9 of 27

where R and t represent the rotation matrix and translation vector between the two cameras,
respectively. By solving the three equations above, R and t can be computed as:

R = RR(RL)
T (4)

t = tR −RtL. (5)

3.3. Stereo Rectification

Stereo rectification aims to remove the lens distortions and turn the image pairs into a standard
configuration in which the optical axes of the two cameras are parallel and the image planes are
row-aligned. After stereo rectification the search space for corresponding space can be narrowed from
2D to 1D and the corresponding points are constrained on the same horizontal line of the rectified
images [45]. The stereo rectification uses the calibrated parameters that are acquired in the previous
step to rectify the plant image pairs. Figure 7 shows a pair of images after rectification; the red lines
are aligned by epipolar lines. Lens distortion is also rectified in this step, the fish-eye effect around the
image boundary is compensated to ensure that all epipolar lines are straight (see Figure 5d).
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3.4. Stereo Matching

Stereo matching generates a disparity map by finding corresponding points between the left
image and the right image. Because the accuracy of the disparity image determines the accuracy of
depth (the Z-axis) information, the stereo matching algorithm plays a key role in the binocular stereo
vision system. The ASW approach [39] is a powerful local filter-based stereo matching algorithm that
not only can be perceived by bilateral filtering, but can also be explained by the Gestalt psychology.
In this subsection, to improve the results of the original ASW on image with low-texture areas and
unstable illuminations, we integrate the AD-Census cost measure into the framework of ASW to
compute the disparity map. According to the taxonomy in [46], a typical stereo matching algorithm
generally consists of the following three parts: (a) matching cost computation; (b) cost aggregation;
(c) disparity computation and refinement. Our approach generally follows this workflow and the parts
are discussed sequentially in the rest of this subsection.

3.4.1. Raw Matching Cost Computation

For pixel p and pixel q in the reference image domain, ASW algorithm assumes that the fact
of close spatial distance between p and q and the fact of similar color intensity of p and q lead to a
higher possibility that p has the same disparity with q. The support-weight between p and q can be
calculated by:

ω(p, q) = exp
(
−
(

∆cpq

γc
+

∆gpq

γp

))
, (6)
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in which γc and γp are two constant parameters balancing the effects of spatial distance and color
similarity. Empirically, γc is chosen between 4.0 and 7.0; γp can be fixed as the radius of the support
window in the cost aggregation step. ∆cpq represents the Euclidean distance between two colors and it
is calculated in the CIE color space and it can be written as:

∆cpq =

√(
Lp − Lq

)2
+
(
ap − aq

)2
+
(
bp − bq

)2. (7)

∆gpq represents the geometric Euclidean distance between p and q in the image coordinate system
and is expressed as:

∆gpq =

√(
xp − xq

)2
+
(
yp − yq

)2. (8)

In the raw cost computation, the truncated absolute differences (TAD) measure is often used
to calculate the raw matching cost CTAD between the corresponding pixels q and qd at disparity d.
The following equation shows how TAD cost is computed.

CTAD(q, qd) = min

 ∑
c∈{r,g,b}

|Ic(q)− Ic(qd)|, T

 (9)

However, greenhouse plant images taken by webcams suffer from problems such as radiometric
distortion, low-texture areas (leaves are similar in the same canopy), etc. The raw matching cost
computed by TAD is affected by those problems to a large extent. Therefore, we applied an AD-Census
measure [42] that combines an absolute difference and a Census transformation to calculate the raw
matching cost instead. The principle of Census transformation is given as follows. Firstly, it defines a
3 × 3 window centered at the current pixel, and then compares the grayscale intensity of the current
pixel with eight pixels in the window. If a window pixel’s intensity is larger than the center pixel’s
intensity, this window pixel is assigned with 0; otherwise, the window pixel is assigned with 1. In this
way, the window pixel intensities are transformed into a string containing only 0 and 1. Referring to
the example in Figure 8, the string of pixel q is denoted by S(q), and the string of pixel qd is denoted
by S(qd). The cost of Census transformation is calculated as the Hamming distance between S(q)
and S(qd):

CCensus(q, qd) = DHamming(S(q), S(qd)). (10)

The absolute difference measure is defined as:

CAD(q, qd) =
1
3 ∑

c∈{r,g,b}
|Ic(q)− Ic(qd)|. (11)

Then the AD-Census cost measure is computed as:

CAD−Census(q, qd) = 1− exp
(
−CCensus(q, qd)

α1

)
+ 1− exp

(
−CAD(q, qd)

α2

)
, (12)

in which α1, α2 are the control parameters for Census cost and AD cost, respectively.
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3.4.2. Cost Aggregation

During the step of cost aggregation, the cost is aggregated to measure the dissimilarity between p
and pd:

E(p, pd) =
∑q∈Np ,qd∈Npd

ω(p, q)ω(pd, qd)CAD−Census(q, qd)

∑q∈Np ,qd∈Npd
ω(p, q)ω(pd, qd)

, (13)

where p is a pixel in the reference image, and pd is the corresponding pixel of p with a disparity of d
on the same row in the target image. Np and Npd are the aggregation windows centered at p and pd,
respectively. Pixel q stands for any pixel in Np, and qd is a pixel in Npd . The lower the dissimilarity, the
higher the chance that p matches pd is.

3.4.3. Disparity Computation and Disparity Refinement

After cost aggregation, the disparity of p is selected by using a simple winner-take-all strategy:

dp = argmin
d

E(p, pd). (14)

Because the disparity acquired from Equation (14) is essentially a difference in pixel position, it
results in a discrete disparity and eventually leads to the discrete depth estimation. After triangulation
(using Equations (16)–(18)), the point cloud generated by the disparity map obtained from (14) will
become layered. In order to solve this problem, a sub-pixel disparity refinement based on quadratic
polynomial interpolation [47] is employed to enhance the accuracy. The refinement is shown as in
Equation (15):

d = dp +
1
2
·

E(p, pdp−1)− E(p, pdp+1)

E(p, pdp−1)− 2E(p, pdp) + E(p, pdp+1)
, (15)

where dp denotes the disparity of pixel p at coordinate (x, y) obtained via (14), and d is the refined
disparity result for pixel p. By using Equation (15), each disparity will turn from an integer to a
decimal, generating a smoother depth field.

3.5. 3D Point Cloud Reconstruction

In the last step, we can recover 3D information of each point on disparity surface from the
binocular stereo system. As the image pairs are row-aligned and rectified, a series of linear equations
can be obtained by triangulation, and then the 3D point cloud of the plant can be calculated:

X = xZ f−1 (16)

Y = yZ f−1 (17)
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Z = f bd−1. (18)

In the three equations above, (x, y) is the image coordinate of a pixel, and (X, Y, Z) is the computed
inhomogeneous 3D world coordinate of this pixel by triangulation.

