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Abstract: In cold-limited arctic environments, the duration and timing of the snow cover and the
vegetation green season have major ecological implications. I monitored the phenology of snow cover
and greenness using MODIS Terra satellite data for the years 2000 to 2016 in the 5 National Parks
of northern Alaska, USA. Mann-Kendall trend tests showed that the end of the continuous snow
season and midpoint of spring green-up became significantly earlier in parts of the study area over
the 16-year period. Using the observed relationship between thaw degree-days at Kotzebue, Alaska
and dates of snow-off and half green-up in nearby lowland tundra for the 16 years of MODIS data,
I reconstructed the dates of snow-off and half green-up from long-term Kotzebue weather records
back to 1937. The average snow-off and green-up dates probably became earlier by about 6 days over
this 80-year time interval. Remote sensing of fall vegetation senescence and establishment of the snow
cover were less reliable than the spring events due to cloudiness and low sun angles. The annual
maximum normalized difference vegetation index (NDVI) generally did not increase significantly
from 2001 to 2016, except in places where vegetation was recovering from forest fires.
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1. Introduction

The climate of the Arctic has been warming since about 1980 [1] and the timing of spring snow loss
has become significantly earlier over the same period [2]. Greenness of the Arctic land surface, based
on normalized difference vegetation index (NDVI) calculated from the Global Inventory Modeling
and Mapping Studies (GIMMS) dataset (8-km resolution) has increased over much of the Arctic
since the 1980s, though there are some exceptions and a recent overall decline [3–6]. In view of the
fundamental importance of snow cover and terrestrial plant productivity to ecosystems in the National
Parks of northern Alaska, the National Park Service is monitoring vegetation and snow phenology
as a part of its long-term monitoring program [7–10]. The MODIS (Moderate Resolution Imaging
Spectroradiometer, [11]) Terra satellite has been providing spectral information with 250 m resolution
on a daily basis since the year 2000. These images can be used to determine greenness and snow cover,
and allow us to study the magnitude and timing of changes in the seasons at finer spatial and temporal
resolution than was possible previously.

The purpose of this study is to explore the following questions for the National Parks of northern
Alaska: (1) Are the disappearance of snow and the green-up occurring earlier in the spring? (2) Is peak
greenness becoming more intense? (3) Are fall senescence and the establishment of snow cover
occurring later? My results show that spring snow-off and green-up have indeed become earlier since
the year 2000, continuing the long-term trend. However, peak greenness changed little; it increased
significantly only where vegetation was recovering from forest wildfires (but not tundra fires) and
colonizing newly drained lakebeds. Trends in the fall phenology events (vegetation senescence and
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establishment of the snow cover) remain poorly quantified due to cloudiness and the low sun angles
of the study area during that time of year.

2. Materials and Methods

The study area is the five National Park Service (NPS) units in northern Alaska (Figure 1).
These parks cover approximately 82,000 km2, including lowlands near sea level and rugged
mountainous terrain with elevations that reach over 2000 m above sea level. The climate is arctic
and subarctic, with mean annual air temperatures ranging from about −5 ◦C at low elevations in
the south and west to about −10 ◦C in the northern mountains. Mean January temperatures range
from about −18 ◦C in the maritime west and at mid-elevations in the southern mountains, to about
−25 ◦C in the valleys of Noatak National Preserve (NOAT) and Gates of the Arctic National Park and
Preserve (GAAR). July temperatures range from about 15 ◦C at low elevations in southern inland
locations, to about 10 ◦C near the coast and 5 ◦C in the highest mountains (temperatures are modeled
1971–2000 means by [12]). Long-term National Weather Service records from Kotzebue, Alaska (on the
coast in the western part of the study area, Figure 1) show a gradual increase in the annual sum of
thaw degree-days (a general index of growing season warmth [13]) and mean July temperatures since
consistent records began in the late 1930s (Figure 2).

Most of the study area is arctic tundra or alpine barrens, with boreal forests of spruce (Picea mariana
and P. glauca spp.) and birch (Betula neoalaskana) present at low elevations in southern inland locations
(Figure 3). While the satellite data on which this study is based are available for all of Alaska, I chose
to limit the geographic coverage of this study to these NPS lands, where I have detailed auxiliary
data and extensive on-the-ground experience to aid in interpretation of the results. The study area
encompasses about one-fourth of all NPS-administered lands in the United States.
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Figure 1. The five National Park Service (NPS) units that form the Arctic Inventory and Monitoring
Network (ARCN): Bering Land Bridge National Preserve (BELA), Cape Krusenstern National
Monument (CAKR), Gates of the Arctic National Park and Preserve (GAAR), Kobuk Valley National
Park (KOVA), and Noatak National Preserve (NOAT). Shown also are the five remote automated
camera locations (asterisks), and the long-term weather stations of Kotzebue and Bettles.
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Figure 2. Mean July temperatures (upper) and annual sum of thaw degree-days (lower) at Kotzebue, 
Alaska 1937–2016. National Weather Service data from [14]. The trend lines are linear regressions: y = 
−22.71 + 0.0177x, r2 = 0.06, p = 0.02 for July temperature and y = −4385 + 2.757x, r2 = 0.19, p < 0.001 for 
thaw degree days. 

