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Abstract: Remote sensing derived Normalized Difference Vegetation Index (NDVI) is a widely used
index to monitor vegetation and land use change. NDVI can be retrieved from publicly available data
repositories of optical sensors such as Landsat, Moderate Resolution Imaging Spectro-radiometer
(MODIS) and several commercial satellites. Studies that are heavily dependent on optical sensors
are subject to data loss due to cloud coverage. Specifically, cloud contamination is a hindrance to
long-term environmental assessment when using information from satellite imagery retrieved from
visible and infrared spectral ranges. Landsat has an ongoing high-resolution NDVI record starting
from 1984. Unfortunately, this long time series NDVI data suffers from the cloud contamination issue.
Though both simple and complex computational methods for data interpolation have been applied
to recover cloudy data, all the techniques have limitations. In this paper, a novel Optical Cloud
Pixel Recovery (OCPR) method is proposed to repair cloudy pixels from the time-space-spectrum
continuum using a Random Forest (RF) trained and tested with multi-parameter hydrologic data.
The RF-based OCPR model is compared with a linear regression model to demonstrate the capability
of OCPR. A case study in Apalachicola Bay is presented to evaluate the performance of OCPR to
repair cloudy NDVI reflectance. The RF-based OCPR method achieves a root mean squared error of
0.016 between predicted and observed NDVI reflectance values. The linear regression model achieves
a root mean squared error of 0.126. Our findings suggest that the RF-based OCPR method is effective
to repair cloudy pixels and provides continuous and quantitatively reliable imagery for long-term
environmental analysis.
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1. Introduction

Normalized Difference Vegetation Index (NDVI) conveys valuable information relating to
vegetation properties on the land surface [1,2]. NDVI is a vegetation index derived from optical
remote sensors and represents the reflective and absorptive characteristics of vegetation in the red
and near infrared (NIR) bands of the electromagnetic spectrum. For this reason, a chronological
analysis of NDVI can indicate changes in vegetation conditions proportional to the absorption of
photo-synthetically active radiation [3]. Such time series analyses of NDVI can detect the impact of
natural events or anthropogenic disturbances on vegetation and can play an important role in natural
resource management [4]. Furthermore, NDVI change detection can provide multi-dimensional
information such as differences in urban land use/land cover changes [5], vegetation dynamics,
surface elevation and floodplain dynamics [6].

The raw data for NDVI can be downloaded at no cost from several publicly available optical
remote sensor repositories such as the Advanced Very High Resolution Radiometer (AVHRR),
Moderate Resolution Imaging Spectro-radiometer (MODIS)-TERRA, MODIS-AQUA and Landsat
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satellites. Commercial satellites such as Satellite Pour l'Observation de la Terre (SPOT) also provide
NDVI information. Among the publicly available sensors, Landsat has longest data record and is
applicable for modeling terrestrial ecosystems on global, continental, and regional scales.

The main drawback of Landsat, as with any optical satellite sensor, is that the imagery can be
obscured, shadowed, or saturated. The effects of clouds and cloud shadows, atmospheric variability,
and bi-directional effects include the outright omission or skewing of readings in the image. These
issues hamper the monitoring of terrestrial ecosystems and introduce undesirable noise [7,8]. This is
especially significant in change detection analyses at climatic time scales. Errors due to the presence
of clouds introduce uncertainties in satellite images during information retrieval, signal processing,
data compression and distribution procedures causing anomalous results that are often difficult to
correct [9,10].

Data reconstruction has recently gained popularity in Remote Sensing (RS). Spatial reconstruction
has been described by removing cloud-contaminated portions in satellite images and cloning
information from cloud-free patches [11]. Reconstruction of cloudy areas has also been proposed based
on compressive sensing (CS) theory in underdetermined linear equation systems [12]. For example,
a recently developed method uses two multi-temporal dictionary learning methods based on the
expanded K-means clustering process and Bayesian algorithms [11]. Furthermore, at the acquisition
layer, the commonly used Landsat NDVI data products are multi-day Maximum Value Composite
(MVC) [13]; however, some noise remains in the final imagery. Data from Landsat, or optical satellites
in general, are frequently discontinuous and faulty in warm coastal areas such as Florida’s gulf and
west coasts due to heavy near shore evapotranspiration [14]. Therefore, it is crucial to mitigate or
eliminate faulty information and recover missing information in a defensible and repeatable manner
to enhance NDVI as a viable tool for long term change detection analyses.

To this end, an information recovery method, named Optical Cloud Pixel Recovery (OCPR), is
proposed here to reconstruct the values of cloudy pixels through the established multi-parameter
time-space-spectrum relationships of cloud-free pixels. The proposed OCPR method is able to
predict NDVI using a random forest (RF) model trained and tested on a large high resolution
spatio-temporal multi-parameter (temperature, precipitation, water level and months) data set and
assess its performance in terms of information recovery from cloud coverage in remotely sensed
Landsat MVC images. A comparison of the performance of RF with linear regression and mean only
methods to predict NDVI is also included to justify the complexity of the RF model.