4. Results

4.1. Performance of the Proposed Stereo Matching Algorithm

We evaluate the performance of AD-Census cost measure with ASW (the proposed method)
against several other stereo matching techniques, including the ASW algorithm [39], Graph Cuts
algorithm (GC) [37], and Semi-global Matching (SGBM) algorithm [38] on the Middlebury datasets [48].
The comparative results are shown by disparity maps in Figure 9, which demonstrate that the proposed
method can generate disparity images with a higher accuracy than the others. The quantitative analysis
is given by Table 1, which shows that our method outperforms the compared methods at most times.
The comparative results of the proposed method and the original ASW algorithm on two pairs of real
plant images (Epipremnum aureum and Aglaonema modestum) are shown in Figure 10, and it can be
observed that the AD-Census cost measure contributes to a better performance because the hollow
effect (dark areas) in the disparity map is suppressed.
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Figure 9. Experimental results on the Middlebury datasets [48]. (a): ground truth images.
(b–e): disparity images of proposed method, original ASW [39], GC [37], and SGBM [38], respectively.
The algorithm can be considered a good one if it has a result similar to the ground truth. The proposed
results are superior to the others.
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Table 1. Comparison of the proposed method with the above approaches. Tsukuba, Venus, Teddy, and
Cone are image pairs of the Middlebury datasets [48]. “n.o.”, “all”, and “dis” denote the mismatch
rates for pixels in non-occluded regions, all pixels, and pixels near depth discontinuities, respectively.
“Avg. Error” is the average error defined on Middlebury datasets. The best results are in bold face, and
the proposed method achieves the best results at most times.

Tsukuba

Remote Sens. 2017, 9, 508  13 of 26 

 

Table 1. Comparison of the proposed method with the above approaches. Tsukuba, Venus, Teddy, 
and Cone are image pairs of the Middlebury datasets [48]. “n.o.”, “all”, and “dis” denote the mismatch 
rates for pixels in non-occluded regions, all pixels, and pixels near depth discontinuities, respectively. 
“Avg. Error” is the average error defined on Middlebury datasets. The best results are in bold face, 
and the proposed method achieves the best results at most times. 

 Tsukuba  
 

 
 

 Venus  
 

 
 
 

Teddy  
 

 
 
 

Cone  
 

 
 
 

Avg. 
Error 

Unit: % n.o. all dis  n.o. all dis n.o. all dis n.o. all dis 
Proposed 2.45 3.53 6.58  0.38 1.09 4.39 6.97 10.7 18.9 2.91 11.6 8.75 6.63
ASW [39] 1.38 1.85 6.90  0.71 1.19 6.13 7.88 13.3 18.6 3.97 9.79 8.26 6.67 
GC [37] 1.94 4.12 9.39  1.79 3.44 8.75 16.5 25.0 24.9 7.70 18.2 15.3 11.4 

SGBM [38] 4.36 6.47 18.8  5.90 7.52 26.3 15.5 24.2 26.9 12.2 22.1 20.4 15.9 

4.2. Relationship between Accuracy and Baseline 
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The plant in Figure 2a is placed within 1 m of the stereo system and we compare the disparity maps 
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disparity maps without refinement and corresponding point clouds viewed from three different 
positions at the four different baseline values, respectively. The results clearly show that the higher 
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in which 1d  and 2d  represent the disparities of the two adjacent depth layers, respectively. Because 
the surface of an object is usually continuous, the disparity between two adjacent layers is 1. Thus 
lD  can be calculated by: 

1 2

fbl
d d

D = . (20) 

Based on Equations (19) and (20), it can be concluded that the further away a point is from the 
stereo system, the larger lD  will be. This is because a distant pixel from a surface must have a small 
disparity value, which results in a large lD . This also explains the non-uniform distances between 
the adjacent layers in column (c) of Figure 11. At the same baseline, the smaller lD  is, the higher 
accuracy we obtain. 

Although the accuracy of depth improves with an increasing baseline length, larger baseline 
lengths also lead to higher mismatch rates because some of the pixels in the occluded area cannot be 
observed simultaneously by both cameras. For example, in column (a) of Figure 11, black holes 
(mismatch) begin to appear in the plant region with a baseline of 105 mm. After comparison, we find 
that the optimal length of the baseline is around 80 mm because it represents a good trade-off between 
depth accuracy and mismatch rate for the proposed stereo system. The result is similar for a plant 
with a distance less than 1 m (e.g., 0.6 m or 0.8 m). 
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4.2. Relationship between Accuracy and Baseline

In this subsection, the relationship between the depth accuracy and the length of the baseline is
analyzed. This result is also used to provide an optimal baseline for our binocular stereo platform.
The plant in Figure 2a is placed within 1 m of the stereo system and we compare the disparity maps
generated at four different baseline values: 45 mm, 65 mm, 85 mm, and 105 mm. Figure 11 shows
the disparity maps without refinement and corresponding point clouds viewed from three different
positions at the four different baseline values, respectively. The results clearly show that the higher the
length of the baseline, the more depth layers we will obtain, i.e., the accuracy of depth improves with
the increase of baseline length. It can be observed from column (c) in Figure 11 that as the length of
baseline b increases, the distance ∆l between adjacent depth layers in the point cloud decreases. ∆l can
be computed as follows:

∆l = Z1 − Z2 =
f b
d1
− f b

d2
=

(d2 − d1) f b
d1d2

, (19)
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in which d1 and d2 represent the disparities of the two adjacent depth layers, respectively. Because the
surface of an object is usually continuous, the disparity between two adjacent layers is 1. Thus ∆l can
be calculated by:

∆l =
f b

d1d2
. (20)

Based on Equations (19) and (20), it can be concluded that the further away a point is from the
stereo system, the larger ∆l will be. This is because a distant pixel from a surface must have a small
disparity value, which results in a large ∆l. This also explains the non-uniform distances between the
adjacent layers in column (c) of Figure 11. At the same baseline, the smaller ∆l is, the higher accuracy
we obtain.

