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Abstract: Accurate yield estimation at the field scale is essential for the development of precision
agriculture management, whereas at the district level it can provide valuable information for supply
chain management. In this paper, Huan Jing (HJ) satellite HJ1A/B and Landsat 8 Operational Land
Imager (OLI) images were employed to retrieve leaf area index (LAI) and canopy cover (CC) in the
Yangling area (Central China). These variables were then assimilated into two crop models, Aquacrop
and simple algorithm for yield (SAFY), in order to compare their performances and practicalities.
Due to the models’ specificities and computational constraints, different assimilation methods were
used. For SAFY, the ensemble Kalman filter (EnKF) was applied using LAI as the observed variable,
while for Aquacrop, particle swarm optimization (PSO) was used, using canopy cover (CC). These
techniques were applied and validated both at the field and at the district scale. In the field application,
the lowest relative root-mean-square error (RRMSE) value of 18% was obtained using EnKF with
SAFY. On a district scale, both methods were able to provide production estimates in agreement with
data provided by the official statistical offices. From an operational point of view, SAFY with the
EnKF method was more suitable than Aquacrop with PSO, in a data assimilation context.

Keywords: leaf area index (LAI); canopy cover (CC); Landsat 8; HJ1A/B; artificial neural network
(ANN); ensemble Kalman filter (EnKF); particle swarm optimization (PSO)

1. Introduction

Precision agriculture is being increasingly considered as an optimal technological approach to
improve the efficiency and the productivity of farming and cropping systems [1]. Monitoring crop
growth using remotely sensed biophysical variables such as leaf area index (LAI) or canopy cover (CC)
has proven to be very effective for inferring information on crop biomass and yield, useful for field
management [2–4]. Yield estimation and forecasting at the field scale would allow farm managers to
plan their agronomic operations, e.g., sowing, tillage or fertilization, on the basis of expected yield
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potential. At the district level scale, yield estimation and forecasting is useful to public and private
organization, for commercial or planning purposes.

The use of remote sensing (RS) in order to monitor crop growth has considerably increased recently,
with the development of new technologies such as hyperspectral sensors [5] and easier availability of
imagery, allowing exploitation of these data in a progressively more effective way [6]. Particularly,
satellite RS is increasingly used in monitoring crops and variables that describe their growth, as it
allows the monitoring both of large zones on a regional or district scale [7], and of smaller areas on a
field scale [6]. The use of these data has proven to be effective in the estimation of crop yield [2,8–10],
by combining the monitoring from remote sensing of crop biophysical variables with crop growth
models. Leaf area index (LAI), fractional canopy cover (CC), the fraction of photosynthetically active
radiation absorbed by the canopy (fAPAR) and plant chlorophyll concentration are the most important
canopy variables used in this context, being the main state variables used in crop growth modelling [11].
A detailed review of the methods for retrieving canopy variables from remote sensing [11] divided these
methods into: (1) statistical approaches, e.g., using vegetation indices and regression methods linking
spectral information and biochemical variables [12]; and (2) approaches exploiting physically-based
models [13–15]. The latter are particularly interesting, because they are expected to be of more
general validity, without the need for data-specific calibrations as in the former methods. Additionally,
they often allow to estimate simultaneously several variables such as LAI and CC [14]. A widely
used strategy is to train artificial neural networks (ANNs) using the simulations from a canopy
radiative transfer model such as PROSAIL [16], which couples the leaf model PROSPECT [17] and the
canopy model SAIL [18]. Many studies have shown the effectiveness of this methodology, using both
multispectral [14,19] and hyperspectral [20] sensors.

In order to estimate crop yield, the biophysical variables can be assimilated into crop growth
models using different approaches. Following [21], it is possible to distinguish two strategies:
calibration and updating. The calibration approach consists of re-calibrating the model parameters
in order to minimize the differences between simulated and observed variables. In the updating
approach, it is the value of the biophysical variables simulated by the model that is updated, on the
basis of the value of the biophysical variables observed e.g., from remote sensing.

Some authors have converted the state variables simulated by the models into vegetation indices
(VIs) by means of canopy reflectance models and used VIs, derived from RS data, in the assimilation.
For example, authors of [22] developed a methodology in which the LAI simulated by the EPIC crop
model was converted into reflectance in the RED and NIR spectral range of Landsat TM or AVHRR
data using the SAIL model. NDVI values from these reflectances were then compared with NDVI
derived from satellite imagery. The EPIC crop model parameters were re-calibrated for NDVI to
be within 20 percent of the observed satellite data [22]. Other authors have estimated biophysical
variables from RS and used them directly in the assimilation. For example, authors of [23] recalibrated
the parameters of the SUCROS model by minimizing the difference between LAI estimated from
SPOT satellite data and LAI simulated by the model. The updating approach has also been applied
in many studies [24–28], in which the effectiveness of this method to improve the accuracy of the
crop growth model predictions has always been proven. Authors of [24] tested the ensemble Kalman
filter (EnKF), an updating assimilation method, to assimilate the LAI derived from MODIS into the
WOFOST crop model [29], in order to determine the production of wheat at a regional scale. Authors
of [25] explored the potential of EnKF for simultaneously assimilating two remotely sensed variables,
i.e., soil moisture and LAI, demonstrating the possibility of preventing yield losses by monitoring the
effects of water stress on crops. The potential of the EnKF method assimilation was also compared
with the POD4DVAR, a four-dimensional variational algorithm [27], assimilating LAI estimated by the
CCD sensors on board of the Chinese Huan Jing (HJ) satellites HJ1A/B into the CERES crop model,
both at a regional and field scale. The POD4DVAR showed a higher computational efficiency, but was
more influenced by measurements uncertainties than EnKF.
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Regardless of the approach, in all the studies in which remote sensing data are assimilated
into crop models, not all the parameters are recalibrated, because of their large number and the
limited information about them available in situ. This implies that the choices on which parameters
to recalibrate at run-time and of the values to assign to fixed parameters are crucial [23]. A study
conducted by authors of [28] highlighted these problems. The green area index (GAI) estimated from
MODIS was assimilated in the WOFOST [29] model using a calibration approach, minimizing the error
between modelled GAI and MODIS-observed GAI. Only the parameters that most affect GAI were
optimized, highlighting the need to calculate the parameters sensitivity for each scenario [28].

The efficiency of the assimilation methods is also strongly dependent on the number of
observations ingested into the process [11]. Many studies in the literature (e.g., [24–26]) showed
that using a higher number of observations corresponds an improved accuracy of estimation [2].
Generally, the number of observations assimilated into the models is higher than six. In a context of
regional scale, there are many satellites which can provide data frequently, albeit at a low resolution
(e.g., MODIS). However, for precision agriculture applications, it is necessary to work at the field
scale, with a spatial resolution of at least 30 m or higher. The opportunities to obtain a high number of
data acquisitions with such resolution are currently rather limited, therefore, in order to apply these
methods at the field scale, it is necessary to use efficient assimilation algorithms, performing well
even with a limited number of images, or to extend the number of observations in other ways. For
example, [4] tried to solve this problem by using a data fusion algorithm blending MODIS (250 m) and
OLI data (30 m) to estimate LAI at the field scale and assimilated the data into the simple algorithm for
yield (SAFY) model. The fused data set had the temporal resolution of MODIS data (8 days) and the
spatial resolution of OLI (30 m).