2. Past Research on Data Recovery

The importance of data recovery in numerous fields such as medical [15,16], neuro-computation [17],
and climate science [18,19] has long been realized. Several approaches have been applied to recover the
value of missing data. These methods were developed using statistical and numerical models to recover
missing values from the originally available data. There were numerous relevant studies that have
been conducted to recover either NDVI or other similar data by combination of time-space-spectrum
memory. Based on the type of study, here we divide the literature review in three groups. First are
studies on NDVI value recovery using empirical methods; second are studies on data recovery using
machine learning methods; and third are studies on hydrologic parameters and their relationship with
NDVI. While the first two sections of literature review explore existing data recovery methods, the
third section provides insight into additional relevant variables that can be utilized to develop a novel
model to recover Landsat NDVI values from beneath cloud cover. Typically, missing data may arise
from instrumental error, time-lapse, and limited field visits. In the field of optical remote sensing, the
missing data primarily originate from clouds. It is difficult to systematically reconstruct information
under cloudy pixels at regional or larger scales with sufficient accuracy, especially, in warm coastal
areas with frequent storms and broad cloud cover. In addition, due to the stochastic nature of clouds, it
is difficult to build a consistent relationship to recover the value of pixels beneath the clouds. Therefore,
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inclusion of additional influential variables in long time-series data presents an opportunity to build a
robust data recovery model with sufficient training data.

2.1. Data Recovery Using Empirical Methods

A number of methods for reducing noise and building high-quality NDVI time series data
sets have been proposed, applied, and examined in the last two decades in accordance with data
availability and research applications. However, research into the recovery of missing NDVI
pixels due to cloud cover is limited. The most common and widely used NDVI cloud pixel
recovery methods are threshold-based methods such as the best index slope extraction algorithm
(BISE) [20]; Fourier-based fitting methods [21,22]; and asymmetric function fitting methods such
as the asymmetric Gaussian function fitting approach [23] and the weighted least-squares linear
regression approach [24]. Some simpler approaches were also practiced before the year 2000 such
as substitution and interpolation. Substitution approaches were used to fill in cloudy pixels using
information from adjacent cloud-free pixels in the same image. Otherwise information was retrieved
for the corresponding pixels from previous time periods [25,26]. In addition to methods applied
directly to NDVI, data recovery techniques for other types of similar data are also informative. Several
studies have used similar techniques to estimate missing rainfall data including inverse distance
weighting [18], expectation maximization algorithm [19], and regression [27].

Cloud removal is a topic being studied by many researchers in the field of RS. Shen et al. [28]
provided an overview to the theories and principles of missing information reconstruction
of RS data and described conventional and emergent algorithms under four main categories;
(1) spatial-based; (2) spectral-based; (3) temporal-based; and (4) hybrid. They argued that while
the spatial-based methods cannot reliably reconstruct data if information over large areas is missing,
spectral-based methods are capable of performing well in similar situations based on the spectral
correlations. Multi-temporal dictionary learning algorithms have been able to efficiently reduce
clouds and accurately reconstruct contaminated surficial information underlying large-scale clouds
and shadows [29]. A new patch matching multi-temporal group sparse representation (PM-MTGSR)
method has also been proposed for the reconstruction of the optical remote sensing missing data [26].
They suggested that the method is suitable for thick cloud cover or cases of sensor failure. In the
PM-MTGSR method, the required auxiliary images are normalized to reduce their difference from
target image and both auxiliary and target images are reordered to two dimensions and separated into
a sequence of partially overlapping patches. Li et al. [30] investigated the reconstruction of RS images
in the framework of sparse representation and established that sparse representation methods perform
better than representative methods for reconstructing RS images.

A major issue regarding cloud pixel recovery is the resolution mismatch between the input
predictors and predicting target. The coarse resolution data normally have high temporal frequency
thus temporal information can be important for information reconstruction, although temporal
information is rare in the 30 m resolution data. The methods for reconstruction of 30 m resolution
data can be divided into spatial based, temporal based and auxiliary sensor based depending on the
information utilized.

2.2. Data Recovery Using Machine Learning Methods

Machine learning has been applied to recover numerous types of data in various fields of study
and has been proven to produce reasonable relationships from small datasets while remaining
relatively robust in the presence of noisy or missing input [31]. This is mainly the result of their
capability to capture complex, nonlinear and dynamic relationships in function generalization and
regression as well as classification of data. Specifically, evolutionary algorithms, including genetic
programming, feed forward back propagation neural networks, support vector machines, and deep
learning algorithms [12,31,32] are effective at recognizing subtle patterns and thus have been employed
to characterize the complex relationships between the cloudy and cloud-free pixels in the historical
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time series over spatial and spectral domains [15]. However, clustered missing data such as seasonal
storm clouds over multiyear time scales make the compilation of viable training and test data difficult.
To combat this, ancillary predictor variables can aid in developing models to capture the variability
of the data. Choosing and developing these ancillary variables for use in change detection analyses
requires that they have compatible spatial and temporal scales. Therefore, most conventional methods
have suffered from lower learning capacity which hampered their applicability in broader contexts.