Although the accuracy of depth improves with an increasing baseline length, larger baseline
lengths also lead to higher mismatch rates because some of the pixels in the occluded area cannot
be observed simultaneously by both cameras. For example, in column (a) of Figure 11, black holes
(mismatch) begin to appear in the plant region with a baseline of 105 mm. After comparison, we find
that the optimal length of the baseline is around 80 mm because it represents a good trade-off between
depth accuracy and mismatch rate for the proposed stereo system. The result is similar for a plant with
a distance less than 1 m (e.g., 0.6 m or 0.8 m).Remote Sens. 2017, 9, 508  14 of 26 
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In the lab environment, we used the proposed methodology to carry out 3D point cloud 
reconstruction with disparity refinement for Epipremnum aureum and the pepper (Capsicum annuum) 
sample plants. Figure 13 shows the rectified left image and the point cloud of the Epipremnum aureum 
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Figure 11. Disparity maps and point clouds generated under four different baseline lengths: 45 mm,
65 mm, 85 mm, and 105 mm; the plant is placed about 1.0 meter away from the stereo system.
(a) Disparity maps; (b) 3D point clouds viewed from the top of the plant; (c) ide-view point clouds,
where each horizontal line stands for a depth layer; (d) the point clouds viewed from another viewpoint.
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4.3. Reconstruct Point Cloud with Disparity Refinement

The subsection displays the reconstructed 3D point clouds of plants with disparity refinement
in three different environments. Figure 12 provides a comparison of 3D point clouds of Epipremnum
aureum processed with and without disparity refinement in the indoor lab. It clearly shows that
the disparity refinement process by Equation (15) has effectively solved the problem of discrete
depth layers.
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Figure 12. Comparison of 3D point clouds of Epipremnum aureum obtained with and without
disparity refinement: (a) the point cloud without disparity refinement; (b) the point cloud with
disparity refinement.

In the lab environment, we used the proposed methodology to carry out 3D point cloud
reconstruction with disparity refinement for Epipremnum aureum and the pepper (Capsicum annuum)
sample plants. Figure 13 shows the rectified left image and the point cloud of the Epipremnum aureum
sample viewed from two different positions. Figure 14 displays the rectified left image and the point
cloud of the pepper sample viewed from two different positions.

For the environment on an open field, we set up the stereo vision platform and used the proposed
methodology to reconstruct a 3D point cloud with disparity refinement for a Monstera deliciosa sample.
Figure 15 shows the rectified left image and point cloud of the plant viewed respectively from two
different positions.

In the multi-span glass greenhouse located in Jiading campus of Tongji University, we
reconstructed 3D point clouds for the potted strawberry sample plants and turnip sample plants,
respectively. The stereo-rectified left image and 3D point cloud of the strawberry plants are shown
in Figure 16. The stereo-rectified left image and 3D point cloud of the turnip plants are shown in
Figure 17.
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Figure 13. The stereo-rectified left image and reconstructed 3D point cloud of the Epipremnum aureum 
sample plant. (a) The rectified left webcam image used for generating the 3D point cloud; (b,c) the 
reconstructed 3D point cloud of the Epipremnum aureum sample plant viewed from two different 
positions. 

 
Figure 14. The stereo-rectified left image and reconstructed 3D point cloud of the pepper sample plant. 
The left side (a) is the rectified left webcam image used for generating the 3D point cloud; (b) and (c) 
show the reconstructed 3D point cloud of the pepper sample plant viewed from two different 
positions. 

Figure 13. The stereo-rectified left image and reconstructed 3D point cloud of the Epipremnum
aureum sample plant. (a) The rectified left webcam image used for generating the 3D point cloud;
(b,c) the reconstructed 3D point cloud of the Epipremnum aureum sample plant viewed from two
different positions.
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Figure 14. The stereo-rectified left image and reconstructed 3D point cloud of the pepper sample plant.
The left side (a) is the rectified left webcam image used for generating the 3D point cloud; (b,c) show
the reconstructed 3D point cloud of the pepper sample plant viewed from two different positions.
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Figure 15. The stereo-rectified left image and reconstructed 3D point cloud of a Monstera deliciosa
sample plant. The left side (a) is the rectified left webcam image used for generating the 3D point cloud;
(b,c) show the reconstructed 3D point cloud of the Monstera deliciosa sample plant viewed from two
different positions.
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(b,c) show the reconstructed 3D point cloud of the strawberry sample plants viewed from two 
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Figure 17. The stereo-rectified left image and reconstructed 3D point cloud of greenhouse turnip 
samples. The left side (a) is the rectified left webcam image used for generating the 3D point cloud; 
(b,c) display the reconstructed 3D point cloud of the turnip sample plants viewed from two different 
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Figure 16. The stereo-rectified left image and reconstructed 3D point cloud of greenhouse strawberry
samples. The left side (a) is the rectified left webcam image used for generating the 3D point
cloud; (b,c) show the reconstructed 3D point cloud of the strawberry sample plants viewed from
two different positions.
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Figure 17. The stereo-rectified left image and reconstructed 3D point cloud of greenhouse turnip 
samples. The left side (a) is the rectified left webcam image used for generating the 3D point cloud; 
(b,c) display the reconstructed 3D point cloud of the turnip sample plants viewed from two different 
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Figure 17. The stereo-rectified left image and reconstructed 3D point cloud of greenhouse turnip
samples. The left side (a) is the rectified left webcam image used for generating the 3D point
cloud; (b,c) display the reconstructed 3D point cloud of the turnip sample plants viewed from two
different positions.

4.4. Implementation Details

Implementation of the proposed method can be generally divided into five steps. Table 2 lists
the information about the software, equipment, URLs for tools, processing time, and data description
of each step. The presented ASW stereo matching scheme under AD-Census cost measure costs less
than 2 min for a pair of 640 × 480 images, and the final generated point cloud contains more than
170,000 points. The total time of implementation for a new scene is about half an hour. We used our own
C++ implementation for the image acquisition, rectification, stereo matching, and 3D reconstruction
steps, which are mostly automatic. Only the first two steps of image acquisition and calibration require
some manual configurations because of repositioning the chessboard in front of the stereo system and
labeling the corner points in Matlab. In application, we only have to calibrate the system only once as
the stereo platform is usually fixed on site. Then the growth of the greenhouse plant can be monitored
by conducting a continuous 3D reconstruction that only takes several minutes at each image pair.

Table 2. Implementation details about each step of the proposed 3D imaging method. The information
listed here includes the software, equipment, URLs for tools, processing time, and data description.