 

Figure 3. The general vegetation of the study area, simplified from [15]. 

Figure 2. Mean July temperatures (upper) and annual sum of thaw degree-days (lower) at Kotzebue,
Alaska 1937–2016. National Weather Service data from [14]. The trend lines are linear regressions:
y = −22.71 + 0.0177x, r2 = 0.06, p = 0.02 for July temperature and y = −4385 + 2.757x, r2 = 0.19, p < 0.001
for thaw degree days.
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The MODIS Terra Snow Cover Daily L3 Global 500 m Grid data (MOD10A1 collection 5; [16])
from the National Snow and Ice Data center (NSIDC) [17] were used to determine the snow season.
The MODIS Terra satellite gathers multispectral data daily at 10:30 am local solar time. In cloud-free
pixels, snow cover (snow present or absent), snow albedo (the percentage of solar radiation reflected),
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and fractional snow cover (estimated snow cover in percent) are mapped by the NSIDC using a snow
mapping algorithm based on the Normalized Difference Snow Index (NDSI) and other criteria [16,18].

Determination of the start and end of the snow season is complicated by clouds and by the fact
that snow cover in a season may be interrupted by snow-free periods. Additional processing of the
daily NSIDC snow product, to interpolate across cloudy periods and detect the start and end of snow
cover periods of different lengths, was performed by the Geographic Information Network of Alaska
(GINA) at the University of Alaska, Fairbanks [19]. The GINA snow metrics algorithm locates the very
first and last snow days in the snow year, along with the start and end of the longest of the continuous
snow periods (defined as periods of continuous snow cover more than 2 weeks long with 2 or fewer
days of no-snow) [20]. At the time of this research, data were available to determine snow-on dates
from the fall of 2000 through the fall of 2015 and snow-off dates from the spring of 2001 through the
spring of 2016 [21].

Vegetation greenness was studied using 7-day NDVI composites with 250 m resolution from the
MODIS Terra satellite (collection 5), created as a part of the eMODIS project [22,23]. The eMODIS
data were downloaded from the US Geological Survey [24]. The following growing-season metrics
were computed by GINA from the eMODIS composites: the date of onset of green season, NDVI
value at onset of greenness, maximum NDVI, date of end of green season, and NDVI value at the
end of the green season. They used a weighted, windowed, least-squares linear regression algorithm
to smooth the time-series data and remove local minima. Smoothed data points were obtained from
linear regressions in a moving window, with local maxima receiving greater weight (1.5) than points on
slopes (0.5) or local minima (0.005) [25]. The start and end of the green season were then identified by
the delayed moving average method [26,27]. For each pixel in each year, a backward moving average
was computed across the winter-spring transition. This backward average is dominated by winter
values at the time of the start of green-up. The date when the smoothed NDVI curve crossed the
backward-average curve as NDVI began its upward trend was recorded as the start of the growing
season. Similarly, a forward moving average was computed in each year and each pixel for the fall,
and the date when the decreasing NDVI curve crossed the forward-average curve was recorded as the
end of the green season. At the time of this research, both the eMODIS product and GINA derivatives
were available for the growing seasons from 2000 through 2015 [28].

Degradation of the MODIS Terra sensor may potentially influence NDVI time series [29]. The rate
of NDVI change due to sensor degradation was estimated to be −0.001 to −0.004 NDVI units yr-1

during 2002–2010 [29]. The potential bias introduced by this sensor degradation is discussed in the
Results and Discussion section below.

I computed two additional metrics from the NDVI data: the dates of the midpoint of spring
green-up and midpoint of fall senescence. These halfway points are interesting ecologically because
they represent the time of greatest rate of change; they are also easily compared to our ground
verification data (see below), where we fit a sigmoid curve to the annual greenness time series and
locate similar midpoints. Using the “raster” (version 2.3-40) and “rgdal” (version 0.9-2) packages in
R (version 3.0.1) statistical software [30–32], I computed the median NDVI value across the 16 years
of data for the onset of the green season, the median maximum NDVI, and the median NDVI at the
end of green season from the GINA metrics. I then computed for each pixel the NDVI value halfway
between median at onset of greenness and the median maximum value (the spring midpoint NDVI),
and also between the median maximum and the median end of green season value (the fall midpoint
NDVI). I created an annual NDVI curve for each pixel in each year by linear interpolation between the
weekly eMODIS composite values (after removal of local minima that represent cloud contamination).
I then located the spring and fall median midpoint NDVI values on the annual interpolated curve to
estimate the dates of the spring and fall NDVI midpoint (half green-up and half senescence) in each
year. Additional details and the R scripts are provided in [33,34].

