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Abstract: Segmentation techniques play an important role in understanding high-resolution
polarimetric synthetic aperture radar (PolSAR) images. PolSAR image segmentation is widely
used as a preprocessing step for subsequent classification, scene interpretation and extraction of
surface parameters. However, speckle noise and rich spatial features of heterogeneous regions
lead to blurred boundaries of high-resolution PolSAR image segmentation. A novel segmentation
algorithm is proposed in this study in order to address the problem and to obtain accurate and
precise segmentation results. This method integrates statistical features into a fractal net evolution
algorithm (FNEA) framework, and incorporates polarimetric features into a simple linear iterative
clustering (SLIC) superpixel generation algorithm. First, spectral heterogeneity in the traditional
FNEA is substituted by the G0 distribution statistical heterogeneity in order to combine the shape
and statistical features of PolSAR data. The statistical heterogeneity between two adjacent image
objects is measured using a log likelihood function. Second, a modified SLIC algorithm is utilized to
generate compact superpixels as the initial samples for the G0 statistical model, which substitutes the
polarimetric distance of the Pauli RGB composition for the CIELAB color distance. The segmentation
results were obtained by weighting the G0 statistical feature and the shape features, based on
the FNEA framework. The validity and applicability of the proposed method was verified with
extensive experiments on simulated data and three real-world high-resolution PolSAR images from
airborne multi-look ESAR, spaceborne single-look RADARSAT-2, and multi-look TerraSAR-X data
sets. The experimental results indicate that the proposed method obtains more accurate and precise
segmentation results than the other methods for high-resolution PolSAR images.

Keywords: polarimetric synthetic aperture radar (PolSAR); segmentation; high-resolution;
fractal net evolution approach (FNEA); G0 distribution; simple linear iterative clustering (SLIC);
multi-feature; superpixels

1. Introduction

1.1. Background

Synthetic aperture radar (SAR) has been widely accepted as an indispensable method for Earth
monitoring due to its all-day/all-weather capacity and penetration capability [1–4]. Fully polarimetric
SAR (PolSAR) emits or receives two orthogonal polarized radar waves, and allows the discrimination of
different scattering mechanisms. PolSAR image segmentation is able to obtain distinct and self-similar
pixel groups that depict homogeneous regions, with virtually no speckle noise [5]. Since accurate
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segmentation is important for subsequent classification and extraction of surface parameters [6,7],
PolSAR image segmentation has been increasingly used for land use and land cover classification [8],
land development detection [9], and oil seep detection [10].

With a new generation of advanced SAR sensors, higher-resolution PolSAR images of the Earth’s
surface have been acquired. In addition to being affected by speckle, the high-resolution PolSAR
images show the following characteristics:

(1) Spatial characteristics: The decrease in the resolution cell provides richer spatial details of ground
objects [11], such as significant geometric shape features and texture information.

(2) Statistical characteristics: The scattering vectors from the homogeneous regions of medium- or
low-resolution PolSAR data can be modeled using Gaussian distributions. The corresponding
coherency matrices have a complex Wishart distribution [12]. However, in high-resolution
PolSAR data, a significantly reduced number of sub-scatterers within a resolution cell leads to a
greater heterogeneity [13], particularly in urban areas, where clusters can no longer be modeled
using a Gaussian process.

In short, high-resolution PolSAR images usually contain speckle noise, and many heterogeneous
regions, with rich spatial features. The complexity makes segmentation of high-resolution PolSAR
images a very challenging task. In this paper, research on segmentation for high-resolution PolSAR
images is reported.

1.2. Related Work

Some classic segmentation algorithms for PolSAR images have been proposed, including the Markov
random field (MRF) [14,15], statistical region merging (SRM) [5], hierarchical segmentation [16,17], and
superpixel segmentation [18–20]. Liu et al. [15] proposed a spatially adaptive segmentation method to
keep each segment at an appropriate size and shape based on multiscale wedgelet analyses and Wishart
MRF (MW-WMRF). Lang et al. [5] utilized the generalized statistical region merging (GSRM) algorithm,
based on the product model, which shows improved robustness and anti-noise performance without
any assumption on PolSAR data distributions. Alonso-González et al. [17] used binary partition trees
(BPT) to develop a novel region-based and multi-scale PolSAR data representation for speckle noise
filtering and segmentation, on the basis of the Gaussian hypothesis. Liu et al. [18] oversegmented
PolSAR images into many local and coherent regions using the normalized cuts algorithm to improve
the classification accuracy by adding inherent statistical characteristics to the contour information.
Ersahin et al. [21] segmented PolSAR data with contour information and spatial proximity, based on
spectral graph partitioning for object oriented classification. In summary, an increasing number of
methods are combining spatial features and statistical properties of PolSAR images to obtain useful
segmentation results.