Decision tree based methods such as Random Forests (RF) [33] are recognized for their ability
to recover missing values as well as accommodate high dimensional data and complex relations
among variables. For example, RF has been used to improve the prediction of missing values using
laboratory generated medical data [16] and also to classify salt marsh vegetation [34]. In general, RF is
a decision tree based method for classification and regression. It is an ensemble of multiple decision
trees, or a set of hierarchically ordered conditions that produce individual predictions (i.e., class or
regression value) which are then aggregated into a single prediction by majority vote (classification)
or averaging (regression). The conditions are sequentially applied to a randomly selected subset of
the data from a root (parent) node to a terminal (or child) node to make repeated predictions of the
phenomenon represented by training data [33]. The child nodes can be thought of, metaphorically, as
the leaf of a tree. The trees used in developing the RF algorithm are referred to as Classification and
Regression Trees (CARTs). The prediction of missing data values is generally achieved through a model
developed by the algorithm and a set of training data. The model contains a number of CARTs set by
the model developer. Training and testing (and sometimes validation) datasets are extracted from the
total data corpus to train the model and then test (and validate) the model’s prediction capabilities.
The predictions for a RF regression model are trained by finding the mean of all the predictions of each
CART that best minimize the error function. Each decision tree in a RF utilizes a randomly chosen
subset of the training data, with replacement, so that each tree in the ensemble samples from the entire
training dataset [35]. The prediction output of the RF is the average prediction from all regression
trees in the forest or ensemble, or the classification receiving the highest number of “votes”. Recursive
splitting and multiple classifications or regressions are carried out to run the analysis of the decision
trees [36].

2.3. Hydrologic Parameters and Their Relationship with NDVI

Barbosa and Lakshmi Kumar [37] showed the links between NDVI and rainfall in north eastern
Brazil. They explored vegetative drought in the region and found rainfall (or lack thereof) as the
dominant causative factor in the event. Fu and Burgher [38] found that the maximum temperature
primarily splits NDVI values, followed by previous rainfall and then inter-flood dry period and
resulting groundwater levels and suggested that warmer months required more rain compared to
cooler months to attain similar mean NDVI values in areas of high NDVI such as riparian zones,
likely due to higher local evaporation. Inter-flood dry periods were also found to be important for
maintenance of NDVI levels, especially when rainfall is limited. Another contributing factor in NDVI
dynamics is the groundwater level. Shallower groundwater levels tend to enhance NDVI and thereby
vegetation greenness primarily due to the wetter environment [38]. Wang et al. [39] examined spatial
responses of NDVI to precipitation and temperature during a 9-year period (1989–1997). Among the
considered climatic factors, precipitation and temperature strongly influenced both temporal and
spatial patterns of NDVI. Hao et al. [40] explored the linkage of NDVI to temperature and precipitation
in northern china. The NDVI response for grassland and forest to three climatic indices (i.e., yearly
precipitation and highest and lowest temperature) was analyzed showing that the yearly precipitation
and highest temperature were correlated with NDVI. To summarize the work done to date and
illustrate the novelty of the proposed method, Table 1 shows previous missing data prediction methods
along with their advantages and disadvantages.

A careful investigation of the literature showed that the most popular methods to recover missing
data involve building relationships in time-space-spectrum domain between cloud and cloud-free
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pixels, which are useful as a historic memory of prevailing conditions. The addition of ancillary
hydrologic data such as rainfall or water level, known to influence the vegetation characteristics,
can enhance the predictive performance of models capable of synthesizing disparate data sources.
The investigation regarding the complex methods and links between NDVI and other climatic
parameters guides the selection of predictor variables and also methods. Powerful tools, machine
learning for example, are needed to characterize these complex relationships accurately and efficiently.
To that end, the current study developed an OCPR method based on the Random Forest algorithm
and assessed its performance for NDVI recovery beneath cloud obscured or otherwise faulty pixels.
The OCPR method is applied to remotely sensed Landsat MVC images and compared to a linear
regression model. A comparison to a simple spatial mean method is also performed to justify the
complexity of the RF model.

Table 1. Description of existing methods to recover missing values from geospatial observations.

Method Advantages Disadvantages

The Best Index Slope
Extraction (BISE) [20,41] Effective noise removal.

Dependence on threshold value and predefined time
period; resulting profiles insensitive to timing of
NDVI change.

Fourier based fitting [22] Retain amplitude of local maxima and minima in
time series.

Only determines overall curve shape, rather than
identifying particular cycles; requires to rerunning
over the entire time series every time new data
are added.

Savitzy-golay (S-G) [5] Preserves shape, timing and amplitude of time
series for a broad range of phonologies.

Running mean and median filters alter the timing of
local maxima and minima, even when weighted.

Asymmetric function
fitting [41] Preserves aesthetic value and geometric accuracy. Successive relaxation of parameters depending on fit

requires trial and error.

Nonlinear filter,
ANN [42]

Computationally efficient; detects complex
nonlinear relationships; multiple training
algorithms including back propagation (BP)
are supported.

“Black box” nature; tendency to over fit.

Multi-temporal
regression Efficient; applicable to small data sets. Sensitive to outliers and can produce doubtful

estimates for prediction.