I summarized the various growing-season metrics by geographic zones derived from ecological
subsections [35–39]. Ecological subsections are areas with a consistent pattern of landforms, vegetation
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and climate. I aggregated adjacent similar ecological subsections to obtain 2 to 4 ecological zones
(or “ecozones” below) per NPS unit (Figure 4).

Low sun angles create problems for sensing some phenology events at high latitudes. The solar
zenith angle at summer solstice at the time of MODIS Terra’s pass (10:30 am local solar time) ranges in
the Arctic Inventory and Monitoring Network (ARCN) from about 44◦ to 48◦ (42◦ to 46◦ above the
horizontal), depending on the latitude. The solar zenith angle is more than 80◦ (i.e., the sun is less than
10◦ above the horizontal) at the time of the MODIS Terra satellite’s pass from late October through late
February, and the solar zenith angle is more than 70◦ (the sun is less than 20◦ above the horizontal)
from late September through late March (see the Supplementary Materials, Table S1). When the solar
zenith angle is 70◦, 39% of the land area in ARCN is in terrain shadow, and when the solar zenith
angle is 80◦, 57% of ARCN is in terrain shadow (see the Supplementary Materials, Figure S1). Thus,
spring phenology events (snow-off and green-up), which occur in April, May, and June, are relatively
unaffected by illumination issues. Fall phenology events (vegetation senescence and establishment of
the snow cover) occur in August, September, October, and locally even in November (in years of late
snow cover establishment). Thus, some fall events may occur after the landscape has gone into terrain
shadow for the winter. This issue is compounded by cloudiness: 2 to 5 years of missing data out of
16 years due to clouds was typical for all ecological zones and compositing periods in September and
October. Thus a fall event may be missed if it occurs after shadows arrive in October, or if cloudiness
obscures it until those shadows arrive.
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from ecological subsections [35–39] to obtain 2 to 4 coherent zones per NPS unit.

I used the modeled mean monthly temperatures by the PRISM Climate Group [12] (771 m
resolution, for 1971–2000) to study the link between monthly average temperatures and median spring
snow-off dates. I linearly interpolated between the monthly mean temperatures to estimate daily mean
temperatures for each pixel. I located the median dates for the end of continuous snow season on the
temperature curve of each pixel and determined the sum of thaw degree-days for the snow-off date.

I used long-term weather records to extrapolate the snow-off and half green-up dates determined
from MODIS (2000–2016) into the past (prior to the year 2000) as follows. The Kotzebue National
Weather Service station has continuous data from the present back to 1951 and discontinuous data to
1937 [14]. Kotzebue is the only long-term weather station near the study area that represents windy
tundra areas with thin snowpacks. The data showed that few to no thaw degree-days were required to
melt these thin tundra snowpacks; hence data on winter snow depth (which were not available) are
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not essential to understand snow-off and green-up in these areas. Using monthly mean temperatures,
I computed the ordinal date (0 to 365) when the mean daily temperature exceeded 0 ◦C each year
and correlated this date with the observed median end of the continuous snow season (CSS) from
the MODIS data in nearby ecological zones. I used this regression relation (which had a slope very
close to 1) to reconstruct the end of CSS back to the beginning of records at Kotzebue. I also computed
(from the monthly means) the ordinal date when various thaw degree-day sums were exceeded at
Kotzebue (60, 80, 100, . . . 220, 240 ◦C-days). I computed the median half green-up date for each year
in each ecological zone using the MODIS data (2001–2016), and the correlation between these dates
and the thaw degree-day sums at Kotzebue. I chose the degree-day sum and zone that produced
the best correlation between the date when this sum was reached and the half green-up date in the
zone, and used this regression and the historic temperature records at Kotzebue to reconstruct spring
green-up dates at Kotzebue back to 1937. Thaw degree-days have been used successfully to predict
spring phenology events in the Arctic [40], and tests of other base temperatures, both above and below
0 ◦C have shown that 0 ◦C is probably the best compromise value for base temperature [13].