In addition to the number of observations, the choice of the crop model to use is also an important
factor conditioning the assimilation results. Generally, models that accurately describe the crop growth
process have a higher accuracy, but they are more complex, more difficult to integrate with other
processes (such as the assimilation methods) and have higher computational costs. In particular, the
large number of parameters makes the calibration of the model rather laborious, and this is one of the
main problems of the application of assimilation methods. The choice of the model to use, in agreement
with the purpose to be achieved, should consider other attributes in addition to model accuracy, such
as complexity and plasticity [30,31].

Among all the crop models that have been used in assimilation studies, Aquacrop [32], seems
particularly interesting for its relative simplicity, as compared to more complex models, due to its
emphasis on water limitation and the explicit use, as main canopy state variable, of CC. This variable
is usually easier to estimate from remote sensing than LAI, not being subject to saturation at high
values [31]. The first applications of Aquacrop within data assimilation schemes have provided
encouraging results [31,33–35]. However, in Aquacrop there are about 100 parameters related to the
characteristics of the crop and the soil, as well as other management and input factors. During
the assimilation, authors of [33] recalibrated 3 parameters, authors of [34,35] 8 parameters and
authors of [31] 13 parameters, leaving all the others fixed. Additionally, in the version currently
made available by the developers, it is impossible to implement a re-initialization at the RS observation
dates, preventing the application of updating approaches of data assimilation, so that only recalibration
approaches have been employed so far.

SAFY [36], a much simpler model than Aquacrop, with fewer parameters, i.e., 13 in the original
version, has been also successfully employed for the estimation of wheat yield, using only recalibration
assimilation approaches so far [4,36]. This model is potentially suitable also for the application of
updating assimilation algorithms, given the accessibility of the source code, and it is particularly
appealing in this context given its high computational speed [31].

The aim of this work was to develop and compare two methods for the estimation of winter
wheat yield, suitable both at field and district level, based on data assimilation algorithms combining
remotely sensing crop biophysical variables with the Aquacrop and SAFY crop growth models.
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Because of the above mentioned coding constraints, it was necessary to use different assimilation
techniques for the two models, i.e., the EnKF was employed for SAFY, while for Aquacrop particle
swarm optimization (PSO) [37] was used. A dataset, composed by a series of images acquired with
multispectral satellite sensors, was used to estimate the LAI and the CC using a model-based method
employing an artificial neural network [14]. Additionally, the purpose of this study was to test the
performance of assimilation methods with a reduced number of observations, in order to verify their
potential for precision agriculture applications in case of constraints e.g., due to a limited number
of satellite acquisitions available within the crop growth season, a situation often occurring in areas
affected by frequent cloud cover.

2. Materials and Methods

2.1. Study Area and Datasets Employed

The study area (34.27◦N, 108.09◦E, altitude around 460 m) is located in the rural region of Yangling,
in the centre of China, Province of Shaanxi (Figure 1). A dataset composed by weather data, field data
and remote sensing data, was collected during three different winter wheat growth seasons, between
September and June, from 2012 to 2015.
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Figure 1. Map of China showing the location of the test area of Yangling (Shaanxi Province).

The weather data were collected at the weather station ID 57034 (34.25◦N, 108.22◦E), by the China
Meteorological Administration and made available on the China Meteorological Data Sharing Service
System (CMDSSS, http://cdc.cma.gov.cn). They included: temperature, rainfall, relative humidity
and wind speed. Other climatic data needed to drive the crop models, such as evapotranspiration and
solar radiation, were derived from these variables. Reference evapotranspiration was calculated using
the ET0 calculator [38], whereas solar radiation was estimated from the relationship proposed by [39].
Temperatures and rainfall for winter wheat growth seasons of 2012–2013, 2013–2014 and 2014–2015 in
Yangling are shown in Figure 2.

The climate of the Yangling area is defined as semi-arid, with precipitation of around 500 mm per
year, usually concentrated in the summer, between June and October, while the winter season is almost
devoid of precipitation. Because of this rainfall distribution, winter wheat is mandatorily irrigated.
Temperatures vary from a minimum of −4 ◦C in winter to a maximum of 30 ◦C in summer, although
temperatures below 0 ◦C are not common, and were limited to a few days in winter for our study
period, except for 2012–2013, when the temperatures remained under 0 ◦C for several weeks between

http://cdc.cma.gov.cn


Remote Sens. 2017, 9, 509 5 of 24

December and January. This means that the period of cold stress is limited to few days. The rainfall
for the three crop growth seasons considered was almost completely absent between December and
January, increasing in spring, concentrating large amounts of rain in a few days, reaching a peak in
summer, and the decreasing until early autumn when the dry season begins.Remote Sens. 2017, 9, 509  5 of 24 
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Figure 2. Ten days mean temperatures (a) and rainfall (b) for the Yangling study site, for the wheat
crop cycles (1 September to 30 June) of 2012–2013 (blue), 2013–2014 (green), 2014–2015 (red).

Field measurements of wheat LAI, biomass and yield, were carried out each year from March to
June by staff from the National Engineering Research Centre for Information Technology in Agriculture
(NERCITA). Table 1 shows the list of the field measurements dataset.

Table 1. Field measurements of LAI (L), biomass (b) and yield (y) conducted in Yangling from 2013 to
2015. n. pts are the number of sampling points where ground data were collected.

Year n. pts March April May June

2013 49
30 March 27 April 1 June

L, b L, b b, y

2014 35
5 March, 28

March
22 April,
27April

16
May 9 June

L, b L, b L, b b, y

2015 28
27 March 25 April 5 June

L, b L, b b, y

The ground measurement points, georeferenced using a GPS, were distributed in different winter
wheat fields throughout an area of about 1200 km2 surrounding Yangling. In addition to the sampling
points reported in Table 1, there were additional points, 10 in 2013 and 26 in 2014, for which data
were incomplete (i.e., not all sampling dates were present). These points were excluded from the
yield and biophysical variables validation, but were used for the validation of the classification of
wheat fields (see Section 2.2.5). Three local wheat cultivars (Xiaoyan22, Xinong9871, and Shanbei139)
were planted in the first half of October and harvested at the beginning of June. Field management
(weed control, pest management, and fertilizer application) followed local standard practices for wheat
production. A different number of ground points was sampled in different years (Table 1). For each
ground point, LAI was estimated using the LAI-2000 Plant Canopy Analyzer (LI-COR Inc., Lincoln,
NE, USA) collecting data from five points within a 30 × 30 m square. LAI was converted into fractional
ground canopy cover (CC) using the equation proposed by [40] from field data collected in the USA,
who reported an r2 of 0.96:

CC = 94·(1 − e−0.43LAI)
0.52

(1)
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Biomass and yield were determined by cutting plants from a 0.25 m2 area positioned near the
point of LAI measurements. All plant samples were oven dried at 70 ◦C to a constant weight, and final
dry weight recorded. Further details on the methodologies of data collection can be found in [33].

The remote sensing dataset was composed by several images acquired by Landsat 8, HJ1A and
HJ1B satellites, between February and June of each year (Table 2). All the images were acquired using
multispectral sensors, respectively the OLI on board the Landsat 8, and the CCD1 and CCD2 on board
the HJ1A and HJ1B.