Extreme learning
machine [17]

Less training time compared to BP and
SVM/SVR; outperforms BP in many applications. Can over fit and get trapped in local minima.

Random Forest No expectation of linear features; handles a wide
range of training set sizes.

Tendency to over fit for regression when using
limited, noisy data.

3. Methods and Material

The objective of this study is to recover NDVI values from beneath cloudy and faulty pixels within
Landsat MVC imagery. The method is based on three assumptions: (1) NDVI data are a proxy for
vegetation vigor, therefore a monthly NDVI time series will follow the annual cycle of growth and
decline; (2) The “cfmask” product provided with Landsat MVC imagery accurately identifies clouds
and cloud shadows [43]; (3) coastal NDVI dynamics are related to local hydrologic variables rainfall,
temperature, and water (tide) level [18,19]. In line with these three assumptions, the OCPR method
was developed. In the following sections, a brief description of the study area is provided, followed
by the OCPR method development and assessment. Figure 1 presents a flowchart that summarizes
the methodology.

3.1. Study Area

The study area occupies a section of Landsat TM scene L4-5 TM, Path 19/Row 39, located in
Apalachicola Bay, Florida (see Figure 2). Apalachicola Bay is renowned for the largest oyster fishery in
Florida [44] and is home to a rich variety of wetland plant, animal and microbial species. The lower
Apalachicola river region as a whole is a nearly uninterrupted series of natural salt marshes, swamps,
upland vegetation, and flood plains. Much of the basin vegetation has the appearance of a mature
forest because of rapid regrowth. Although some municipalities (Apalachicola and Eastpoint) are
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situated near or within the riverine and tidal flood plains, they are not major urban centers. Therefore,
there is very little urbanization in the basin. The study area includes parts of Gulf and Franklin
counties. Wetland areas, including forested and non-forested wetlands, make up about 42% of the
study area excluding open water and urban areas. The non-wetland and non-forested areas are mainly
covered by agriculture, buildings and invasive vegetation.
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Figure 2. Study Area in Apalachicola, Florida.

3.2. Optical Cloud Pixel Recovery (OCPR)

The proposed method computes an NDVI value for cloudy or faulty pixels through an empirically
trained RF model. The base dataset is composed of the relevant spatially distributed hydrologic time
series data associated with the available body of Landsat MVC NDVI images. The predictor variables
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include mean monthly temperature, cumulative monthly precipitation, mean monthly water (tide)
level, calendar month encoded as a sequential number from 1 to 12, northing and easting (coordinates
in meters). The objective of the study is to train and test the model using historic data and validate its
performance in terms of its ability to accurately recover hypothetical (i.e., synthetic, known NDVI)
cloudy pixels manually inserted into the validation images.

Random Forest

The RF algorithm is initiated by dividing the target variable or parent node into binary parts,
and each generation of child nodes are purer than their parent node. Throughout this procedure, the
decision tree progresses through all candidate splits to determine the optimal split that maximizes
the purity of the resulting tree. Residual sum of squares (RSS), shown in Equation (1) is used as the
splitting criteria.

RSS = ∑
le f t

(yi − yL)
2 + ∑

right
(yi − yR)

2 (1)

where, ∑
le f t

and ∑
right

refer to the left and right nodes, determined by the binary split.

While classic regression trees are typically “pruned” (reducing the number of leaves or child
nodes) according to a specific condition, decision trees in RF grow to maximum purity, constrained
in most computer implementations by a maximum depth parameter. Each tree may share similar or
different conditions as set by the model developer. Each tree sees only part of the training data sets and
thus captures only part of the information it contains. All of the trees look quite similar to each other
and therefore the predictions from the trees can be highly correlated. The details of RF can be found
in [45,46]. The RF algorithm uses the Gini impurity index [47] to calculate the information purity of
child nodes compared to that of their parent node. From the parent node, the data splitting process in
each internal node of a condition of the tree is repeated until a pre-specified stop condition is reached.
Each of the child nodes has a simple regression model attached to it, which applies to that node only.

It has been observed in several studies that the RF algorithm offers characteristics that make it
appealing for different applications. These include built-in feature selection capabilities, relatively
high levels of accuracy in predictions, and a means for evaluating the influence of each feature on
the algorithm [48]. The theoretical background of RF regression is discussed in detail in [33,49,50].
The essential attribute of RF is that it trains each tree individually, using a bootstrap sample of the data.
This randomness helps to make the model more robust than a single decision tree and less likely to over
fit to the training data. The ensemble of decision trees aggregates predictions of continuous variables
by averaging the predictions from all trees. Random vectors are often generated in order to grow
each tree in this ensemble of decision trees [33]. A popular example of this is bootstrap aggregation,
commonly referred to as bagging, where a random subset is selected with replacement to train the
individual trees with the results of the ensemble aggregated by averaging or voting [35,50].