Ground verification of satellite phenology observations was obtained from automated cameras at
five NPS climate monitoring stations (Figure 1, [10]). The cameras were installed in 2013, but most of
the data are from 2015–2016 when power-supply issues were solved and all were operational. At each
location an analysis window was defined (see Supplementary Materials Figure S2) and analyzed
quantitatively for greenness and snow cover as described in [10]. Greenness was computed from the
mean red (R), green (G), and blue (B) digital counts in the analysis window using the “Percent green”
criterion: g% = 100 × G/(R + G + B) [41,42]. A sigmoid curve was fitted to greenness to identify the
midpoint day of the transition from low to high greenness in the spring and high to low greenness
in the fall [10]. At locations where strong red colors were observed in the fall, there was no sigmoid
transition, but instead a distinct fall minimum greenness coinciding with maximum redness that was
located and its date recorded [10]. The start of the continuous snow season (more than 2 weeks of
continuous snow) was also recorded for the fall, as was the date when the winter snowpack covered
less than 50% of the analysis window in the spring [10]. These phenology metrics were compared with
the satellite-derived dates for the same years by simply extracting the MODIS-derived pixel values
for analogous metrics at the camera locations. Only approximate correspondence between the two
measurements was expected, because of the very different areas sampled by the two methods: a small
oblique window close to the ground by the camera (Figure S2) versus a 250 m (greenness) or 500 m
(snow) pixel by MODIS. Also, the ground and satellite sensors provide different wavelengths to derive
the phenology metrics.

Temporal trends across the years of available data for the metrics described above (e.g., spring
midpoint NDVI date) were analyzed on a pixel-by-pixel basis using the Mann-Kendall test with
Theil-Sen’s slope estimator. The Mann-Kendall test is a non-parametric test for the significance of a
monotonic trend. It is based on the direction of change over time between all pairs of observations and
does not assume normality or linearity of trend [43]. The Theil-Sen slope is a related non-parametric
slope estimate: the median of slopes between all pairs of observations separated by time [44].
I implemented the Mann-Kendall test and Theil-Sen slope in the “rkt” package in R [45] using the
“raster” package [31]. Additional details and the R scripts are available in [34].

To investigate the effect of fires on trends in maximum NDVI, I examined the results of the
Mann-Kendall test within the mapped perimeters of fires from different years. Fire perimeters were
obtained from the Alaska Interagency Coordination Center [46].

3. Results and Discussion

3.1. End of the Continuous Snow Season

The median end of the continuous snow season (CSS) occurred in May across most of the study
area (Figure S3). Snow-off prior to May 1 within the study area occurred in some windy tundra
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locations, while June snow-off dates occurred mainly in high mountain areas. Comparison of MODIS
end of CSS with the snow-off dates registered by our phenology cameras showed good agreement
(Figure 5). The median difference (MODIS date minus camera date) for the end of CSS was −2 days.
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Over much of ARCN, the median end of the continuous snow season occurred when, on the
average, few to no thaw degree-days had accumulated (Figure 6). In contrast, the forested lowlands in
southern Kobuk Valley National Park (KOVA) and GAAR, and the south slopes of the mountains in
KOVA, NOAT, and GAAR, have deeper snowpacks that required 50 or more thaw degree-days to melt.
Our phenology cameras and temperature data show that indeed most of the thin tundra snowpack
melts away during early spring days with above-freezing daily maximum temperatures but daily
means near to freezing, while deep drifts persist into the summer [10].
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The Mann-Kendall trend test of the end of CSS from 2001 through 2016 showed a significant trend
toward earlier snow-off in portions of the study area, mainly on the southern slopes of the Brooks
Range and in the Noatak Valley (Figure 7). The median date of end of CSS is plotted in Figure 8 for the
three ecozones that encompass most of the area with significant trends (zones I, M, and H of Figure 4).
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This plot shows two very late snow years near the beginning of the period of record (2001 and 2003),
and a rather flat trend after 2003.
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use the regression in Figure 9 to predict the timing of snow-off in zone A from Kotzebue’s historical 
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reconstructed dates show a year-to-year variability of 25 to 30 days, similar to the MODIS data 
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with a slope of −0.78 days per decade. Thus, the average snow-off date in zone A is now about 6 days 