Table 2. Remote Sensing data set for Yangling, 2013–2015 crop cycles.

Year Month Day Satellite

2013 March 5 HJ1B
2013 March 28 HJ1B
2013 April 26 HJ1A
2013 May 11 HJ1A
2014 March 15 Landsat8
2014 April 7 HJ1A
2014 April 29 HJ1A
2014 May 20 Landsa 8
2015 February 23 Landsat 8
2015 March 29 HJ1A
2015 April 28 HJ1B

The OLI sensor has seven bands with a spatial resolution of 30 m, with wavelengths ranging
between 0.45 µm and 2.29 µm. Only the four bands in the visible and NIR regions were employed as
inputs of the artificial neural network algorithm used to calculate the crop biophysical variables (see
Section 2.2.2). This was done also because the CCD sensors (on board the HJ satellites) have a similar
four bands in the region of visible and NIR, also with a spatial resolution of 30 m. Details on the
spectral characteristics of the OLI and CCD sensors can be found in [41,42].

Surface reflectance Landsat 8 images were provided, geographically and atmospherically
corrected, by the United States Geological Survey (USGS). The HJ images needed georectification,
radiometric calibration and atmospheric correction. The georectification was done by identifying
ground control points in GoogleEarth and warping the images using the Image-to-Map registration
tool in ENVI [43]. The radiometric calibration was performed using gain and offset values provided
for each band by the metadata of the respective HJ images. The atmospheric correction was performed
using the Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) module included
in the ENVI software. The altitude of the sensor was set at 650 km and the ground elevation at 500 m
(Yangling mean elevation). The mid-latitude winter atmospheric model and the rural aerosol model
were used, with an initial visibility between 20 and 30 km, depending on the image.

2.2. Data Assimilation Methods

It is possible to divide the methodology adopted (Figure 3) into four steps: in the first step the
biophysical variables LAI and CC were estimated; in the second step the assimilation was carried out:
LAI values were assimilated into the SAFY model through an updating method based on the EnKF,
whereas CC values were assimilated into Aquacrop using the PSO method; in the third step the two
methodologies were applied and validated at the field scale using ground measurements; in the fourth
step the method was extended to the district scale and validated using official statistical data. Details
on each of these steps is provided in the following paragraphs.
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models [16].

2.2.1. LAI and Canopy Cover Estimation

LAI and CC were retrieved using the algorithm developed by [15]. This algorithm converts
measured spectral reflectances into biophysical variables, by means of artificial neural networks
(ANNs) trained over a database of canopy reflectances simulated using the radiative transfer
model PROSAIL [16]. The PROSAIL input dataset was composed of different kinds of parameters
characterizing the crop canopy, sensor characteristics and satellite configuration (Table 3).

Table 3. Input parameters of the PROSAIL radiative transfer model used to generate the training
database. The distribution used for each parameters is the truncated Gaussian function defined by:
lower (min) and upper bounds (max), mode and the standard deviation (Std). N_C is the number of
classes in which the distribution is split. The LAI mode was varied according the period of satellite
data acquisition.

Variable Min Max Mode Std N_C

Canopy LAI 0.0 10.0 1.5/2.5/4 4.0 6
Average leaf angle (degrees) 30 80 60 20 4

Leaf

N 1.20 2.20 1.50 0.30 4
Chlorophyll content (µg·m−2) 20 90 45 30 4

Dry matter content (g·m−2) 0.0030 0.0110 0.0050 0.0050 4
Relative water content 0.60 0.85 0.75 0.08 4
Brown pigment index 0.00 2.00 0.00 0.30 4

Soil Brightness parameter 0.50 3.50 1.20 2.00 4

In the present study, canopy, leaf and soil parameters were set following the experimental results
obtained by [20] for winter wheat, except for the mode of the LAI. The latter was set using as reference
the field measurements dataset, setting the LAI mode at 1.5 for the images acquired in February and in
the first week of March, at 2.5 for the images acquired between March and the beginning of April and
at 4 for the images acquired between April and May.

The sensor characteristics input included the relative spectral response of each single band and
four error parameters, accounting for instrumental noise, radiometric calibration and atmospheric
correction errors.

The satellite configuration inputs include: geographical position of the target, time and day of
year of acquisition, sun and view zenith and azimuth angles. This information is different for each
image, so the ANN algorithm was run specifically for each acquired image. For each image a total
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of 98,304 PROSAIL model simulations were used to train the ANNs, in order to associate a given
set of input variables and parameters (characterizing leaf, canopy and geometry of observation) to
a reflectance spectrum. After the training, the ANNs were employed to “invert” the process and
associate a given spectrum observed by the satellite (corresponding to a pixel and resampled according
to the bands of the sensor) to a set of biophysical variables. Five ANNs were employed in this study
and the median was used as the biophysical variable estimate. To apply the ANN algorithm, the
Matlab (MathWorks, Natick, MA, USA) tool developed by [19] was used.

2.2.2. Crop Growth Simulation Models

As mentioned, two different crop growth models were used in this study: Aquacrop [32] and
SAFY [36].

Aquacrop was developed by the Food and Agriculture Organization of the United Nations (FAO)
to describe crop response to water and simulates the aboveground biomass production mainly as
a function of water productivity (WP):

Bn = WP∗·
n

∑
i=1

Tri
ET0i

(2)

where Bn is the cumulative aboveground biomass production after n days (g·m−2), Tri is the daily
crop transpiration (mm·day−1); ET0i is the daily reference evapotranspiration (mm·day−1); WP* is
the normalized crop water productivity (g·m−2). The canopy cover (CC) is a crucial state variable
of Aquacrop through its expansion, ageing, conductance and senescence, since it determines the
amount of water transpired, which determines the amount of biomass produced [32]. The final yield is
the product of the final biomass multiplied by the harvest index [44]. A detailed description of the
Aquacrop crop model can be found in [32,44].

The input information necessary to run Aquacrop model consists of: daily weather data
(maximum and minimum temperature, rainfall and evapotranspiration), soil composition and
agronomic management information. A set of more than 100 parameters is used, particularly linked
to crop physiological and soil physical processes. The other model used in this work is the simple
algorithm for yield estimate (SAFY), developed specifically for remote sensing applications [36]. It is
based on Monteith’s concept [45], a simple theory linking the total dry phytomass production and the
photosynthetically active solar radiation (APAR) absorbed by plants. The purpose of the algorithm is
to represent the time courses of dry aboveground biomass (DAM), green leaf area index (GLAI) and
yield. The daily increase of DAM (∆DAM) is represented by the following equation:

∆DAM = Rg·εC·ε I ·ELUE·FT (3)

where Rg is the incoming global radiation, εC is the ratio of incoming PAR to global solar radiation,
εI is the light interception efficiency (fraction of APAR), ELUE (g·MJ−1) is the light use efficiency and
FT is a temperature stress function. The εI depends on the green leaf area index (GLAI) and a light
interception coefficient k through Beer’s law (4):

ε I = 1 − e−k·GLAI (4)