Steps: Image Acquisition Calibration Rectification Stereo Matching 3D Reconstruction
and Display

Software/
Equipment

VS2010+
OPENCV2.4.9/

The proposed platform

Matlab2014a/
Laptop

VS2010+
OPENCV2.4.9/

Laptop

VS2010+
OPENCV2.4.9/

Laptop

VS2013+ PCL1.7.2
(×86)/Laptop

URLs Microsoft.com;
Opencv.org

Vision.caltech.
edu/bouguetj/

calib_doc/

Microsoft.com;
Opencv.org

Microsoft.com;
Opencv.org

Microsoft.com;
Pointclouds.org

Time (minute) Less than 3 About 20 Less than 1 Less than 2 Less than 1

Data size 40 + 2 images 40 images 2 images 1 scene (point cloud) 1 scene (point cloud)

Microsoft.com
Opencv.org
Vision.caltech.edu/bouguetj/calib_doc/
Vision.caltech.edu/bouguetj/calib_doc/
Vision.caltech.edu/bouguetj/calib_doc/
Microsoft.com
Opencv.org
Microsoft.com
Opencv.org
Microsoft.com
Pointclouds.org
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5. Discussion

5.1. Depth Error

Error of depth originates from three major aspects: calibration error, foreshortening error and
misalignment error. The calibration error results from inaccurate estimation of the extrinsic as well as
the intrinsic camera parameters. Calibration inaccuracy further leads to 2D reprojection error in the
image plane, and finally causes a 3D localization error. The foreshortening error is caused by a 3D
scene that is not fronto-parallel. The misalignment error is caused by mismatch in the stereo matching
process. In order to analyze the depth estimation error, a theoretical error model [49] between the
disparity error ∆d and the depth error ∆Z is established as follows:

∆Z =
−Z2∆d

f b + Z∆d
. (21)

According to this definition, the disparity is the difference of horizontal coordinates between the
left image and the right image on the same epipolar line, therefore we have d = xr − xl . Then the error
of disparity can be represented as:

∆d = ∆xr − ∆xl . (22)

Due to the discrete nature of digital imaging systems, the image coordinates are inevitably
influenced by quantization noise. This means ∆xr and ∆xl can be up to half of a pixel in magnitude.
Assuming ∆x is uniformly distributed, and the imaging processes of two cameras in the binocular
system are mutually independent, then we obtain:

|∆d| ∈ [0, a], (23)

where a is the image sampling interval that determines the image resolutions. In our work, the sensor
size of the webcam is about 1/2” (width 6.4 mm, height 4.8 mm), and the images are taken at the
resolution of 1280 × 720. As the disparity is calculated in the horizontal direction, the image sampling
interval is calculated as a ≈ 6.4/1280 = 0.005 mm, which means that in the worst case the error
of disparity ∆d can reach up to 0.005 mm. According to the calibration step, the focal length of the
webcam is 3.9 mm. If the baseline is fixed at 85 mm, and the object being measured is placed 1.0 m
away from the stereo system, the absolute value of depth error |∆Z| has an upper bound of 14.86 mm
when applying Equation (21). If the object-to-camera distance is less than 0.8 m, the error |∆Z| will be
no higher than 10 mm according to Equation (21).

In order to quantitatively measure the actual depth errors, we place a textured box in front of
the cameras and compare its real distance to the stereo platform with the distance computed by
Equation (18). The real distance between the box and cameras varies in the range of 488 mm to
1388 mm with a step of 50 mm. Nineteen image pairs are recorded in the range, and the left images are
shown in Figure 18. The measured depth error is defined as the difference between the real distance
and the distance computed by triangulation, and Figure 19 plots the absolute measured depth errors
and the upper bounds computed from the theoretical model at 19 different ranges. In this figure, we
can see that the two depth error curves both increase with the distance between the object surface
and the stereo platform, and the quantitative results comply with the theoretical model given by
Equation (21). For an object that is less than 800 mm away from the stereo system, the measured depth
error is less than 5 mm. According to our manual measurement, the average leaf length and width of
Epipremnum aureum sample plant are approximately 103.6 mm and 56.4 mm, respectively. The average
leaf length and width of Aglaonema modestum sample plant are approximately 146.7 mm and 62.2 mm,
respectively. The average leaf length and width of the sample pepper plant used in experiment are
approximately 70.8 mm and 35.0 mm, respectively. Compared to the average leaf sizes of the three test
plants, the measured depth error of our system is tolerable.
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Figure 18. A textured box was placed at different distances to the stereo platform for depth error 
measurements. The black number below each sub-image means the real distance from the box to the 
camera, and the red number below each box image means the measured depth error. The baseline of 
this test is fixed at 85 mm. It is noted that the absolute values of measured depth errors are also plotted 
as square data labels on the blue curve in Figure 19. 

Figure 18. A textured box was placed at different distances to the stereo platform for depth error
measurements. The black number below each sub-image means the real distance from the box to the
camera, and the red number below each box image means the measured depth error. The baseline of
this test is fixed at 85 mm. It is noted that the absolute values of measured depth errors are also plotted
as square data labels on the blue curve in Figure 19.
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Figure 19. Measured depth errors and the theoretical upper bounds in our stereo vision system.
Each measured depth error is smaller than the corresponding upper bound value estimated by
Equation (21).

When the disparity is close to 0, small differences in disparity lead to large depth fluctuations.
Contrarily, when disparity is large, small disparity variations do not significantly change the depth.
This means that this binocular stereo platform has high depth accuracy only for objects that are close
to the cameras. As the distance between the object and the cameras increases, the pixel resolution of
the object decreases, leading to a larger error of depth measurements.

5.2. Feasibility

The proposed methodology is feasible for greenhouses and even outdoor environments. We are
particularly concerned with the performance and stability of the inexpensive stereo vision platform in
greenhouses. Thus different kinds of devices were tested for the platform in our automated greenhouse.
Three different webcam pairs with inexpensive prices, including HD-3000 Series (Microsoft, Redmond,
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WA, USA), LifeCam Studio (Microsoft, Redmond, WA, USA), and TTQ Series (Kingyo Century
Technology Development Co. Ltd., Shenzhen, China) were tested and compared. They showed reliable
results, and their respective plant point clouds are also quite similar. It is also noteworthy that these
webcams all endured high humidity and temperature in our greenhouse for several days, which
indicates the feasibility of using ordinary webcams in this situation.

In our system, a laptop is connected to the vision platform to capture and process stereo data.
Although a laptop works favorably in the lab environment, it is not clear whether it can work normally
for a period of time in a greenhouse with high humidity and extra heat. Therefore we tested two
different laptops in the greenhouse—one is an Acer (4830T series, Acer, New Taipei City, Taiwan); the
other is a Dell (XPS15-9550, Dell, Round Rock, TX, USA). Each laptop endured a two-day experiment
in the greenhouse, and both worked normally during the period of testing. This result supports the
applicability of our methodology to greenhouse imaging.