The RF algorithm also provides an additional level of randomness to the bagging process. While
nodes of standard decision trees are split by making use of the best possible split from the full list of
predictor variables, RF uses a randomly selected subset of these variables; this drastically speeds up
the tree growing process. However, the RF procedure is such that every node utilizes the best possible
split from the randomly selected subset of predictors at the node to perform the splitting procedure.
The best splitter might either be the best overall, or just a fairly good splitter, or may not be of any help
at all. If the splitter is not very helpful, the outcome from the split is two nodes that are essentially the
same. One of the major benefits of the RF algorithm is that it is very easy to implement because there
are only two important control variables: predictor sub-setting control for splitting at the nodes and
the number of trees in the forest. Once sufficient values for these two parameters are determined, the
algorithm is not particularly sensitive to them [51]. Figure 3a shows a synopsis of an ensemble with
three trees while Figure 3b shows detail of one tree from the ensemble.
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Critical parameters used to constrain a RF model are number of trees in the forest and maximum
depth of the trees. Numerous opinions have been put forth for selecting the optimal value for each of
the parameters. Previous research indicates that sometimes, a larger number of trees in a forest only
increase its computational cost without any significant gain in performance. It is also possible that there
is a threshold beyond which there is no significant gain, unless a huge computational environment
is available. As the number of trees grows, it does not always mean the performance of the forest is
significantly better than forests with fewer trees [52].
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M = month; R = rainfall, MT = maximum temperature; WL = water level; X1–X16 = splitting values.

3.3. Application of OCPR in Apalachicola Bay

The schematic flowchart of the OCPR methodology is represented in Figure 1. The OCPR method
includes five crucial steps: (1) data acquisition and input preparation (target: NDVI and predictors:
temperature, precipitation, water level, month); (2) cloud and faulty value identification from NDVI;
(3) selection of input for training OCPR model; (4) training, testing and building prediction model ;
and (5) validation.

3.3.1. Data Acquisition and Input Preparation

Target Variable: NDVI

Surface reflectance NDVI data were acquired from the USGS Earth Resources Observation and
Science (EROS) Center Science Processing Architecture (ESPA) archive for the years 1984 through 2015.
Since OCPR is based on the historical time series of NDVI, a sufficient body of data is required to
characterize the relationship between NDVI and its predictor variables.
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A threshold of 30% or less cloud cover (i.e., 70% of the pixels containing valid data) was used
to screen the candidate Landsat MVC images over the above-referenced time period for inclusion,
resulting in 252 usable images out of 384 (see Figure 4). Since NDVI is released as a 16-day composite,
two images per month are often available. Considering that the month is a predictor variable in the
feature vector, when two images were available for a given month the one with less cloud coverage
was selected. Overall, 93% of the images were from Landsat-5 as it was the only data source from 1984
to 1998 and continued to acquire data until 2013. Landsat-7 data were avoided as it was contaminated
by stripes as a result of the scan line corrector (SLC) in the Landsat Enhanced Thematic Mapper Plus
(ETM+) sensor that failed permanently in 2003 [53]. The remainder of the data came from Landsat-8.

In performing the NDVI OCPR, data availability was considered at the pixel level, as per-pixel
cloud cover and the swath side overlap between two adjacent paths were evaluated. Ancillary cloud
mask, cloud shadow mask, adjacent cloud mask, snow mask, and water mask were available from the
USGS Earth Explorer for the study area and were used for data quality assessment (QA). The QA layer,
namely “cfmask”, identified water, cloud, cloud shadow, and snow [43] and was included in the ESPA
NDVI product used in this study.
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After NDVI image acquisition, all images were registered and clipped to the spatial extent of
the project. Spatial registration, projection and resampling using WGS1984 UTM Zone 16N was
implemented to ensure that each 30 m pixel location was consistent throughout the time series.
These two processes (i.e., spatial registration and spatial clipping) were implemented using ArcGIS.
NDVI was calculated using NIR and RED spectral bands of a sensor system as shown in Equation (2):

NDVI =
NIR − RED
NIR + RED

(2)

where NIR and RED are spectral reflectance measurements acquired in the near-infrared and visible
red regions, respectively.

Predictor Variables: Rainfall, Temperature, Water Level and Month

The data for the predictor variables rainfall and temperature were collected for similar 30 m
spatio-temporal domain from the PRISM climate group based at Oregon State University. The PRISM
Climate Group collects climate observations from a large number of monitoring networks and
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builds spatial climate datasets to analyze short and long-term climate patterns. Time series data
for precipitation and temperature were available at a spatial resolution of 4 km and the temporal
coverage starts from 1981 to the present. This dataset was available online free of charge. These data
were modeled using climatologically-aided interpolation (CAI), which uses the long-term average
patterns as first-guess of the spatial pattern of climatic conditions for a given month or day. CAI is
robust against wide variations in station data density, which is necessary when modeling over long time
spans. The data used herein were available based on either monthly or daily interpolation. Monthly
average values were estimated from daily values by averaging. These data used all station networks
and data sources collected by the PRISM Climate group. After the precipitation and temperature data
collection for the time domain was complete, they were registered, projected and clipped to match
the the NDVI data. Spatial resolution for each precipitation (mm) and temperature (Kelvin) pixel was
resampled from 4 km to 30 m. Downscaling to higher resolution reallocated the existing information to
correspond to the NDVI data size and resolution. The processed NDVI, temperature (◦C) and rainfall
(mm) images are shown in Figure 5.
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Next, water level data over the same temporal domain were collected. Water level data were
available from the U.S. National Oceanographic and Atmospheric Administration National Ocean
Service (NOAA-NOS) at coastal gauge stations across the United States. One gauge station was located
in the study area (8728690 Apalachicola, FL). Monthly water level data were collected in meters relative
to the NAVD88 orthometric datum. The tide gauge data were added to the predictor variable vector
and used as a proxy for prevailing water levels. If a storm surge event was experienced, the value
would be higher and according to our current hypothesis and previous work, would lower the NDVI
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of impacted areas, especially freshwater wetlands [54]. Examples of input data records used to train
and test the algorithm are shown in Table 2.