GLAI development is divided in two phases. From emergence to the beginning of senescence,
it increases proportionally with DAM, from senescence to the end of the growth cycle it decreases.
In this way biomass (DAM) depends directly on GLAI, but at the same time the daily development
of GLAI (∆GLAI) depends on DAM (positive feedback). The grain yield is computed from DAM
through a partitioning coefficient of the biomass to grain (Pgro_P2G). A detailed description of SAFY
was presented by [36].
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In this work, a modified version of SAFY was used, in which a simple water balance was
introduced, following the FAO guidelines for computing crop water requirements [46]. The same
modification had been formerly proposed by [47,48], introducing a dependence of biomass yield
on crop water stress. This modification was made since it allows an explicit assessment of the crop
response to water availability and the characterization of water stress, which is lacking in the original
model. In the present work, the ∆DAM expressed in Equation (3) is multiplied by a water stress
factor Ks, a dimensionless transpiration reduction factor dependent on available soil water, ranging
between 0 and 1 [49]. Ks is calculated from the total available soil water in the root zone (TAW)
and readily available soil water in the root zone (RAW), resulting from a simplified water balance
driven by crop evapotranspiration. The necessary input to run the modified version of SAFY includes
daily information about incoming global radiation, average air temperature, rainfall and reference
evapotranspiration. Further details on this modified version of SAFY are reported by [49].

Both models were subjected to a sensitivity analysis [49], in order to identify the parameters
that most affected the yield estimated by the models. This procedure is essential for the choice of
a reduced set of parameters to target during the assimilation algorithms, leaving all the others at fixed
values. Especially for the latter, a preliminary calibration is an important step. The calibration of
parameters for both models was done starting from reference values for winter wheat taken from
the literature: [36] for SAFY and [50] for Aquacrop. The data on soil properties were obtained from
samples gathered in the study site, at the same points where the crop data were collected, which were
analyzed in the lab by NERCITA Beijing, for soil texture and organic matter. Crop management input
variables were set according to standard local practice. Subsequently, the value of parameters which
resulted most influential from the sensitivity analysis were adjusted, by trial and error, so that the
time series of simulated biophysical variables (LAI for SAFY and CC for Aqucrop) fit the time series
observed in two of the ground sampling points (Table 1). These two sampling points were randomly
chosen from field measurements dataset and were subsequently excluded from the validation tests.
In all the applications with the SAFY model, a unique calibration was carried out, using two points
randomly selected from those collected in 2014, since that was the year with most observation dates.
For Aquacrop a single calibration for all the applications of the model was not satisfactory, as is
described in the results. For this reason the model was alternatively calibrated also for each year,
using a different set of points, chosen from the experimental set collected during the corresponding
year. In this case three different calibrations were done for Aquacrop, one for each year in which
the field measurements were made. A unique set of parameters and input variables was used for
the simulations carried throughout the whole study area. The spatial variability among parameters
and inputs was subsequently introduced by means of the assimilation algorithms (described in the
following sections), by adjusting some parameters.

2.2.3. Ensemble Kalman Filter for SAFY Model Assimilation

An updating assimilation algorithm based on the EnKF was developed, taking advantage of the
accessibility and manageability of the SAFY code. Before applying this method, the model parameters
that most influenced the yield were identified from the results of the sensitivity analysis study [50].
In Table 4, the list of the nine most influential parameters and their relative range of variation are
shown. The initial calibration values of the parameters were defined as described in Section 2.2.2.
The range of variation of the selected parameters was chosen by taking the calibrated values as a mean
value. The minimum and maximum were then chosen arbitrarily in a surrounding of maximum ±13%
of the mean value, according to a realistic range for each parameter based on expert judgement.
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Table 4. List of the most influential parameters of the SAFY model allowed to vary during the
assimilation, identified from a previous global sensitivity analysis study [50] in order of decreasing
importance. APAR: absorbed photosynthetically active radiation; DAM: dry above-ground biomass.

Parameter Min Max Description

Pgro_R2P 0.7 0.9 Climatic efficiency: ratio of incoming PAR
to global radiation

Pfen_SenA 1260 1540 Temperature sum threshold to start
senescence (growing degree days, GDD)

Ptfn_Topt 20 22 Optimum temperature for plant
development (◦C)

Pfen_MrgD 288 300 Day of the year of emergence

Pgro_Lue 1.75 1.95 Effective light-use efficiency: ratio of energy
produced as DAM from APAR (g·MJ−1)

Pfen_PrtA 0.16 0.2 Partition to leaf function parameter 1 (PLa)
Pgro_P2G 0.0098 0.012 Partition coefficient to grain

SMT_sen 2070 2530 Temperature sum to complete senescence
(GDD)

The EnKF algorithm developed for SAFY in this work is based on the theory of [51], which
considers the observations as random variables, therefore adding random perturbations to the observed
values. It follows the application to crop models described by [52]. It is possible to divide the
assimilation algorithm into the following steps:

(1) Generation of an ensemble of n = 100 vectors, each one containing the values of the i parameters
Pi, in this case i = 1, 2, . . . , 9 (Table 4). To each element, corresponding to a nominal parameter
value (fixed as the mean of the range shown in Table 4), an error value was added, randomly
drawn from a truncated normal distribution N(0, 1), with lower and upper limits as shown in
Table 4.

(2) Simulations with the SAFY model in order to obtain a value of LAI for each element of the
ensemble at the date when the first satellite image was acquired. An error ε is added to the
simulated LAI values. This error ε was randomly generated from a normal distribution N(0, Q),
in which the standard deviation Q was arbitrarly chosen as 20% of the LAI value, to take into
account the uncertainity of the model. In this way a matrix ϕt1 was defined:

ϕt1 =


L1 L2 ... L100

P1
1 P2

1 ... P2
1

... ... ... ...
P1

9 P2
9 ... P100

9

 (5)

where each column is an element of the ensemble and represents a random configuration of the
model using parameters Pi and the corrisponding LAI value obtained Ln at the time t1 of the first
satellite acquisition.

(3) Generation of the vector Mt1 , where each element is composed by the LAI observed at time t1, i.e.,

retrieved from remote sensing data, plus an error τ
j
t1

drawn from N[0, var(τ j
t1
)], where var(τ j

t1
) is

a variance expressing the measurement error, which in our case was inferred from the comparison
of the LAI values estimated from remote sensing, with the ground measurements. In this study
the measurement error variance was chosen as

√
var(τt) = 0.3·Mt, taking into account the

relative root-mean-square error (RRMSE) found for LAI estimation from our measurements (see
Section 3.1).

(4) Computation of the variance-covariance matrix of ϕt1 for the 100 ensemble elements.
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(5) Calculation of the Kalman gain using the variance-covariance matrix:

Kt1 =

∑
t1

RT

R∑ RT + var(τt1)
(6)

where: R = (1, 0, 0, . . . , 0) with number of elements equal to the number of ensemble elements.
(6) Update of ϕt1 as follows:

ϕ
j
t1,K = ϕ

j
t1
+ Kt1(Mj

t1 − Rϕ
j
t1
) (7)

where j is the j-th column of ϕt1 .
(7) Replacement of LAI and parameters values (the elements of ϕt1) with those calculated at step 6

(the elements of ϕt1,K).
(8) Repetition from step 3 for each satellite observation date. When the last observation has been

assimilated, SAFY runs to the end of the crop growth cycle and outputs the yield.