Segmentation using spatial features is a common method to model a labeling process as MRF [14,15],
which includes the spatial relationships between pixels. In contrast, the fractal net evolution algorithm
(FNEA) makes good use of the geometric shape features and spectral information of targets [22].
This was successfully used in high spatial resolution, optical image segmentation [23,24]. FNEA is a
bottom-up region merging technique with a fractal iterative heuristic optimization procedure. It starts
with a single pixel and a pairwise comparison of its neighbors, with the aim of minimizing the resulting
merged heterogeneity. The heterogeneity is determined using geometric shapes and the standard
deviation of spectral properties as its basis. By replacing spectral information with the parameters of
H/α/A decomposition [25], Freeman decomposition [26], or Pauli decomposition [8,9], researchers
have introduced FNEA into PolSAR image segmentation for object-oriented classification. Benz and
Pottier [25] first used FNEA to segment filtered PolSAR images by employing shape features, H/α/A,
and the total scattered power span. Qi et al. [8] implemented FNEA segmentation on a Pauli RGB
composition image of filtered PolSAR data, and successfully applied it to land-use and land-cover
classification. However, the segmentation results of these methods were easily influenced by speckle
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noise, and the results were too fragmented to represent unbroken land parcels [8] as the statistical
characteristics of PolSAR data were not used.

Segmentation, using statistical features uses the classical complex Wishart distribution, which
has been widely used with PolSAR data [15,17,19–21,27]. As the Gaussian or Wishart model does not
agree well with heterogeneous scenes of high-resolution images, heterogeneity is usually modeled as
the product of the square root of a textured random variable and an independent, zero-mean, complex
circular Gaussian speckle random vector [28]. If the random texture variable is Gamma, inverse
Gamma, or Fisher distributed, the target coherency matrices follow multivariate K distribution [29],
G0 distribution [30], or KummerU distribution [31], respectively. Beaulieu and Touzi [16] presented a
hierarchical segmentation method using the K-distribution model, and verified its effectiveness for
textured forested areas. Bombrun et al. [32] proposed a hierarchical maximum likelihood segmentation
for high-resolution PolSAR images using KummerU distribution heterogeneous clutter models, which
provided a better performance compared to the classical Gaussian criterion. However, it is essential
to robustly estimate the parameters of these multiplicative models with enough samples. Generally,
the segmentation results have obvious dentate boundaries, as the initial samples are usually collected
from image blocks within square windows [32]. Moreover, the accuracy of parameter estimation
decreases due to the differences between the square blocks and the actual boundaries of targets in
high-resolution PolSAR data.

1.3. The Proposed Approach

Superpixel algorithms group pixels into meaningful atomic regions, which are roughly
homogeneous in size and shape, and can be used to replace the rigid structure of the pixel grid or the
square block. Since the utilization of superpixels helps to overcome the influence of speckle noise and to
preserve statistical characteristics [19,33,34], it has gradually become an important preprocessing step
for segmentation or classification. Recently, Achanta et al. proposed a new superpixel algorithm, simple
linear iterative clustering (SLIC), which adapted a k-means clustering approach to efficiently generate
superpixels [35]. Considering the simplicity, fast processing and excellent boundary adherence of SLIC,
Qin et al. [19] introduced the superpixel algorithm into PolSAR image segmentation by combining it
with the Wishart hypothesis test distance and the spatial distance.