Figure 7. Trend in the end of continuous snow season (CSS) for 2001–2016. The upper map is Theil-Sen’s
slope for ordinal day of the end of the CSS vs. year. The lower map is the Mann-Kendall two-tailed
test p-value for this trend. Both maps had 500 m resolution, smoothed for display with a 3-by-3
median filter.
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low p-values (zone I p = 0.09, zone H p = 0.05, zone M p = 0.06) and have slopes of −4.5, −5.1, and
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The long-term weather station at Kotzebue, Alaska showed highly significant correlations
(p < 0.05) between the date when the interpolated plot of monthly average temperature crossed
0 ◦C and the median date at the end of CSS in all ten of the nearest ecological zones (for the years
with MODIS data, 2001 through 2016). The zone with the closest match (as measured by lowest mean
square difference between the date of zero crossing and the median date of the end of the CSS) was
the extensive zone A in northern Bering Land Bridge National Preserve (BELA) (Figures 4 and 9).
If we use the regression in Figure 9 to predict the timing of snow-off in zone A from Kotzebue’s
historical temperature data, we can reconstruct the timing of snow-off back to 1937 (Figure 10).
These reconstructed dates show a year-to-year variability of 25 to 30 days, similar to the MODIS data
(Figure 8). A simple linear trend line fitted to the reconstructed snow-off dates is significant (p = 0.02) with
a slope of −0.78 days per decade. Thus, the average snow-off date in zone A is now about 6 days earlier
than it was in 1937. Long-term weather records are also available for Bettles, Alaska (Figure 1), but most
of the terrain within 150 km of this station has a significant snowpack and therefore it is not reasonable to
neglect the thaw degree-days required to melt the snow as in the case of Kotzebue (Figure 6).
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Figure 10. Modeled dates of snow-off in ecological zone A. The regression from Figure 9 was applied
to weather records from Kotzebue, Alaska to reconstruct the date of the end of the continuous snow
season in ecological zone A for each year back to 1937 (the points). The solid line is the long-term trend
with time through the points, from linear regression, y = 291.3 − 0.078x, r2 = 0.06, p = 0.02. This is
simply a linear transformation of the underlying decline in date of the spring zero crossing date over
time, which has a similar regression (y = 316.6 − 0.091x, r2 = 0.06, p = 0.02).
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3.2. Spring Green-Up

The midpoints of spring green-up range from late May in low-elevation inland locations to late
June at high elevations (Figure S4). A comparison of observations at remote automated cameras with
the corresponding pixel values derived from MODIS (Figure 5) suggests a possible bias towards earlier
dates from the MODIS data: the median difference MODIS date minus camera date was −6 days
(n = 6). However, I would caution against drawing conclusions from just six verification points that
involve comparing a small oblique camera scene with a single 250 m pixel.

The Mann-Kendall trend test for midpoint of green-up shows significant change to earlier green-up
over the 16-year period in a rather small portion of ARCN (Figure 11). Significant trends toward earlier
dates are most concentrated in the southern inland forested areas (ecozones K and N in Figure 4),
where trends were driven by late springs in 2000 and 2001 (Figure 12).

Degradation of the MODIS Terra sensor over time [29] could possibly affect my observed trends
in date of half-green-up (Figure 11). The effect of sensor degradation, estimated to be −0.001 to −0.004
NDVI units year−1 [29], on the green-up midpoint date depends on the slope of the annual NDVI curve.
Green-up in our area requires 15 to 30 days [2], and, as will be reported below, typical NDVI maxima
are around 0.8; this implies a spring NDVI change rate of 0.025 to 0.050 day−1. Thus an NDVI decline
due to sensor degradation of −0.001 yr−1 would cause the observed green-up date to change between
0.001/0.050 = −0.02 day yr−1 and 0.001/0.025 = −0.04 day yr−1. The worst-case estimate of NDVI
drift of −0.004 yr−1 [29] would produce a four-times greater change, −0.08 to −0.16 day yr−1. The
rates of change associated with a significant Mann-Kendall test for change in the date of green-up are
typically more negative than −1 day yr−1 (Figure 11). So the effect of sensor degradation is probably
an order of magnitude less than the observed changes, and thus a minor factor. Sensor degradation
may cause a slight underestimate of the area with a trend toward significantly earlier occurrence of
spring green-up in Figure 11.Remote Sens. 2017, 9, x FOR PEER REVIEW  11 of 20 
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Figure 11. Trend in the date of the midpoint of spring green-up for 2000–2015. The upper map is
Theil-Sen’s slope for ordinal day of the midpoint of spring green-up vs. year. The lower map is the
Mann-Kendall test p-value for this trend (two-tailed test). Both maps had 250 m resolution, smoothed
for display with a 5-by-5 median filter.
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Figure 12. Median midpoint by year of spring green-up for the two ecological zones (zone K—dashed
line and zone N—solid line) with the highest density of pixels with significant trend as shown in
Figure 11. Linear regressions through the points (not shown) are significant (p = 0.04 and 0.02, for zones
K and N, respectively) and have slopes of −3.2 (zone K) and −4.3 (zone N) days per decade.

The long-term weather station at Kotzebue, Alaska showed highly significant correlations
(p < 0.05) between the dates when all thaw degree-day values tested (60, 80, 100, . . . 220, 240 ◦C-days)
were reached and the median date for midpoint of green-up in the four nearest ecological zones.