2.2.4. PSO Algorithm for Aquacrop Model Assimilation

The source code of the Aquacrop model was not available to the authors and this prevented
the addition of changes in order to use an updating assimilation method, such as the EnKF used for
SAFY. For this reason a method of assimilation by calibration [11], PSO, was employed. This method
is based on a comparatively simple principle, needs few input parameters, can be easily applied to
other models and was shown to have good computation efficiency [37]. The basic assumption of
PSO is that a group of m particles (m = 15 in this study) flies with certain speeds without quality and
size in a d-dimensional search space. In this study m was chosen as equal to 15, which is lower than
the number of particles suggested by [53], i.e., 20–50, since these require considerable computing
resources which were not available for the present study. However, it has been reported that there are
no drawbacks from using a lower number of particles provided that this is higher than the number
of parameters [53,54], which was nine in our case. Each particle can modify its position and velocity
based on both the best point in current generation (pid) and the best point of all particles in the swarm
(pgd). The PSO assimilation method is described by [53] and its application for Aquacrop, that can be
found in [33–35], is summarized in the following steps:

(1) the initial position (value) and velocity of each particle was determined. The adjusted parameters
were selected from the sensitivity analysis study previously carried out [49] and are listed in
Table 5.

(2) Aquacrop was run using the executable file (ACsaV40) released by the FAO and controlled by
a Matlab script. The simulated CC (CCs) was calculated from the Aquacrop input including
weather data, soil data, crop genotype parameters and management data.

(3) A cost function (J) was constructed to assess the discrepancy between CCs and the remote sensing
estimated CC (CCr) as shown in Equation (8). The minimization of the cost function determined
whether the optimization algorithm had reached the optimum input parameter values.

J =

√√√√ N

∑
i=1

(
CCsi − CCri

CCri

/N
)2

(8)

where CCSi and CCri are respectively the simulated and remote sensing values of canopy cover at
observation date i, N is the number of dates and J is expressed as % (i.e., the unit of CC).

(4) The best point of the i-th particle (pid) and of all particles in swarm (pgd) was sought. The pid
and pgd were searched at each iteration.
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(5) The position and velocity of particles were updated as shown in the Equation (9):

vk+1
id = vk

id + c1ξ(pk
id − xk

id) + c2η(pk
gd − xk

id)

xk+1
id = xk

id + vk+1
id

(9)

where νid is the best velocity of the i-th particle; k is the index of the iteration; c1 and c2 are
constants which were assigned a value of 2; ξ and η are random values between 0 and 1; xid is the
best position of the i-th particle.

(6) If the iteration target was not reached, the updated positions were replaced and the program
runs again. In this study the iteration target was fixed at 30 because it is the minimum iteration
number indicated in literature [53]. Choosing a higher number does not allow to run the script
within an acceptable time.

(7) If the iteration target was reached, the CC, biomass and yield were calculated.

Table 5. List of the most influential parameters of the Aquacrop model allowed to vary during
the assimilation, identified from a previous global sensitivity analysis study [49], in order of
decreasing importance.

Parameter Min Max Mean Description

dos 274 284 279 Day of sowing (day of year)

mat 2200 2600 2400 Length of the crop cycle in growing degree days (GDD)

flo 1500 1700 1600 GDD from sowing to flowering

rtx 1 1.4 1.2 Maximum effective rooting depth (m)

wp 16 20 18 Water productivity normalized for reference
evapotranspiration (ETo) and CO2 (g·m−2)

hi 35 45 40 Reference harvest index (HI0) (%)

polmn 6 10 8 Minimum air temperature below which pollination
starts to fail (◦C)

kc 0.08 1.3 1.1 Crop coefficient when canopy is fully covering the
ground but prior to senescence

stbio 5 16 11 Minimum GDD required for full biomass production

2.2.5. Spatialized Application

The application at the district level was done for the winter wheat growth seasons of 2013 and
2014. These two years were chosen because official yield data, used for validation, were made available.
Information was provided by two official statistical sources: the National Bureau of Satatistics of the
People’s Republic of China (which provided data for the year 2013) and the Shaanxi Provincial Bureau
of Statistics (which provided those for 2014).

For each year, the biophysical variables values retrieved from the images acquired between March
and May were used in the assimilation, which was run on a pixel-by-pixel basis. For each image,
only the pixels belonging to the wheat fields included in the rural area of Yangling were considered.
To identify the pixels in which wheat was present, 5 Landsat 8 images acquired between February and
June of each year were used. The images were converted into LAI maps through the PROSAIL-ANN
algorithm (Section 2.2.2). A mask was built using agricultural fields boundaries obtained from a vector
file provided by the National Engineering Centre for Information Technology in Agriculture. In this
way all the pixels that fell out of the agricultural areas were excluded.

The remaining pixels of each image were classified as wheat if the following conditions occurred,
representing the typical LAI time trends of winter wheat:

- LAI of the first date smaller than LAI of second date and the latter smaller than LAI of third date;
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- LAI of third date higher than 3;
- LAI of fourth date higher than 3.4;
- LAI of fifth date smaller than 0.5 (after harvest).

Not all the pixels included within the boundaries of some fields were classified as wheat, but
when the majority, i.e., 80%, of pixels included within the boundaries of a field were classified as wheat,
the whole field was considered as such. The classification results were checked against ground truth
data. There were 59 points (i.e., ground verified wheat fields) available in 2013 and 61 points in 2014,
considering also incomplete data sampling points, in addition to those reported in Table 1. Of these,
57 fields were correctly identified as wheat in 2013 and 58 in 2014, with an overall accuracy of 96%.

To reduce the computational cost of the spatialized assimilation algorithms, a data binning
procedure based on LAI value was employed so that the model was run only once for similar pixels.
The LAI values in the images, retrieved from remote sensing, were rounded to the first decimal place
and, if the number in that place was odd, it was rounded to the nearest lower even number. In this
way, the range between the minimum and maximum values of LAI was divided into intervals of 0.2.
The total number of LAI classes is the product of the number of intervals between the minimum and
the maximum feature value of LAI for each image. Each class is defined by the combination of three
numbers, 0.2 multiples, belonging to the range min LAI-max LAI of each image, for the three dates. In
this way, after running the algorithm for all the combination of LAI, it is possible to assign a value of
yield to each class. Classifying the points of the map at each pixel, the corresponding yield value was
assigned. In this way it was possible to obtain yield maps of the region, by running the algorithm only
for the number of identified classes (around 1800) and not for the roughly two million pixels of the
region of interest. A similar data binning procedure was employed for the images representing the CC,
but in this case the range of variation between a class and the next was not constant, because of the
non-linearity of the relationship between LAI and CC (Equation (1)). Furthermore the ranges were
enlarged in order to reduce the number of classes, because the computational cost of PSO-Aquacrop
imposed a limited number of iterations. The 1800 bin classes identified for LAI were thus reduced to
100 for the CC. A look-up-table procedure was finally employed to assign the results of the simulations
to the respective pixels after the assimilation.