5.3. Invariance against Illumination Changes

The proposed 3D imaging system shows invariance against changing illumination in various
greenhouse experiments. We fixed the poses and orientations of our stereo platform during imaging,
and captured image pairs under different illumination conditions to carry out point cloud generation.
For the strawberry plants, we compared image pairs obtained in overcast and sunny weather.
In Figure 20, both cases show satisfactory disparities, and the point clouds are almost identical.
For greenhouse turnips, the image pairs were also captured under different illuminations. Figure 21
shows the disparity comparison and turnip point clouds in two views, which also exhibit the
invariances against illumination changes. Therefore, our method is robust against illumination changes
in a real greenhouse.
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Highlighting is another challenge created by illumination in plant imaging. It is often observed 
on the surfaces of large and smooth leaves because of the specular reflection of sunlight. A highlight 
region usually takes on bright white color; hence the highlighted region loses texture details, creating 
obstacles for many stereo matching algorithms. Monstera deliciosa has broad and smooth leaves so it 
is an ideal sample for testing the performance of the presented method when highlights appear. In 
the outdoor experiment, several highlight regions labeled by red ellipses can be observed in Figure 
22a. Our stereo matching algorithm successfully generated a satisfactory disparity map, shown in 
Figure 22b, in which the highlighted regions had stable disparity. The two views of the final 

Figure 20. Comparison of results in overcast and sunny weather for greenhouse strawberry plants:
(a) the image captured when it is sunny; (b) the disparity image of (a) obtained via our ASW stereo
matching algorithm with AD-Census cost measure; (c) the top view of the generated point cloud with
disparity refinement on image (b); (d) the side view of the point cloud (c), from which we can observe
the leaves distributed on different layers in height; (e) the image captured in overcast weather; (f) the
disparity image of (e); (g) the top view of a generated point cloud with disparity refinement on image
(f); (h) the side view of the point cloud (g), whose structure is almost the same as (d).

Highlighting is another challenge created by illumination in plant imaging. It is often observed on
the surfaces of large and smooth leaves because of the specular reflection of sunlight. A highlight region
usually takes on bright white color; hence the highlighted region loses texture details, creating obstacles
for many stereo matching algorithms. Monstera deliciosa has broad and smooth leaves so it is an ideal
sample for testing the performance of the presented method when highlights appear. In the outdoor
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experiment, several highlight regions labeled by red ellipses can be observed in Figure 22a. Our stereo
matching algorithm successfully generated a satisfactory disparity map, shown in Figure 22b, in which
the highlighted regions had stable disparity. The two views of the final reconstructed point cloud of
the sample (Figure 22c,d) show that we not only recovered individual leaves, but also recovered the
local curvature of each leaf. It can be seen that the regions without highlight are mostly rugged, which
coincides with the fact that highlight only comes from smooth and flat surfaces. The invariance against
highlight can be explained by looking into the theory of the proposed stereo matching scheme. In a
highlighted region, the pixels take on uniform and saturated color. Though most of such a region is
low-textured, the boundary of the region still has a sharp intensity gradient. The AD-Census measure
can record the intensity gradients around the two compared pixels. After the cost aggregation step
(Equation (13)), the gradient information is enhanced. Once the aggregation window is large enough
to incorporate edges from a highlighted region, the disparity can be correctly computed based on the
aggregated gradient information.
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Figure 21. Comparison of results in overcast and sunny weather for greenhouse turnip plants: (a)
the image captured when it is overcast; (b) the disparity image of (a) obtained via our ASW stereo
matching algorithm with AD-Census cost measure; (c) the top view of the generated point cloud with
disparity refinement on image (b); (d) the side view of point cloud (c); (e) the image captured when
sunny; (f) the disparity image of (e); (g)is the top view of the generated point cloud with disparity
refinement on image (f); (h) the side view of the point cloud (g), with a structure almost the same as (d).
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Figure 22. Outdoor experiment on imaging a Monstera deliciosa sample plant: (a) image of the captured
image pair, where the highlighted regions are labeled by red ellipses; (b) the disparity image of
(a) obtained via our ASW stereo matching algorithm with the AD-Census cost measure. The disparity
image exhibits invariance against highlight because there is no abrupt intensity change inside the
highlight regions in (b). The two views of point cloud are shown in (c,d). The regions without highlight
are mostly rugged, coinciding with the fact that highlight only comes from smooth and flat surfaces.
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5.4. Leaves Segmentation

A successful segmentation relies on a dense and accurate point cloud because it contains richer
features than low-quality point clouds. Hence it is reasonable to validate the quality of the point cloud
by assessing the segmentation results. In this subsection, we try to segment leaves individually from
the point cloud of Epipremnum aureum generated by our methodology to validate the quality of the
point cloud. Figure 23a,b display the side and top view, respectively, of the Epipremnum aureum point
cloud containing only canopy. This point cloud was obtained from the point cloud shown in Figure 13
by using a green color filter. The Octree data structure was used to process points in the cloud, and for
each seed point we traverse its K nearest neighborhood points. The neighborhood points that satisfy
both similar 3D positions and similar normal with the seed point are regarded as part of a same leaf,
and are segmented with a uniform color. Figure 23c,d are the segmentation results corresponding to
(a) and (b), respectively. The segmentation scheme shows a satisfactory performance, recognizing 35 of
the 37 true leaves. This reveals that our method successfully recovers the 3D curvature of each leaf of
the Epipremnum aureum sample plant.Remote Sens. 2017, 9, 508  23 of 26 
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Figure 23. Automatic leaf segmentation for the point cloud of the Epipremnum aureum sample plant.
The point cloud contains the canopy structure only, and is obtained by using a green color filter on
the original point cloud (Figure 13) generated by our method. (a,b) The side view and top view of
the plant, respectively; (c,d) the segmentation results corresponding to (a,b), respectively. Different
leaves are painted with different colors, and the points that are believed to belong to the same leaf are
painted with the same color. The segmentation shows satisfactory performance, recognizing 35 of the
37 true leaves.