The best match was with the extensive ecozone A in northern coastal BELA and a degree-day
threshold of 140 ◦C-days (Figure 13). If we use the regression in Figure 13 to predict the timing of
green-up in ecozone A from historical temperature data from Kotzebue, we can reconstruct the timing
of green-up back to 1937 (Figure 14). These reconstructed dates show a year-to-year variability of 20
to 25 days, similar to the MODIS data (Figure 12). A linear trend line fitted to these reconstructed
green-up dates showed a highly significant (p = 0.009) regression slope of −0.80 days per decade, nearly
identical to the slope of the change in snow-off date presented above. Thus, the average date of spring
half green-up was also about 6 days earlier in 2015 than it was in 1937. Quantile regression [47,48]
fitted to the 95th percentile values in Figure 14 suggests that the decline was steeper for years with late
springs, about −1.25 days per decade. A similar reconstruction for eastern ARCN based on Bettles
weather records was not attempted due to deeper snow in that area, as discussed above.
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Figure 13. Plot of the median ordinal date of half-greenup in ecozone A vs. the ordinal date of
140 thaw degree-days at Kotzebue, Alaska, as computed from monthly means. The trend line is a linear
regression y = 56.9411 + 0.6419x, r2 = 0.68, p < 0.001.
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Figure 14. Modeled dates of spring half-greenup in ecozone A. The regression between thaw
degree-days in Kotzebue, Alaska and date of half green-up from Figure 13 was used to model the
spring half-green-up for each year using historical weather records back to 1937 (points). The solid line
is a linear regression y = 323.2 − 0.080x, r2 = 0.09, p = 0.009. The dashed line is a quantile regression
with tau of 0.95, an estimate of the trend in the 95th percentile values [47,48], y = 420.9 − 0.125x.

3.3. Maximum Greenness

Maximum NDVI (Figure 15) is closely related to vegetation type (Figure 3): the lowest indices
were in sparsely vegetated areas and the highest in forest, tall shrub, and some low-shrub tundra.
Maximum NDVI was quite consistent from year to year: the coefficient of variation (standard deviation
of NDVI divided by mean NDVI for 2000–2015, Figure S5) was less than 10% over most of ARCN.
Maximum NDVI showed much weaker trends over the 16-year period than the spring phenological
events discussed above (Figure 16). Few pixels had significant Mann-Kendall tests, and both positive
and negative trends were present. This lack of trends stands in contrast to the longer-term greening
trend visible from AVHRR (Advanced Very High Resolution Radiometer) satellite data since the
1980s [3–6,8]. The greening trend has recently slowed elsewhere in the Arctic, perhaps as a result of
strengthened sea breezes that have depressed midsummer temperatures and increased cloudiness [5,6].
However, this explanation does not appear to apply in our study area, where July temperatures and
annual sum of thaw degree-days showed a persistent long-term upward trend, even at the coast in
Kotzebue (Figure 2). I would instead suggest that the addition of sufficient biomass to produce a
significant trend in NDVI might require more time than is available in our 16-year dataset.
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Figure 16. Trend of maximum NDVI for 2000–2015. The upper map is Theil-Sen’s slope of maximum
NDVI vs. year. Brown indicates decreasing and green an increasing NDVI over time. The lower map is
the Mann-Kendall test of significance of the trend (two-tailed test).

Several small areas with significant NDVI trend in BELA correspond to lakes that drained during
the 1990 and 2000 decades [49] (Figure S6). Elsewhere in ARCN, areas with positive NDVI trends
generally corresponded to perimeters of forest fires, i.e., areas undergoing post-fire plant succession.
The area of strongly increasing NDVI just south of KOVA in Figure 16 is within the perimeter of a
1988 wildfire. Fire perimeters in southwestern GAAR from 1991 and 1997 also encircle areas of pixels
with significant positive NDVI trends for 2000–2015 (Figure S7). In contrast, the extensive tundra
lowlands of Cape Krusenstern National Monument (CAKR), BELA and NOAT lack positive NDVI
trends, in spite of multiple large fires there in all decades since the 1970s. The relationships between
maximum NDVI and fires are well illustrated if we extract all pixels in fire perimeters from the various
decades and compute the proportion with significant (p < 0.05) Mann-Kendall test trends in maximum
NDVI during 2000–2015 (Figures 17 and 18). In GAAR and KOVA, where fires were predominantly in
boreal forests, fire perimeters from the 1970s, 1980s, and 1990s show progressively more pixels with
significantly positive trends in NDVI vs. time in 2000–2015 (Figure 17). In contrast, the predominantly
tundra fires of BELA and NOAT appear to have little effect on recent NDVI trends: few pixels from fire
perimeters of any decade had significant positive or negative NDVI trends in 2000–2015 (Figure 18).
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Figure 17. Fraction of pixels with significant trends in maximum NDVI during the period 2000–2015,
for pixels within perimeters of fires from various decades in GAAR and KOVA. Most fire area here
is within the boreal forest. The gray-shaded bars give the proportion of all pixels with significant
(p < 0.05) positive NDVI trends, and the black bars are the proportion of significant (p < 0.05) negative
NDVI trends, by the Mann-Kendall test on annual maximum NDVI for the period 2000–2015.
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Figure 18. Fraction of pixels with significant trends in maximum NDVI during the period 2000–2015,
for pixels within perimeters of fires from various decades in BELA and NOAT. Most fire area here is in
tundra vegetation. The gray-shaded bars give the proportion of all pixels with significant (p < 0.05)
positive NDVI trends and the black bars are the proportion of significant (p < 0.05) negative NDVI
trends, by the Mann-Kendall test on annual maximum NDVI for the period 2000–2015. The vertical
scale is the same as in Figure 17.
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The rate of change of NDVI in places with significant Mann-Kendall tests was more than +0.03
or less than −0.03 NDVI units year−1. This is an order of magnitude greater than the rate of NDVI
change due to degradation of the Terra sensor (−0.001 to −0.004 NDVI units year−1 [29]). While the
effect of sensor degradation on my results is probably minor, it may cause a slight underestimate of the
area undergoing significant positive change in NDVI or a slight overestimate of the area undergoing
significant negative change in NDVI.