Table 2. Sample input data for training OCPR model.

NDVI Northing (m) Easting (m) Month Rainfall (mm) Temperature (◦C) Water Level (m)

0.38 720,735 3,307,665 1 252.692 18.425 0.170
0.46 720,765 3,307,665 1 298.636 21.775 0.170
0.18 720,795 3,307,665 3 252.692 18.425 0.180
0.23 720,825 3,307,665 4 321.608 23.450 0.210
0.45 720,855 3,307,665 4 275.664 20.100 0.210
0.13 720,885 3,307,665 6 344.580 25.125 0.260
0.09 720,915 3,307,665 7 275.664 20.100 0.240
0.45 720,945 3,307,665 8 367.552 26.800 0.200
0.58 720,975 3,307,665 4 390.524 28.475 0.210

3.3.2. Cloud and Faulty Value Detection from NDVI

In order to ensure that the labeled data were clean for training/testing of the RF and linear
regression, pixels were classified as cloudy or cloud-free. The “cfmask” layers were processed to
make a binary map that reclassifies all erroneous pixels as “0.0” and the valid pixels as “1.0”. A raster
multiplication was done using the binary reclassified map and the NDVI images. This function
removes the faulty values from the NDVI time series and replaces them with a void pixel. Since the
data were collected from different sources, each dataset had their own label for anomalous data.
For instance, NDVI time series gives “NaN” to a void pixel. After this preprocessing step, images were
generated for each month of each year and used to calculate the percentage of clear pixels (POC) over
the area of interest as shown below.

POCj = 100 × N j
c

Nj
(3)

where N j
c is the total number of cloudy pixels and Nj is the total number of pixels (i.e., both cloudy

and cloud-free pixels) in the image j.

3.3.3. Selection of Input for Training OCPR Model

It is important to select reliable inputs for the construction/training of the OCPR model. The final
prediction performance is highly dependent on the trained model. Candidate training pixels are
comprised of valid (cloud-free) target data along with its corresponding (by month and position)
predictor data. Here, NDVI are the target data and temperature, rainfall, water level, month, northing,
and easting are the predictor data. In addition, NDVI, temperature, rainfall, northing, and easting
are gridded raster products and are therefore spatially variable, while month and water level were
represented by single values for each image.

3.3.4. Building the Prediction Model

The random forest algorithm used in the current study was implemented in Python. The scikit-learn
(sklearn) [55] module was used to train and run the RF model and the GDAL [56] module was used to
extract the spatial information associated with the target and predictor variables from geo-referenced
images. 70% of the data corpus was randomly selected, without replacement, as the training data with
the remaining 30% held out for testing. Figure 3a,b depict a schematic of splitting conditions. For the
maximum purity of the RF model, the records containing missing predictors (NaNs) were removed.
Overall, the construction of the data corpus from the associated imagery took approximately 5 min on
average for each date (approximately 342 km2) on a non-specialized laptop computer.
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3.3.5. Validation and Performance Metrics

The prediction accuracy of the OCPR model was evaluated against a linear regression (LR) model.
For quantitative validation of the model, hypothetical clouds were created where the underlying image
has viable NDVI values. This provides labeled data for validation purposes. The images selected
for the hypothetical cloud validation were deliberately excluded from the training and testing data,
but were still located in the study area. A performance matrix was developed for the hypothetical
cloud pixels using RF-based OCPR model and LR based model. In addition, a demonstration of the
method on images with low, medium and heavy natural cloud cover is presented. With a section
of the real cloud validation images located outside the training area, we visually demonstrated the
impact of position as a prediction feature. The real cloud validation images visually demonstrated the
application potential of the new algorithm.

Root-Mean-Square Error (RMSE)

The root-mean-square error is defined as:

RMSE =

√
(

1
m

m

∑
i=1

[
T̂ (St, tt)− T (St, tt)

]2
) (4)

where T̂ (St, tt)− T (St, tt) represents the difference between the predicted and observed NDVI at
space–time points (St, tt) and m is the number of the time series of observations for each location.

Coefficient of Determination (R2)

The coefficient of determination (R2), an overall measure of performance, is defined as:

R2 =
Cov

(
T̂ ( Si, ti), T ( Si, ti)

)
S ĵSj

(5)

where Sj and S ĵ indicate the standard deviations of reconstructed and observed NDVI values,

respectively. R2 measures the linear association between prediction and observation. However,
it only performs well when data are normally distributed and is sensitive to large values and outliers.