We propose a novel segmentation algorithm for high-resolution PolSAR data by combining
spatial, statistical, and polarimetric features; this algorithm integrates statistical features into a FNEA
framework, and the polarimetric features with SLIC, in order to generate pre-segments. Given that the
G0 distribution has been shown to be flexible, computationally inexpensive, and capable of modeling
varying degrees of texture [30,36], we substitute the G0 distribution of statistical heterogeneity for
the spectral heterogeneity in the traditional FNEA. Furthermore, we also utilize a modified SLIC
algorithm to generate compact, approximately homogeneous superpixels as initial samples for the
statistical model, which utilizes the polarimetric distance of Pauli RGB composition instead of the
CIELAB color distance.

The remainder of this paper is organized as follows; Section 2 describes the proposed segmentation
method for high-resolution PolSAR data. The employed PolSAR images and the experimental and
evaluation results are reported in Section 3. The discussion of the results is presented in Section 4.
Conclusions are given in Section 5.

2. Methodology

The proposed approach is based on the FNEA framework, and can be divided into three main
parts: (1) a statistical heterogeneity measure using the G0 distribution model for high-resolution
PolSAR data; (2) initial sample generation for the statistical model using the SLIC algorithm with
polarimetric features; and (3) segmentation with the G0 statistical and shape features, based on the
FNEA framework. The details of these are explained in subsequent subsections.
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2.1. FNEA

FNEA merges two adjacent objects with a fractal iterative heuristic optimization procedure,
which starts with single-pixel objects, and satisfies the condition of minimizing the resulting merged
heterogeneity [22,23].

The heterogeneity between two adjacent image objects is defined by integrating the change of
spectral heterogeneity ∆hspc with the change of shape heterogeneity ∆hshp in a virtual merge [22],
as follows:

∆h = wshp∆hshp +
(

1− wshp

)
∆hspc (1)

where wshp is the weight of the shape feature, and wshpε[0, 1]. Adjacent objects i and j are merged
when the smallest growth in heterogeneity occurs.

For multispectral remote sensing images, ∆hspc can be described by adding weight wc to image
channels c [22],

∆hspc = ∑
c

wc[(ni + nj)δ
i
⋃

j
c − (niδ

i
c + njδ

j
c)] (2)

where n denotes the objects size, which is the number of pixels in an image object; and δc denotes
the spectral heterogeneity of the image object, which is the standard deviation within the objects of
channel c.

The change of shape heterogeneity ∆hshp can be expressed as

∆hshp = (ni + nj)h
i
⋃

j
shp − (nihi

shp + njh
j
shp) (3)

where hshp denotes the shape heterogeneity of the image object, which is described with regard to
smoothness and compactness. It is described by

hshp = wsmth
p
b
+ (1− wsmth)

p√
n

(4)

where wsmth is the weight of smoothness, and wsmth ε [0, 1]. The smoothness heterogeneity is defined
as the ratio of factual edge length p and border length b; b is given by the bounding box of an image
object parallel to the raster while the compactness heterogeneity is defined as the ratio of factual edge
length p and the square root of n [22].

At each iteration in FNEA, an image object is merged into its adjacent image object with the
minimum heterogeneity, and when the heterogeneity is less than threshold t (i.e., scale parameter).
If all increases exceed the scale parameter, no further merging occurs and the segmentation stops. The
larger scale parameter t is, the more image objects can be merged and the larger the image objects grow.

2.2. Statistical Heterogeneity Measure by the G0 Model

PolSAR data are mainly provided in two forms: The single-look scattering matrix and the
multi-look polarimetric coherency (or covariance) matrix. Each pixel of PolSAR data can be described
by a 2 × 2 complex scattering matrix S [2]:

S =

[
SHH SHV
SVH SVV

]
(5)

where H and V represent the horizontal and vertical polarization directions, respectively.
In a reciprocal medium, SHV = SVH and S can be transformed into a three-dimensional single-look

scattering vector using the complex Pauli spin matrix basis set [2,27]:

k =
1√
2

[
SHH + SVV SHH − SVV 2SHV

]T
(6)
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where [·]T denotes the matrix transpose. In this paper, the dimension of the scattering vector is denoted
by d (d = 3 for the reciprocal case).