3.4. Fall Senescence

The median midpoint of fall senescence by analysis of MODIS images ranged from late August in
high-elevation areas to early October in lowland areas of the south and west (Figure S8). Observations
of the midpoint of fall senescence at 5 remote camera sites from 2013 to 2015 yielded dates between
21 August and 16 September (ordinal dates 233 to 259) with none in late September or October
(Figure 19). All of the corresponding pixel values for the senescence midpoint derived from MODIS
were later than the camera observations, and the median difference (MODIS date minus camera date)
was +17 days. The unexpectedly late senescence values obtained from the MODIS data have two
probable causes: (1) fall phenology events are subject to a “late-bias,” because they are often sensed
by the satellite well after they occur (due to cloudiness and low sun angles); (2) where vegetation is
dominated by plants with weak or no senescence color changes (evergreen shrubs and coniferous trees,
mosses, and lichens), the major fall change in satellite NDVI occurs with the arrival of snow, and not
with changes in plant color that were analyzed at our camera locations.Remote Sens. 2017, 9, x FOR PEER REVIEW  16 of 20 

 

 
Figure 19. Plot of the ordinal date of the midpoint of fall senescence and the start of the continuous 
snow season (CSS) by ground camera (x) vs. satellite data analysis (y). The solid line marks an exact 
match between the two data sources, while the dashed lines mark where the satellite data are 20 days 
earlier (lower) or later (upper) than the ground camera data. 

Trends in the date of the MODIS-derived midpoint of fall senescence were weak over much of 
the study area (Figure S9). The relatively small areas with significant positive trends were driven by 
numerous suspect October senescence dates during years 2010–2014. Given the issues with sensing 
senescence described above, I would be reluctant to draw any conclusions about trends in the timing 
of senescence from these data. 

I chose not to model the historical senescence dates using air temperature as I did for spring 
green-up. In addition to the questionable quality of the satellite senescence dates, multiple 
environmental factors affect fall senescence and confound its prediction from fall temperature data. 
These factors include the strong influence of photoperiod on senescence of some arctic shrubs (Betula 
nana [50]), the dependence of senescence on the timing of green-up [51], and also the effect of 
summer drought [52]. 

3.5. Establishment of the Continuous Snow Cover 

The median date of the start of the continuous snow cover, based on the MODIS data, was in 
September at high elevations and October elsewhere, generally later in the west (Figure S10.). 
Comparison of start of CSS as determined from automated cameras with the corresponding pixel 
values derived from MODIS showed a median difference (MODIS date minus camera data) of +4 
days (Figure 19). There was good agreement for 9 of the 13 observations (4 days or less difference 
between the two data sources). The late-bias in the other 4 observations was probably due to the 
cloudiness and sun-angle issues discussed previously. Because a minority of observations appear to 
be affected by late bias, the median start of CSS (Figure S10) may be largely unaffected. 

However, I suggest caution in accepting the apparent trend toward later snow cover 
establishment in CAKR and lowland areas of western NOAT during 2000–2015 (Figure S11), because 
this result could be produced by late-bias in a few years in the second half of the study time interval. 

4. Conclusions 

The MODIS Terra satellite has provided valuable insights into phenology trends in Alaska’s 
arctic National Parks. Both the end of the continuous snow season and the midpoint of spring 
green-up have become earlier in portions of the study area between 2000 and 2016. The strong 
relationship between spring phenology events (in tundra areas with minimal snowpacks) and thaw 
degree-days at a long-term weather station (Kotzebue) during the MODIS era (2000–2016) make it 

Figure 19. Plot of the ordinal date of the midpoint of fall senescence and the start of the continuous
snow season (CSS) by ground camera (x) vs. satellite data analysis (y). The solid line marks an exact
match between the two data sources, while the dashed lines mark where the satellite data are 20 days
earlier (lower) or later (upper) than the ground camera data.