6. Conclusions

For the purpose of serving greenhouse cultivation and advancing high-throughput plant
phenotyping, a low-cost and portable stereo vision system is established to realize 3D imaging
of greenhouse plants. Our platform does not place harsh limitations on cameras and laptops in
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greenhouse experiments, which indicates high feasibility. In the stereo matching step, an efficient
cost calculating measure—AD-Census—is integrated with the ASW algorithm to improve the latter’s
performance on real plant images. In the quantitative assessment, our stereo algorithm reaches an
average error rate of 6.63% on the Middlebury datasets, lower than rates of the original ASW approach
and several other popular algorithms. The imaging accuracy of the proposed method under different
baseline settings is investigated. The experimental results show that the optimal length of baseline is
approximately 80 mm for reaching a good trade-off between the depth accuracy and the mismatch
rate for a plant within 1 m distance. The theoretical error analysis (red curve in Figure 19) shows that
for an object within 1 m distance, the depth error has an upper bound of 14.86 mm; and for an object
with less than 800 mm distance, the depth error is no higher than 10 mm. The experimental error
analysis (blue curve in Figure 19) shows that for an object less than 800 mm away from our stereo
system, the absolute value of actually measured depth error is no higher than 5 mm. Although the
measured error curve fluctuates in the distance range 800–1200 mm, the measured value is lower
than the theoretical upper bound (especially when the distance is near 1 m, the absolute measured
depth error falls to 4.7 mm). This error is tolerable considering the dimensions of greenhouse plants.
By applying disparity refinement, the proposed methodology generates dense and accurate point
clouds of crops in different environments including an indoor lab, an outdoor field, and a greenhouse.
It also shows invariance against changing illumination in greenhouses, as well as the ability to recover
the 3D surfaces of the highlighted leaf regions.

As our binocular platform only recovers the 3D point cloud from two views, sometimes partial
occlusion is unavoidable. In the future, we will focus on applying the proposed stereo matching
algorithm on multi-view stereo systems, and designing a highly reliable point cloud registration
method to acquire complete point clouds of greenhouse plants. Our ultimate goal is to recognize the
growth status of the crops in real time via 3D imaging and phenotyping of their organs.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/9/5/508/s1,
Video S1: Monstera deliciosa L. point cloud.mp4. Video S1 is the video of the point cloud of a Monstera deliciosa
sample plant. Some screenshots of this video are also displayed in Figures 15 and 22. Video S2: Strawberry point
cloud.mp4. Video S2 is the video of the point clouds of several strawberry plants cultivated in the greenhouse.
Some screenshots of this video are also displayed in Figures 16 and 20. Video S3: Turnip crop point cloud.mp4.
Video S3 is the video of the point clouds of several turnip plants cultivated in the greenhouse. Some screenshots of
this video are also displayed in Figures 17 and 21. Video S4: Leaves segmentation displayed in Matlab (medium
quality) .mp4. Video S4 shows the point cloud of the Epipremnum aureum sample plant after automatic leaves
segmentation. Some screenshots of this video are also displayed in Figure 23.

Acknowledgments: This work was jointly supported by the National High-Tech R&D Program of China under
Grant 2013AA102305; the Natural Science Foundation of China under Grants 61603089, 61603090, and 61573258;
Shanghai Sailing Programs 16YF1400100, 17YF1426100; the Fundamental Research of the Shanghai Committee of
Science and Technology under Grant 15JC1400600; the fundamental Research Funds for the Central Universities
of China under Grant 233201600068; and the U.S. National Science Foundation’s BEACON Center for the Study of
Evolution in Action, under cooperative agreement DBI-0939454.

Author Contributions: The theoretical derivations were done by Dawei Li and Lihong Xu; Peng Zhang and
Shaoyuan Sun designed the experiments; Dawei Li and Xue-song Tang organized the experimental data and
wrote the paper; Xin Cai carried out part of the experiments.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Fahlgren, N.; Gehan, M.A.; Baxter, I. Lights, camera, action: High-throughput plant phenotyping is ready for
a close-up. Curr. Opin. Plant Biol. 2015, 24, 93–99. [CrossRef] [PubMed]

2. Romeo, J.; Pajares, G.; Montalvo, M.; Guerrero, J.M.; Guijarro, M.; Cruz, J.M.D.L. A new Expert System for
Greeness Identification in Agricultural Images. Expert Syst. Appl. 2013, 40, 2275C2286. [CrossRef]

3. Montalvo, M.; Guerrero, J.M.; Romeo, J.; Emmi, L.; Guijarro, M.; Pajares, G. Automatic expert system for
weeds/crops identification in images from maize fields. Expert Syst. Appl. 2013, 40, 75–82. [CrossRef]

4. Meyer, G.E.; Neto, J.C.; Jones, D.D.; Hindman, T.W. Intensified fuzzy clusters for classifying plant, soil, and
residue regions of interest from color images. Comput. Electron. Agric. 2004, 42, 161–180. [CrossRef]

www.mdpi.com/2072-4292/9/5/508/s1
http://dx.doi.org/10.1016/j.pbi.2015.02.006
http://www.ncbi.nlm.nih.gov/pubmed/25733069
http://dx.doi.org/10.1016/j.eswa.2012.10.033
http://dx.doi.org/10.1016/j.eswa.2012.07.034
http://dx.doi.org/10.1016/j.compag.2003.08.002


Remote Sens. 2017, 9, 508 25 of 27

5. Bruno, O.M.; Plotze, R.D.O.; Falvo, M.; Castro, M.D. Fractal dimension applied to plant identification.
Inform. Sci. 2008, 178, 2722–2733. [CrossRef]

6. Backes, A.R.; Casanova, D.; Bruno, O.M. Plant Leaf Identification Based On Volumetric Fractal Dimension.
Int. J. Pattern Recognit. Artif. Intell. 2011, 23, 1145–1160. [CrossRef]

7. Neto, J.C.; Meyer, G.E.; Jones, D.D. Individual leaf extractions from young canopy images using
GustafsonCKessel clustering and a genetic algorithm. Comput. Electron. Agric. 2006, 51, 66–85. [CrossRef]

8. Zeng, Q.; Miao, Y.; Liu, C.; Wang, S. Algorithm based on marker-controlled watershed transform for
overlapping plant fruit segmentation. Opt. Eng. 2009, 48, 027201. [CrossRef]

9. Xu, G.; Zhang, F.; Shah, S.G.; Ye, Y.; Mao, H. Use of leaf color images to identify nitrogen and potassium
deficient tomatoes. Pattern Recognit. Lett. 2011, 32, 1584–1590. [CrossRef]

10. Scharr, H.; Minervini, M.; French, A.P.; Klukas, C.; Kramer, D.M.; Liu, X.; Luengo, I.; Pape, J.-M.; Polder, G.;
Vukadinovic, D.; et al. Leaf segmentation in plant phenotyping: A collation study. Mach. Vis. Appl. 2015, 27,
585–606. [CrossRef]

11. Pape, J.M.; Klukas, C. 3-D histogram-based segmentation and leaf detection for rosette plants. In ECCV 2014
Workshops; Springer: Cham, Switzerland, 2015; Volume 8928, pp. 61–74.

12. Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua, P.; Susstrunk, S. SLIC superpixels compared to
state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 2274–2282. [CrossRef]
[PubMed]

13. Yin, X.; Liu, X.; Chen, J.; Kramer, D.M. Multi-leaf alignment from fluorescence plant images. In Proceedings
of the IEEE Winter Conference on Applications of Computer Vision (WACV), Steamboat Springs, CO, USA,
24–26 March 2014; pp. 437–444.

14. Barrow, H.G.; Tenenbaum, J.M.; Bolles, R.C.; Wolf, H.C. Parametric Correspondence and Chamfer Matching:
Two New Techniques for Image Matching. In Proceedings of the 5th International Joint Conference on
Artificial Intelligence (IJCAI’77), Cambridge, MA, USA, 22–25 August 1977; Volume 2, pp. 659–663.

15. Fernandez, R.; Montes, H.; Salinas, C.; Sarria, J.; Armada, M. Combination of RGB and Multispectral Imagery
for Discrimination of Cabernet Sauvignon Grapevine Elements. Sensors 2013, 13, 7838–7859. [CrossRef]
[PubMed]

16. Li, H.; Lee, W.S.; Wang, K. Identifying blueberry fruit of different growth stages using natural outdoor color
images. Comput. Electron. Agric. 2014, 106, 91–101. [CrossRef]

17. Sansoni, G.; Trebeschi, M.; Docchio, F. State-of-The-Art and Applications of 3D Imaging Sensors in Industry,
Cultural Heritage, Medicine, and Criminal Investigation. Sensors 2009, 9, 568–601. [CrossRef] [PubMed]

18. Nguyen, D.V.; Kuhnert, L.; Kuhnert, K.D. Structure overview of vegetation detection. A novel approach
for efficient vegetation detection using an active lighting system. Robot. Auton. Syst. 2012, 60, 498–508.
[CrossRef]

19. Alenya, G.; Dellen, B.; Torras, C. 3D modelling of leaves from color and ToF data for robotized plant
measuring. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA),
Shanghai, China, 9–13 May 2011; pp. 3408–3414.

20. Fernández, R.; Salinas, C.; Montes, H.; Sarria, J. Multisensory System for Fruit Harvesting Robots.
Experimental Testing in Natural Scenarios and with Different Kinds of Crops. Sensors 2014, 14, 23885–23904.
[CrossRef] [PubMed]

21. Garrido, M.; Paraforos, D.; Reiser, D.; Vzquez Arellano, M.; Griepentrog, H.; Valero, C. 3D Maize Plant
Reconstruction Based on Georeferenced Overlapping LiDAR Point Clouds. Remote Sens. 2015, 7, 17077–17096.
[CrossRef]

22. Seidel, D.; Beyer, F.; Hertel, D.; Fleck, S.; Leuschner, C. 3D-laser scanning: A non-destructive method for
studying above- ground biomass and growth of juvenile trees. Agric. Forest Meteorol. 2011, 151, 1305–1311.
[CrossRef]

23. Xu, H.; Gossett, N.; Chen, B. Knowledge and heuristic-based modeling of laser-scanned trees.
ACM Trans. Graph. 2007, 26, 377–388. [CrossRef]

24. Dassot, M.; Colin, A.; Santenoise, P.; Fournier, M.; Constant, T. Terrestrial laser scanning for measuring
the solid wood volume, including branches, of adult standing trees in the forest environment.
Comput. Electron. Agric. 2012, 89, 86–93. [CrossRef]

25. Dornbusch, T.; Wernecke, P.; Diepenbrock, W. A method to extract morphological traits of plant organs from
3D point clouds as a database for an architectural plant model. Ecol. Model. 2007, 200, 119–129. [CrossRef]

http://dx.doi.org/10.1016/j.ins.2008.01.023
http://dx.doi.org/10.1142/S0218001409007508
http://dx.doi.org/10.1016/j.compag.2005.11.002
http://dx.doi.org/10.1117/1.3076212
http://dx.doi.org/10.1016/j.patrec.2011.04.020
http://dx.doi.org/10.1007/s00138-015-0737-3
http://dx.doi.org/10.1109/TPAMI.2012.120
http://www.ncbi.nlm.nih.gov/pubmed/22641706
http://dx.doi.org/10.3390/s130607838
http://www.ncbi.nlm.nih.gov/pubmed/23783736
http://dx.doi.org/10.1016/j.compag.2014.05.015
http://dx.doi.org/10.3390/s90100568
http://www.ncbi.nlm.nih.gov/pubmed/22389618
http://dx.doi.org/10.1016/j.robot.2011.11.012
http://dx.doi.org/10.3390/s141223885
http://www.ncbi.nlm.nih.gov/pubmed/25615730
http://dx.doi.org/10.3390/rs71215870
http://dx.doi.org/10.1016/j.agrformet.2011.05.013
http://dx.doi.org/10.1145/1289603.1289610
http://dx.doi.org/10.1016/j.compag.2012.08.005
http://dx.doi.org/10.1016/j.ecolmodel.2006.07.028


Remote Sens. 2017, 9, 508 26 of 27

26. Li, Y.; Fan, X.; Mitra, N.J.; Chamovitz, D.; Cohen-Or, D.; Chen, B. Analyzing growing plants from 4D point
cloud data. ACM Trans. Graph. 2013, 32, 1–10. [CrossRef]

27. Paulus, S.; Behmann, J.; Mahlein, A.K.; Kuhlmann, H. Low-cost 3D systems: Suitable tools for plant
phenotyping. Sensors 2014, 14, 3001–3018. [CrossRef] [PubMed]

28. Chn, Y.; Rousseau, D.; Lucidarme, P.; Bertheloot, J.; Caffier, V.; Morel, P.; Tienne, B.; Chapeau-Blondeau, F.
On the use of depth camera for 3D phenotyping of entire plants. Comput. Electron. Agric. 2012, 82, 122–127.
[CrossRef]

29. Li, D.; Xu, L.; Tan, C.; Goodman, E.D.; Fu, D.; Xin, L. Digitization and visualization of greenhouse tomato
plants in indoor environments. Sensors 2015, 15, 4019–4051. [CrossRef] [PubMed]

30. Yamamoto, S.; Hayashi, S.; Tsubota, S. Growth measurement of a community of strawberries using
three-dimensional sensor. Environ. Control. Biol. 2015, 53, 49–53. [CrossRef]

31. Schima, R.; Mollenhauer, H.; Grenzdorffer, G.; Merbach, I.; Lausch, A.; Dietrich, P.; Bumberger, J. Imagine all
the plants: Evaluation of a light-field camera for on-site crop growth monitoring. Remote Sens. 2016, 8, 823.
[CrossRef]

32. Apelt, F.; Breuer, D.; Nikoloski, Z.; Stitt, M.; Kragler, F. Phytotyping 4D: A light-field imaging system for
non-invasive and accurate monitoring of spatio-temporal plant growth. Plant J. 2015, 82, 693–706. [CrossRef]
[PubMed]

33. Biskup, B.; Scharr, H.; Schurr, U.; Rascher, U. A stereo imaging system for measuring structural parameters
of plant canopies. Plant Cell Environ. 2007, 30, 1299C1308. [CrossRef] [PubMed]

34. Teng, C.H.; Kuo, Y.T.; Chen, Y.S. Leaf segmentation, classification, and three-dimensional recovery from a
few images with close viewpoints. Opt. Eng. 2011, 50, 103–108.