Usually, L-look coherency matrix T is computed to suppress speckle using the average of k of the
surrounding pixels, as follows [2,27]:

T =
1
L

L

∑
i=1

kiki
H (7)

where ki
H is the conjugate transpose of scattering vector ki, and L is the number of looks.

2.2.1. G0 Model for High-Resolution PolSAR Data

High-resolution PolSAR images are greatly affected by heterogeneity due to the significantly
reduced number of scatterers within a resolution cell [11]. The heterogeneity is usually modeled with
the multiplicative models [28].

For single-look complex PolSAR data, the multiplicative model is given by

k =
√

τx (8)

where τ is a texture random variable, and x is a d-dimensional speckle vector, which follows an
independent zero-mean multivariate complex Gaussian distribution.

Assume that τ in Equation (8) obeys the inverse Gamma distribution, in which the probability
density function (PDF) is given by

pτ(τ) =
τα−1

(−α− 1)Γ(−α)
exp
(

α + 1
α

)
, −α, τ > 0 (9)

where α is the shape parameter and Γ(·) is the standard Euler Gamma function.
In this case, the target scattering vector k follows the G0 distribution, which is characterized by

the following PDF [37]:

pk(k) =
Γ(d− α)

πd|Σ|Γ(−α)Γ(−α− 1)α

(
kHΣ−1k− α− 1

)α−d
(10)

where Σ = E[kkH ] is the covariance matrix of k, E[·] denotes the mathematical expectation, and |·|
represents the determinant, while (·)−1 denotes the inverse.

For multi-look PolSAR data, coherency matrix T is modeled as the product of random variable τ

and independent random matrix X:
T = τX (11)

where X obeys a Wishart distribution.
For an inverse gamma distributed texture, target coherency matrix T follows the G0

distribution [30], which is characterized by the PDF, as follows:

pT(T) =
LLd|T|L−dΓ(Ld− α)

Γd(L)|Σ|LΓ(−α)Γ(−α− 1)α

(
Ltr
(

Σ−1T
)
− α− 1

)α−Ld
, α < −1 (12)

where Σ = E[T], tr(·) is the trace operator and L is number of looks. Γd(L) represents the multivariate
gamma function, defined as

Γd(L) = πd(d−1)/2
d−1

∏
i=0

Γ(L− i). (13)

The G0 model is particularly suitable for high-resolution PolSAR image description, which is a
flexible model for different texture classes of SAR images [30,36].
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2.2.2. Statistical Heterogeneity Measure

Since the log likelihood function can be used to measure the similarity between two segments in a
hierarchical segmentation of PolSAR Images [16,32], it is utilized to measure the statistical heterogeneity
between two image objects. At each iteration, merging two image objects using statistical features
yields a decrease in the log likelihood function. Thus, the two adjacent image objects, i and j, should
be merged to produce the smallest decrease of the log likelihood function. The change of statistical
heterogeneity ∆hstt can be expressed as

∆hstt = hi
stt + hj

stt − hi
⋃

j
stt (14)

where hstt denotes the statistical heterogeneity of image object O, which is the maximum log likelihood
value of the image object.

For single-look complex PolSAR data, the statistical heterogeneity of image object O is given by

hO
stt = ∑

kεO
ln[pk(k)] (15)

where pixels in image object O are considered independent realizations, with respect to the assumed
PDF in Equation (10).

According to Equations (10), (14), and (15), the statistical heterogeneity of image object O can be
simplified to

hO
stt
∼= −n ln |Σ̂| − nα̂ ln (−α̂− 1)− n ln

[
Γ(−α̂)

Γ(d− α̂)

]
− (d− α̂) ∑

k∈O
ln (kHΣ̂−1 − α̂− 1) (16)

where n is the number of pixels in image object O, α̂, and Σ̂ are the best likelihood estimates of α, and
Σ for this image object.

For multi-look PolSAR data, with respect to the assumed PDF in Equation (12), the statistical
heterogeneity of image object O is

hO
stt = ∑

iεO
ln[pT(Ti)]. (17)

Similarly, the statistical heterogeneity of image object O can be simplified by Equations (12), (14),
and (17) to

hO
stt
∼= −nL ln |Σ̂| − nα̂ ln (−α̂− 1)− n ln

[
Γ(−α̂)

Γ(Ld− α̂)

]
− (Ld− α̂) ∑

i∈O
ln (Ltr(Σ̂−1Ti)− α̂− 1). (18)

It can be concluded that the statistical heterogeneity from Equation (18) is equivalent to
Equation (16) when L = 1, which means that the change in statistical heterogeneity can be computed
by Equations (14) and (18), for both single-look and multi-look data.