Trends in the date of the MODIS-derived midpoint of fall senescence were weak over much of
the study area (Figure S9). The relatively small areas with significant positive trends were driven by
numerous suspect October senescence dates during years 2010–2014. Given the issues with sensing
senescence described above, I would be reluctant to draw any conclusions about trends in the timing
of senescence from these data.

I chose not to model the historical senescence dates using air temperature as I did for spring
green-up. In addition to the questionable quality of the satellite senescence dates, multiple
environmental factors affect fall senescence and confound its prediction from fall temperature data.
These factors include the strong influence of photoperiod on senescence of some arctic shrubs
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(Betula nana [50]), the dependence of senescence on the timing of green-up [51], and also the effect of
summer drought [52].

3.5. Establishment of the Continuous Snow Cover

The median date of the start of the continuous snow cover, based on the MODIS data, was
in September at high elevations and October elsewhere, generally later in the west (Figure S10).
Comparison of start of CSS as determined from automated cameras with the corresponding pixel
values derived from MODIS showed a median difference (MODIS date minus camera data) of +4 days
(Figure 19). There was good agreement for 9 of the 13 observations (4 days or less difference between
the two data sources). The late-bias in the other 4 observations was probably due to the cloudiness
and sun-angle issues discussed previously. Because a minority of observations appear to be affected
by late bias, the median start of CSS (Figure S10) may be largely unaffected.

However, I suggest caution in accepting the apparent trend toward later snow cover establishment
in CAKR and lowland areas of western NOAT during 2000–2015 (Figure S11), because this result could
be produced by late-bias in a few years in the second half of the study time interval.

4. Conclusions

The MODIS Terra satellite has provided valuable insights into phenology trends in Alaska’s arctic
National Parks. Both the end of the continuous snow season and the midpoint of spring green-up
have become earlier in portions of the study area between 2000 and 2016. The strong relationship
between spring phenology events (in tundra areas with minimal snowpacks) and thaw degree-days at a
long-term weather station (Kotzebue) during the MODIS era (2000–2016) make it possible to extrapolate
the snow-off and green-up dates with historic climate data back to 1937. This reconstruction suggests
that the average date of both spring snow-off and green-up in tundra lowlands near Kotzebue have
become earlier by about 6 days over this approximately 80-year time span, while the short-term
year-to-year range is 20 to 30 days. The thin, windblown tundra snow cover type is widespread across
the Arctic [53], thus it should be possible elsewhere to reconstruct snowmelt and green-up dates from
long-term weather records calibrated by MODIS data.

In most areas the earlier spring green-ups since 2000 were not accompanied by a measurable
increase in peak summer greenness over the same time interval. Other studies with longer timespans
have detected overall arctic greening since the 1980s [3–6,8]. The lack of trend in maximum NDVI in
my study area, in spite of continued gradual warming, may simply reflect the difficulty in discerning a
very gradual trend in increasing arctic biomass from a relatively short time series. Localized significant
greening over the 2000–2015 study period were observed in places where forest fires occurred during
the 3 decades preceding the year 2000. Tundra fires and subsequent post-fire vegetation succession
had little effect on greenness.

Fall phenology events (midpoint of fall senescence and establishment of snow cover) were difficult
to sense by optical satellites in the Arctic, probably due to cloudiness and low sun angles during this
time of year.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/9/6/514/s1:
Supplementary Materials.pdf. Supplementary Table S1 and captions for the Supplementary Figures S1 through
S11. Table S1. Dates in the fall and spring when the solar zenith angle is less than 90◦, 70◦, and 80◦ at time of
the MODIS Terra pass (10:30 am local time). Figure S1: Terrain shadowing in the study area under different
sun angles. Figure S2. An example automated camera frame with analysis window outlined in red. Figure S3.
Median for 2001–2016 of the ordinal date of the end of the continuous snow season (CSS). Figure S4. Median
date of midpoint of spring green-up for years 2000–2015. Figure S5. Coefficient of variation in maximum NDVI,
2000–2015. Figure S6. Significance (Mann_Kendall test) of trend in maximum NDVI in BELA, 2000–2015 (upper)
and 2002 Landsat image, color-infrared color scheme (lower). Figure S7. Trend of maximum NDVI in southwestern
GAAR, 2000–2015. Figure S8. Median date of the midpoint of senescence, 2000–2015. Figure S9. Trend in the
date of the midpoint of fall senescence for 2000–2015. Figure S10. Median date of the start of the continuous
snow season (CSS), 2000–2015. Figure S11. Trend in the date of the establishment of the continuous snow season
(CSS) 2000–2015.
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