3. Results

3.1. LAI and CC Estimation and Validation

LAI and CC were estimated using the ANN algorithm described in Section 2.2.2 for all the images
acquired by HJ-1A, HJ-1B and Landsat 8 (Table 2) in the 3 years (from 2013 to 2015). Some acquisition
dates of the images were near, i.e., within 1 to 4 days, the dates when ground measurements were
performed. For these images, the ground sampling points were identified according to their GPS
coordinates, and measured and estimated LAI and CC were compared.

Figure 4 shows the comparison between LAI estimated from the satellite images employing the
ANN algorithm and LAI measured during the field campaigns. The overall relative root mean square
error (RRMSE) for LAI for the three years was 30%. The root-mean-square error (RMSE) and RRMSE
for the three years examined, both for CC and LAI, are shown in detail in Table 6. The estimation error
is larger for higher values of LAI, in fact for LAI between 0 and 2 the difference between estimates and
measures is small (Figure 4), while particularly for LAI values between 3 and 4 the error tends to be
higher. These results indicate that the algorithm tends to underestimate LAI, especially for 2013, for
which the results were worse that for others years (Table 6).

Figure 5 shows the results obtained for CC estimation. In this case the overall RRMSE is 9%, i.e.,
lower than for LAI (Table 6). Saturation affects less the estimation of CC, even if the ANN algorithm
tends also in this case to underestimate this biophysical variable. The results obtained for 2015 present
the smallest RRMSE, while the results for 2013 and especially 2014 provide a much worse estimation.
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Figure 4. Validation results for the retrieval of LAI from Huan Jing satellites HJ1A, HJ1B and Landsat
8 images, using field measurements of 3 years in Yangling rural area.

Table 6. Statistics resulting from the estimation of LAI and canopy cover (CC) from Landsat and
HJ1 images assessed against ground measurements. RMSE: root-mean-square error; RRMSE: relative
root-mean-square error.

Dataset RMSE (t·ha−1) RRMSE (%)

LAI

2013 1.48 33
2014 1.03 30
2015 0.75 21

All years 1.15 30

CC
2013 7.27 8
2014 8.05 10
2015 5.06 7

All years 7.17 9
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3.2. Assimilation Results: Field Scale Application

EnKF for SAFY and PSO for Aquacrop were tested at the field scale, validating the results with the
ground yield measurements. Figure 6a shows the comparison between measured and simulated yield,
resulting from the application of the EnKF method to the SAFY model, for which a unique preliminary
calibration of model parameters had been done, as described in Section 2.2.3. An overall RRMSE
of 18% was obtained for SAFY, with values ranging from 15 to 20% in the different years (Table 7).
The RRMSE for EnKF with the SAFY model was 18%, while for PSO with the Aquacrop model it was
24%, for the data of all years pooled together. The performance of Aquacrop was particularly poor,
as compared to SAFY, for 2013 data (Table 7).
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Figure 6. Comparison between measured and simulated wheat yield using (a) the EnKF method with
the SAFY model after a unique general calibration for all years; (b) the PSO method with the Aquacrop
model after a unique general calibration for all years; and (c) the PSO method with the Aquacrop
model after specific calibrations performed for each year.

Table 7. Statistics resulting from the estimation of yield using two different assimilation strategies: the
EnKF for SAFY and the PSO for Aquacrop (only the case of yearly calibration results are shown).

Dataset RMSE (t·ha−1) RRMSE (%)

EnKF SAFY

2013 1.23 20
2014 1.19 17
2015 0.78 15

All years 1.09 18

PSO Aquacrop

2013 1.24 36
2014 1.19 18
2015 0.72 12

All years 1.12 24

Figure 6b,c both show the comparison between measured and simulated yields resulting from the
application of the PSO assimilation method to the Aquacrop model. In Figure 6b the simulations were
preceded by a single calibration of the model (using two data points from 2014), while in Figure 6c the
model had been previously calibrated for each year considered.

The application of PSO with the Aquacrop model with only one calibration showed a rather
limited range of simulated yield values. i.e., between 4 and 6 t·ha−1, with an RRMSE of 0.27, whereas
when a calibration was carried out for each year, the range of simulated yield variation was wider,
i.e., between 3 and 7 t·ha−1, with a small decrease of RRMSE. In the case of a single calibration no
correlation was found (r = −1.04, n.s.) between simulated and measured values, whereas when yearly
calibrations were performed a low, albeit statistically significant, correlation (r = 0.34, p < 0.01) was
found between measurements and estimates. For SAFY the correlation (r = 0.53, p < 0.01) was higher.

Overall, for the scenarios analyzed, the assimilation using the EnKF method with the SAFY model
estimated the yield similarly or better than the PSO with Aquacrop. The computational time required
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by the two methods is very different, though. Using a PC with an Intel Core i7-4770 CPU at 3.4 GHz,
the run time of PSO with Aquacrop was around 40 min for each simulated point, while for EnKF with
SAFY it was 30 s for each point.

3.3. Assimilation Results: Spatialized Application

The district scale yield estimation was limited to part of the Yangling administive area for which
it was possible to obtain official data about the production per hectare, the total production and the
surface area sown with winter wheat. The district scale application was limited to fields classified as
winter wheat in the different years as described in Section 2.2.5. From Figures 7 and 8, it is apparent
that a large part of the area in which winter wheat was cultivated in 2013 was occupied by other crops
in 2014, as a result of the crop rotation practices adopted in the area.

Figure 7 shows the winter wheat yield maps estimated for 2013 and 2014 using the EnKF method
with the SAFY model.
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The official statistical data (provided by Shaanxi Provincial Bureau of Statistics) for 2013 reported
an average yield of 5.5 t·ha−1 for the area and a total production of 1.09 × 104 t for the whole wheat
surface area, estimated at 1980 ha. The method used for the classification (Section 2.2.5) of wheat
cultivation area, exploiting also the knowledge of agricultural field boundaries, provided an estimate
of wheat sowing area of 1983 ha, i.e., very accurate. The average yield per unit surface estimated
using the EnKF method with the SAFY model, resulted to be 4.98 t·ha−1, and the total production for
the Yangling administrative area was of 0.99 × 104 t, i.e., about a 9.4% less than the official statistics
yield. For 2014, the official statistical data provided by the National Bureau of Statistics of the People’s
Republic of China reported a mean yield of 6.13 t·ha−1, for a total production of 0.93 × 104 t in the
whole wheat cultivation area, estimated at 1470 ha. For the 2014 the wheat area classification results
were less accurate as for the 2013: the wheat sowing area estimated was of 1564 ha, overestimated
by about 7% compared to official statistical data. The estimated mean yield was of 5.67 t·ha−1, and
the total production estimated was 0.82 × 104 t, so for 2014 there was an underestimation relative to
the official statistics of about 12.2%. For the same reference wheat sowing area, the yield was also
estimated using the PSO assimilation method with the Aquacrop model (Figure 8).
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All the estimates obtained with Aquacrop shown in Figure 8 were obtained with the model
calibrated for each year before the application of the assimilation algorithm. Using the PSO with
Aquacrop, the average yield per unit on the studied area was of 5.56 t·ha−1, very close to the official
statistics value, whereas the total production estimated was of 1.10 × 104 t, with an estimation error
of about 118 t. For 2014 the same procedure was applied, and the yield per unit area estimated with
PSO and Aquacrop was of about 5.97 × 104 t, while the total production estimated for this year was of
0.93 × 104 t. Figure 9 summarizes the comparison between assimilation results and official statistics
for the Yiangling administrative area.Remote Sens. 2017, 9, 509  17 of 24 
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Figure 8. Wheat yield map (t·ha−1) for Yangling, estimated using the PSO assimilation method with
the Aquacrop model for 2013 (a) and 2014 (b).
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assimilation using EnKF with SAFY (white) and PSO with Aquacrop (grey).