4. Results

4.1. Suitability and Sensitivity Analysis of RF Model

The best and most stable result was found using three hydrological predictors (precipitation,
temperature and water level) along with position (northing and easting) and month in the RF model.
Table 3 shows that success-rate of RF model according to number of trees and maximum depth of
trees, performed as a sensitivity analysis on a small subset of the data. Ten trees with a maximum
depth of 30 was the optimal combination in this case as shown by the minimum RMSE and maximum
R2. If we increased the number of trees and maximum depth beyond those values, we did not gain
much improvement and the computation time significantly increased. Nielson et al. [57] noted that in
“big data” settings, it is undesirable to grow the individual tree components of a RF ensemble to their
maximal depth. More recently, Kertész argues that there is an optimal tree size beyond which the RF
tends to overfit after growing too big without additional gain in the accuracy [58]. Therefore, all the
hydrologic predictor variables were kept in the RF-based OCPR model with the selected number and
maximum depth of trees.
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Table 3. Sensitivity analysis of RF model using tree number and depth of tree.

Tree Number Tree Depth RMSE R2

10 12 0.0802 0.6987
12 12 0.0802 0.6989
22 12 0.0802 0.6985
35 12 0.0800 0.7001
60 12 0.0798 0.7023

120 12 0.0798 0.7017
10 30 0.0461 0.8949
12 30 0.0475 0.8944
22 30 0.0468 0.7017
35 30 0.0470 0.8951
60 30 0.0473 0.8946

120 30 0.0473 0.7018
10 60 0.0473 0.8949
12 60 0.0472 0.8955
22 60 0.0473 0.7025
35 60 0.0474 0.8967
60 60 0.0474 0.8973

120 60 0.0474 0.7040
500 12 0.0789 0.7017
500 30 0.0670 0.7018
500 60 0.0474 0.7040
500 60 0.0469 0.7052

4.2. Prediction of Missing Values Using OCPR

Figure 6 shows scatter plots of the predicted versus observed NDVI for the pixels in testing
dataset for the OCPR model (Figure 6 (left)) and for the LR model (Figure 6 (right)). 30% of the total
data corpus was selected, without replacement, to form the testing dataset. These results suggest
that the OCPR model using hydrologic parameters outperforms the LR model in terms of prediction
accuracy. For example, OCPR has an R2 value of 0.9880 and a clearly positive sloped linear trend
while the LR model has a significantly weaker R2 value (0.2596) and much more scatter around its
linear trend. The RMSE values shown in Table 4 also suggest that OCPR was able to reconstruct the
cloudy pixels quite closely in terms of the absolute magnitude of NDVI. Based on this evidence, OCPR
outperforms LR in terms of prediction accuracy. Additionally, OCPR model accuracy was compared
with some other known empirical methods, such as S-G Golay, and Artificial Neural Network (ANN).
For this, we randomly chose a few points from our NDVI data. Then we applied the OCPR method
using ANN, RF, LR and S-G Golay. While the coefficient of determination (R2) were higher for both
RF and ANN which were 0.4844 and 0.3244 respectively, the R2 were low for both LR and S-G Golay
which were 0.0478 and 0.013, respectively.

The data shown in Figure 6 is also color coded by month to investigate the possibility of the model
performing well as a whole while performing poorly in each individual month. The colors are well
distributed throughout the scatter plot indicating that the model is performing equally well in each
month in addition to the data aggregated over the entire time span.

Table 4. Error metrics comparison between OCPR and Linear Regression.

Method RMSE R2

OCPR 0.0162 0.9880
LR 0.1257 0.2596

The performance of OCPR was also validated by comparing the predicted and observed NDVI
reflectance data for synthetic or hypothetical clouds manually applied to selected images that were
held out of the training and test data. The result is shown in Figure 7. An area of naturally cloud-free
pixels with heterogeneous nature was selected for demonstration, delineated as a black line square
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in Figure 7. These pixels were labeled as cloudy pixels. Then, the OCPR method was utilized to
reconstruct the values of these pixels.
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Figure 6. Scatter plots of the observed and predicted NDVI from the testing dataset using (left) OCPR
and (right) Linear Regression.

Image dates were selected so that the first date was before the study time period, the second
date was near the middle and the final date was after. The three months were selected in three
different times of year to capture seasonal variations, however the seasonal variations in this region
are difficult to distinguish visually. The images are from October 1984, August 2002 and April 2015.
These figures show that the OCPR model is capable of recovering missing NDVI values caused by
cloud contamination with visually plausible results. The predictions did not produce any extremely
low or high values of NDVI in the hypothetically clouded pixels.
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Figure 7. Application of OCPR model to reconstruct NDVI under hypothetical clouds from images
associated with October 1984, August 2002 and April 2015. The left column represents the original
images and the right column represents the information recovered by OCPR. All images are visually
symbolized using the same color scale.
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5. Discussion

In this paper, a method for recovering NDVI values from beneath cloudy or otherwise faulty
pixels is presented. This method, termed OCPR, was developed using a RF and is intended to address
the issue of missing data in optical (visible and infrared) remote sensing images. This method takes
advantage of the inherent capabilities and efficiencies of RF to characterize the relationship between
NDVI and prevailing hydrologic parameters and spatial locations over the time-space spectrum.
Inclusion of location (encoded as the northing and easting coordinates of the pixels) into the feature
vector restricts model to reconstruct a value close to that of the neighboring pixels as well as a plausible
value for that pixel in historical terms. In fact, as shown in Table 5, the position (Northing, Easting) of
the pixel is the most important feature in the model. The other features contribute almost equally to
the capture of the remaining variability, collectively accounting for 15.6% of the feature importance.