35. Hu, P.; Guo, Y.; Li, B.; Zhu, J.; Ma, Y. Three-dimensional reconstruction and its precision evaluation of plant
architecture based on multiple view stereo method. Trans. Chin. Soc. Agric. Eng. 2015, 31, 209–214.

36. Duan, T.; Chapman, S.C.; Holland, E.; Rebetzke, G.J.; Guo, Y.; Zheng, B. Dynamic quantification of canopy
structure to characterize early plant vigour in wheat genotypes. J. Exp. Botany 2016, 67, 4523–4534. [CrossRef]
[PubMed]

37. Boykov, Y.; Veksler, O.; Zabih, R. Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern
Anal. Mach. Intell. 2001, 23, 1222–1239. [CrossRef]

38. Hirschmuller, H. Stereo processing by semiglobal matching and mutual information. IEEE Trans. Pattern
Anal. Mach. Intell. 2008, 30, 328–341. [CrossRef] [PubMed]

39. Yoon, K.J.; Kweon, I.S. Adaptive support-weight approach for correspondence search. IEEE Trans. Pattern
Anal. Mach. Intell. 2006, 28, 650–656. [CrossRef] [PubMed]

40. Hosni, A.; Rhemann, C.; Bleyer, M.; Rother, C.; Gelautz, M. Fast cost-volume filtering for visual
correspondence and beyond. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 504–511. [CrossRef] [PubMed]

41. Hosni, A.; Bleyer, M.; Gelautz, M. Secrets of adaptive support weight techniques for local stereo matching.
Comput. Vis. Image Underst. 2013, 117, 620–632. [CrossRef]

42. Mei, X.; Sun, X.; Zhou, M.; Jiao, S.; Wang, H.; Zhang, X. On building an accurate stereo matching system on
graphics hardware. In Proceedings of the IEEE International Conference on Computer Vision Workshops,
ICCV 2011 Workshops, Barcelona, Spain, 6–13 November 2011; pp. 467–474.

43. Bouguet, J.Y. Camera Calibration Toolbox for MATLAB. Available online: http://www.vision.caltech.edu/
bouguetj/calib_doc/ (accessed on 14 October 2015).

44. Zhang, Z. A Flexible New Technique for Camera Calibration. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22,
1330–1334. [CrossRef]

45. Tombari, F.; Mattoccia, S.; Stefano, L.D.; Addimanda, E. Classification and evaluation of cost aggregation
methods for stereo correspondence. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Anchorage, AK, USA, 23–28 June 2008; pp. 1–8.

46. Scharstein, D.; Szeliski, R. A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence
Algorithms. Int. J. Comput. Vis. 2002, 47, 131–140. [CrossRef]

47. Yang, Q.; Wang, L.; Yang, R.; Stewnius, H.; Nistr, D. Stereo matching with color-weighted correlation,
hierarchical belief propagation, and occlusion handling. IEEE Trans. Pattern Anal. Mach. Intell. 2008, 31,
492–504. [CrossRef] [PubMed]

http://dx.doi.org/10.1145/2508363.2508368
http://dx.doi.org/10.3390/s140203001
http://www.ncbi.nlm.nih.gov/pubmed/24534920
http://dx.doi.org/10.1016/j.compag.2011.12.007
http://dx.doi.org/10.3390/s150204019
http://www.ncbi.nlm.nih.gov/pubmed/25675284
http://dx.doi.org/10.2525/ecb.53.49
http://dx.doi.org/10.3390/rs8100823
http://dx.doi.org/10.1111/tpj.12833
http://www.ncbi.nlm.nih.gov/pubmed/25801304
http://dx.doi.org/10.1111/j.1365-3040.2007.01702.x
http://www.ncbi.nlm.nih.gov/pubmed/17727419
http://dx.doi.org/10.1093/jxb/erw227
http://www.ncbi.nlm.nih.gov/pubmed/27312669
http://dx.doi.org/10.1109/34.969114
http://dx.doi.org/10.1109/TPAMI.2007.1166
http://www.ncbi.nlm.nih.gov/pubmed/18084062
http://dx.doi.org/10.1109/TPAMI.2006.70
http://www.ncbi.nlm.nih.gov/pubmed/16566513
http://dx.doi.org/10.1109/TPAMI.2012.156
http://www.ncbi.nlm.nih.gov/pubmed/22848130
http://dx.doi.org/10.1016/j.cviu.2013.01.007
http://www.vision.caltech.edu/bouguetj/calib_doc/
http://www.vision.caltech.edu/bouguetj/calib_doc/
http://dx.doi.org/10.1109/34.888718
http://dx.doi.org/10.1023/A:1014573219977
http://dx.doi.org/10.1109/TPAMI.2008.99
http://www.ncbi.nlm.nih.gov/pubmed/19147877


Remote Sens. 2017, 9, 508 27 of 27

48. Middlebury Stereo Evaluation-Version 2. Available online: http://vision.middlebury.edu/stereo/eval
(accessed on 22 March 2015).

49. Chang, C.; Chatterjee, S. Quantization error analysis in stereo vision. In Proceedings of the 1992 Conference
Record of The Twenty-Sixth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA,
USA, 26–28 October 1992; Volume 2, pp. 1037–1041.

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://vision.middlebury.edu/stereo/eval
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials 
	Stereo Vision Platform 
	Sample Plants and Environments 

	Methodology 
	Framework 
	Calibration 
	Stereo Rectification 
	Stereo Matching 
	Raw Matching Cost Computation 
	Cost Aggregation 
	Disparity Computation and Disparity Refinement 

	3D Point Cloud Reconstruction 

	Results 
	Performance of the Proposed Stereo Matching Algorithm 
	Relationship between Accuracy and Baseline 
	Reconstruct Point Cloud with Disparity Refinement 
	Implementation Details 

	Discussion 
	Depth Error 
	Feasibility 
	Invariance against Illumination Changes 
	Leaves Segmentation 

	Conclusions 