4. Discussion

The first step of this work was the retrieval, from remote sensing data, of the biophysical variables
to be used in the assimilation procedures. The biophysical variables considered were LAI and CC,
both estimated using the ANN algorithm as described in Section 2.2.2. The results shown in Figure 4
indicate that overall, the algorithm tended to underestimate the value of LAI. The comparison between
estimated values and ground measurements highlighted that, with the exception of small values
(between 0 and 2), the points underestimated were more than those overestimated, particularly for
values of LAI between 2 and 4, range in which the error was higher than the average RRMSE. This
error distribution was partly due to the characteristics of ANN algorithm, which tended to worsen the
estimation of winter wheat LAI with increasing values, because of the well-known issue of saturation
of the canopy reflectance [19]. Using HJ-1 data, authors of [55] obtained better results than ours, for a
larger ground dataset collected in the same area of Yangling in 2014 (n = 80), with RRMSE values as
low as 21% for optical vegetation indices. However, it should be noted that the methods used by these
authors are based on empirical calibrations, with a prevailing local validity, whereas, in our case, the
ANN method is of general application, not requiring preliminary calibrations [19,20]. Authors of [56]
assessed the performance of the same ANN-based algorithm used in the present study, with SPOT4
HRVIR and Landsat 8 data, obtaining an RMSE of 0.74 for winter wheat, better than the RMSE values
found in our study (Table 6) for 2013 and 2014, respectively of 1.48 and 1.03, but similar to the that
obtained in 2015, i.e., 0.75. It should be noted that in the dataset used by the authors of [56], only two
data points had LAI values higher than 3 and the maximum LAI was 4.5. Conversely, in our dataset,
many points had LAI values well above 3, reaching up to a maximum value of almost 8 (Figure 4).

A considerable impact on the LAI estimation accuracy might have been brought about also by
the quality of the remote sensing data. The region of interest is strongly characterized by the presence
of clouds and haze, so the probability to acquire clear images is very low, especially during spring,
when rainfalls are frequent. The atmospheric correction for these images was difficult and it strongly
influenced the reflectance and consequently the estimation of LAI. With such restrictive atmospheric
conditions, it is not surprising that radar data can provide better estimates of LAI than optical data [55].
Indeed, authors of [55], using empirical calibrations, achieved better results when they included
regressors in the estimation of LAI, radar polarimetric parameters obtained from RADARSAT-2, alone
or coupled with vegetation indices from HJ-1. In the latter case they achieved a RRMSE of 17.4% when
using partial least squares regression.

The consideration about the influence of the atmosphere on the quality of input data for the
Yanling area is also true for CC, but in this case the RRMSE between RS estimation and ground
measurements was smaller than for LAI, with a RMSE of 7.2% and a RRMSE of 9% for the three years.
This is due to the fact that CC is less subject to a saturation at high values than LAI. The observation
period was between March and May, when the variation of LAI was between 0.5 and 7, corresponding
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to a variation of CC between 40% and 91%. By the end of March, LAI was higher than 3, which
corresponded to a CC of 80%, so for most measurements dates CC varied between 80% and 91%.
In such a small range of values, the ANN algorithm could estimate CC changes with a higher accuracy.
In this case our results were better than those achieved by [56], who obtained a RMSE of 19% for
winter wheat, whereas in our study RMSE values ranged between 5.1% and 7.3% in the three years.
Our results are also better than those of [33], who achieved a RMSE of 15.8% and an RRMSE of 19.6%
when using only HJ-1 data. These authors obtained better results, comparable to ours, when they
used, in empirical regression models, coupled optical and radar data as regressors, reaching a RMSE
of 8.8% and a RRMSE of 10.9%, confirming the above considerations on atmospheric effects. Again,
it should be remembered that we used a general purpose model-based algorithm, i.e., not requiring
a local calibration, unlike [33]. Part of the differences in the accuracy of estimation of CC could also be
attributed to the equations used to convert ground measurement of LAI into CC. We used an equation
proposed in [40] after a specific study on wheat, which showed that it performed better than the
equation proposed by [57] for maize, which was also employed in [33].

The estimation of LAI and CC was aimed at the application of assimilation methods for estimating
yield, thus the error in their estimate could influence the results of the assimilation. In particular, the
EnKF method takes explicitly into account the error in the observations to be assimilated into the
model, which was set in our case to a value of 30%, in agreement with the RRMSE actually obtained
for LAI (Figure 4). This sort of error is expected to have a remarkable effect on the accuracy of the
assimilation results [2].

SAFY and Aquacrop are two growth crop models with rather different characteristics. The former
is a simple algorithm, developed specifically for remote sensing applications, with a reduced number
of influential parameters and strongly dependent on the scenario characteristics [49]. The latter is
more complex than SAFY; the number of influential parameters is higher and the influence of scenario
characteristics is lower than for SAFY. The strength of Aquacrop is its capability of taking into account
crop physiological processes related to water stress, which are ignored by SAFY, but of great interest for
the estimation of crop water requirements and yield response to drought from remote sensing [7,31].
However, despite being less complex than other crop models such as e.g., EPIC [22] or CERES [26], the
larger number of parameters of Aquacrop makes it harder to calibrate and slower to run than SAFY,
therefore making it less suitable for an assimilation application.

The application of two different assimilation algorithms to the two models, EnKF on SAFY and
PSO on Aquacrop, allowed to obtain reasonable yield estimates both at the field and at the district
scale. In the field application, the accuracy of SAFY with the application of EnKF was similar or higher
than for Aquacrop with PSO. The estimated yields obtained with EnKF and SAFY varied in a range
between 3 and 8 t·ha−1, while for PSO with Aquacrop they varied between 4 and 7 t·ha−1. The first
method estimated with a good approximation low yield values, but the estimation accuracy decreased
with the increasing yield and above 6 t·ha−1 an underestimation was apparent. Instead, the second
method overestimated values of yield lower than 4 t·ha−1 and underestimated values over 6 t·ha−1.
Both methods showed the tendency to saturate at values higher than 6.5 t·ha−1.