Table 5. Feature importance from the trained random forest model.

Feature Importance

Month 0.034
Easting (m) 0.352

Northing (m) 0.492
Rainfall (mm) 0.039

Temperature (◦C) 0.045
Water Level (m) 0.038

The performance of OCPR was further tested by applying the method to selected images with
varying levels of natural cloud cover that were held out of the training and test data. In addition,
a section of the image, delineated by gray lines in Figure 8, lies outside of the training data area.
This was done to visually demonstrate the effect of spatial location on prediction accuracy.

As shown in Figure 8, OCPR is able to reconstruct the NDVI values beneath cloud pixels in a
visually plausible manner. However, in all images, the section to the southwest of the gray lines
appears smeared and horizontally oriented. As stated previously, this section of the image was not
in the area used to train the random forest model at the core of OCPR. Therefore, the dominant
importance of spatial location is evident. In addition, areas to the immediate north and west of the
gray lines also show some visible distortion and unnatural uniformity. This indicates the presence of
edge or boundary effects inherent in OCPR. Both of these issues point the user towards ensuring that
the training data not only completely covers the desired area for OCPR application, but that the outer
boundary of the training area lies well outside the area of interest.

The dominance of spatial position is an expected result due to the establishment of vegetative
communities that persist over time. The hydrologic features serve to explain the relatively small
changes in vegetation health (measured by NDVI) due to climatic factors. Two examples of this would
be an increase in vegetation health due to above-average rainfall during the month, or perhaps a slight
decrease in vigor due to a storm tide event that caused a higher average water level during the month
(i.e., an increase in salinity causes vegetative stress for certain species). Future work will focus on
testing the relative accuracy of a position only model, as well as testing the approach in different
settings (upland vegetative communities, for example) and using different sensors.

Lastly, in terms of model training time, LR is significantly faster than RF. However, RF shows
much better prediction accuracy than LR in this real world application based on the patches or spatial
patterns of NDVI reflectance values. Also, the scale of the analysis presented herein correspond to a
two county area in the United States. Regional or even global applications of OCPR will benefit from
detailed scaling analysis and concern for efficient large scale computing efforts, including further code
optimization and parallelization.
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6. Conclusions

This study presents a technique for recovering data from beneath cloud contaminated pixels
in optical remote sensing imagery. Specifically, the normalized difference vegetation index (NDVI)
derived from Landsat imagery was recovered using a random forest based method named Optical
Cloud Pixel Recovery (OCPR). Using spatial location (northing and easting), month (to capture
seasonality), and hydrologic information known to influence coastal vegetation growth and vigor
(rainfall, temperature and tide level) as predictor variables, OCPR was shown to be capable of
reconstructing missing information in cloud contaminated regions with visually plausible and
quantitatively accurate results, even under severe cloud cover situations. Spatial location (northing
and easting) were the most important features in the model, with the remaining features collectively
making up 15.6% of the feature importance. Over the test data set, OCPR recovered NDVI values with
an RMSE of 0.016 (NDVI values range from 0 to 1). Also, the R2 for the observed versus predicted
NDVI values was 0.988 (~1) indicating good reconstruction close to the original data.

The RF has many advantages in fast and accurate learning capability when characterizing complex
time-space-spectrum relationships in real world studies. The proposed random forest based OCPR
method is capable of recovering missing information with high efficacy and we predict that it can
eventually be scaled for operational use.

It should be noted that the OCPR method was limited by the availability of the historical time series
to characterize the complex time–spatial–spectral relationships between the cloudy and cloud-free
pixels over the multiple parameters in a specific region. Also, the temperature, precipitation and water
level predictor variables are currently not available at the spatial resolution of NDVI. This is most
evident in the water level data as these are recorded in very limited locations such as NOAA-NOS tide
gages. As with any machine learning model, including OCPR, its performance is heavily dependent
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on its training data. Improvements can be achieved by further optimizing the training algorithms
and architectures of the random forest with the new ideas for treating missing values in the predictor
variable data sets. Focusing on screening and selecting suitable inputs for the OCPR models is critical
to the prediction accuracy. Also, the authors strongly recommend that the outer boundary of area
selected for training lie well outside the area of interest in order to avoid edge or boundary effects,
considering the importance of spatial location on the predicted values. In spite of these limitations, the
idea of spatial information recovery via machine learning provides a promising and efficient approach
to mitigate and eliminate cloud contaminations with sufficient accuracy over the long term remote
sensing analyses.
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