Both methods were initially applied by using a single preliminary calibration for the entire dataset,
i.e., the three different winter wheat growth cycles. However, in such case, the yields estimated from
the PSO with Aquacrop had a rather small range of variation (Figure 6b), looking rather insensitive to
scenario changes. A different calibration for each climate dataset was necessary (Figure 6c), in order to
have comparable results with those obtained applying the EnKF to SAFY, the latter being calibrated
only once for all the years. In [34], PSO method for the assimilation of crop biomass was used, estimated
from field based spectral reflectance measurements, into the Aquacrop model, and employed a quite
extensive winter wheat dataset collected over 4 years. During the PSO assimilation the authors
recalibrated only three parameters (canopy growth coefficient, maximum canopy cover and maximum
effective rooting depth), but no information is provided on how the other parameters were set. They
achieved an RMSE of 0.65 t·ha−1 for the whole validation dataset.
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Jin et al. [35] used the same field dataset and methodology as in [34], but during the PSO
assimilation they recalibrated eight Aquacrop parameters: increase of canopy cover per growing
degree day (cgc), maximum canopy cover (ccx), decrease of canopy cover per growing degree day
(cdc), growing degree days from sowing to emergence (eme), number of plants ha−1 (num), soil
water depletion factor for canopy senescence (psen), shape factor for water stress limiting stomatal
conductance (pstoshp), and maximum effective rooting depth (rootdep). Also, in this case no
information was provided on the other parameters and input variables. They achieved RMSE values
for yield estimates ranging from 0.51 to 0.61 t·ha−1 for the different years and RRMSE from 8.8 to
10.7%, i.e., much better than our RRMSE value of 24%. However these results were obtained using
ground-based hyperspectral measurements. The authors of [33] used HJ-1 data, acquired in 2014 in
Yangling, for estimation of biomass or canopy cover, which was then used for the assimilation into the
Aquacrop model using the PSO method. In this case, the yield estimation accuracy was lower, with an
RMSE of 1.24 t·ha−1 and a RRMSE of 26%, comparable with our results. Since, for these authors, the
estimation of biomass was more accurate than that of CC; because of the above mentioned issues, they
obtained better results when they used biomass for the assimilation, with a RMSE of 0.92 t·ha−1 and a
RRMSE of 19.4%. Even better results were achieved by [33] when they combined optical and radar
data for the estimation of the biophysical variables to be used for the assimilation, reaching a RMSE of
0.81 t·ha−1 and a RRMSE of 17%. This confirms that the use of radar data could partially overcome the
above mentioned difficulties with the atmospheric effects on optical data for the Yangling area.

In the regional scale application, both methods simulated the mean and total yield of the
Yangling administrative area with a good approximation, as compared to official statistics. The wheat
classification procedure was quite successful and it showed the spatial distribution of growing areas,
interestingly revealing the effect of year-to-year variation due to crop rotation practices. Yield estimation
results were generally consistent with those obtained with the field scale application. For PSO with
Aquacrop the accuracy in the spatialized application was higher than expected from field scale results.
It should be noted that for this method it was necessary to recalibrate the fixed parameters and the
ranges of parameters optimized during the assimilation, for each observed crop growth cycle. For EnKF
with SAFY, conversely, the same calibration was used for all the analyzed crop growth cycles. Because
of the computational limits of Aquacrop, the classes in which the pixels were binned were reduced from
about 1800 used in EnKF-SAFY to 100 for PSO-Aquacrop. This reduction was one of the causes of the
lower spatial variation of yield for Aquacrop (Figure 8) as compared to SAFY (Figure 7). Another cause
was the low variation of CC, and the input data for PSO-Aquacrop, which affected the output.

Despite the error in the input data, found for both LAI and CC, and the limited number of
remote sensing observation dates, the estimation of yield was reasonable. For EnKF with SAFY this
depended on the characteristics of the Kalman Filter. This method, in fact, “filtered” the error on the
measurements, introduced as a random effect, reducing its influence on the output. The effect of the
error can be also reduced by increasing the number of ensemble, but this inevitably increases the
computational time. For this method the choice of measurements error variance and the number of
ensembles is fundamental [51].

For PSO with Aquacrop, the input error of CC was lower than for SAFY, but the yield
estimation accuracy seemed to be more affected by the calibration of the model for each climatic
scenario. This method thus resulted to be strongly dependant on the initial calibration, which
resulted rather complex because of the high number of parameters which described the model. This
dependence from calibration combined with the inaccessibility of the Aquacrop code and with the high
computational cost, made the PSO method with Aquacrop less suitable for an operational application
as an assimilation algorithm.

The value of RRMSE obtained with the assimilation based on the EnKF with SAFY ranged, in the
present study, between 15% and 20% among the years, with a value of 18% for the whole dataset.

Veloso [48], using a modified SAFY version including CO2 fluxes, and recalibrating seven
parameters assimilating LAI retrieved from remote sensing, obtained RRMSE values between 12% and



Remote Sens. 2017, 9, 509 21 of 24

24% for wheat yield estimation. It should be noted that a much larger number of observations of LAI
from remote sensing acquisitions were available in [48] as compared to the present study.

In the literature [22–28] the RRMSE value found by applying different methods of assimilation in
different models was reported to be between 5% and 16%, therefore quite lower than ours. However, it
is important to consider that some of these studies [24,25,27] employed more than 20 observations of
biophysical variables in the assimilations for each crop growth cycle, while other studies [4,26] used
less images (around 10) at a higher resolution and with a lower error on the biophysical variables
estimations. The method tested in this study, instead, assimilated a reduced number of images (just
three or four) for each crop growth cycle and with an estimation error of about 20%, reaching levels
of accuracy in the estimation of the yield comparable with the studies encountered in the literature.
Casa et al. [2] showed that the frequency of available observations, but also their distribution along
the crop growth cycle has an important influence on the accuracy of model estimation, when used for
model forcing.

5. Conclusions

This study demonstrated the possibility to estimate the winter wheat yield, at field and district
level scale, through the use of assimilation methods. Two different approaches were tested, one based
on an updating assimilation method, the EnKF, employed for the assimilation of LAI into SAFY, and
another based on a calibration assimilation method, the PSO, used to assimilate the CC into Aquacrop.
The tests at the field scale showed the feasibility of using medium resolution (30 m GSD) satellite
data, such as from HJ1A/B or Landsat 8 OLI images, to estimate yield, with potential applications for
precision agriculture.

However, the results obtained with Aquacrop were less accurate as compared to other methods
of assimilation for calibration encountered in the literature [22,23,28]. This is mainly due to the
characteristics of Aquacrop, for which is indispensable to carry out a very accurate calibration.
Nevertheless, the application at the district scale of PSO assimilation with Aquacrop, was in agreement
with the yield provided by official statistics. This occurred because Aquacrop was recalibrated for
each climate dataset. Furthermore, to meet the high computational requirements of this assimilation
method for calibration, a coarser binning of pixels, according to the CC temporal series, was applied,
forcing a reduced number of classes. In this way the range of variation of simulated yields was rather
limited, leading to accurate results but responding less to spatial or temporal variation of yields. The
high computational cost, the difficult calibration and the need to recalibrate for each year of climate
datasets makes, therefore, the PSO method applied to Aquacrop less efficient.

The performance of the EnKF with the SAFY model, was comparable with the results of others
upgrading assimilation method encountered in literature [24–28], which is especially encouraging
when considering that, despite the limited number of remote sensing images, i.e., three or four, with
an error of LAI estimation of 30%, the error on the yield estimation was around 18%. This allows
the application of this upgraded assimilation method in areas of the world where it is not possible to
obtain a large number of images for each crop cycle.

The encouraging results of the present work obtained with SAFY should be confirmed with
further studies with other validations, possibly with experiments that provide more frequent field
measurements, a larger variety of climatic and environmental datasets and a higher quality of remote
sensing image collection.
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