2.2.3. Parameter Estimation

The number of looks, L, is generally an integer provided by the SAR sensor. Statistical
heterogeneity measured by the G0 distribution model is parameterized by scale matrix Σ and shape
parameter α. The correct and reasonable merging objects are based on the proper estimation of the
involved parameters.

Scale matrix Σ is the mathematical expectation of the coherency matrix, which can be calculated
using the classical sample covariance matrix estimator [38], as follows:

Σ̂ = < T >N (19)

where 〈·〉 denotes sample averaging, and N is the number of samples.
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Shape parameter α can be estimated using the method of matrix log-cumulants, which has been
proposed in the literature [39]. However, given that this method is more complex, needing a large
amount of computation, and that this calculation is performed for each image object in each iteration
of the segmentation, we estimate shape parameter α using the method of Doulgeris, provided in the
literature [40]. This estimator is given by

α̂ =
2LVar{M}+ d(Ld− 1)

d− LVar{M} (20)

where M = tr(Σ̂−1T), and Var{·} is the statistical variance.

2.3. Initial Samples Generation for Statistical Model

Accurate and robust parameter estimation of the statistical models requires sufficient samples.
Since FNEA starts region merging from a single pixel, the number of samples (i.e., pixels in each image
object) is too small to accurately estimate parameters at the beginning of the iterations. Generally,
the image blocks within square windows are used as samples. However, there are obvious differences
between the square blocks and the actual boundaries of targets in high-resolution PolSAR data.
Therefore, in this work, the SLIC superpixel algorithm with polarimetric and spatial features was used
to produce suitable initial samples before the utilization of statistical heterogeneity.

The SLIC algorithm incorporates k-means clustering to efficiently produce superpixels for images
in the CIELAB color space [35]. It includes two main steps: Initializing m cluster centers and assigning
each pixel to the nearest cluster center in a local search region. This algorithm has a speed advantage
over traditional k-means clustering by limiting the size of the search area to reduce the number of
distance calculations. In general, a key parameter, m, is the desired size of the superpixels, with
approximately equal pixels [35].

Pauli RGB images can be obtained by using them as blue, red, and green channels, respectively.
This has become the standard display mode of PolSAR data [41]. Hence, the polarimetric feature
space of Pauli RGB composition was used to replace the CIELAB color space for the polarimetric
SAR images.

The method of initial samples generation for statistical model using SLIC algorithm includes the
following three main steps:

(1) Initializing cluster centers. The algorithm begins by initializing m cluster centers Cm =

[Rm Gm Bm xm ym]
T by sampling pixels in the Pauli RGB images at regular grid steps g, and the grid

interval is g =
√

N/m, where N is the number of pixels of the Pauli RGB image [35]. Then the centers
are adjusted to seed locations where the lowest gradient meets in a 3 × 3 neighborhood [42]. This
procedure is important as it avoids centering a superpixel on an edge, and reduces the probability of
seeding a superpixel with a noisy pixel.

(2) Associating each pixel with the nearest cluster center. The distance between the superpixel
center, Cm, and each pixel, i, is calculated in region 2g × 2g around the Cm [42]. Then, all the pixels
can be assigned to the nearest cluster center, and the superpixels with the approximate size of g× g
are finally obtained [35]. The distance measure D combines the polarimetric distance of the Pauli RGB
composition and the spatial distance and is described by

dp =
√
(Ri − Rm)

2 + (Gi − Gm)
2 + (Bi − Bm)

2

ds =
√
(xi − xm)

2 + (yi − ym)
2

D =

√(
dp

max(dp)

)2
+
(

ds
g

)2
(21)

where polarimetric distance dp and spatial distance ds are normalized by their respective maximum
distances within a cluster, max (dp) and g The equivalent weight between dp and ds is utilized to
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calculate final distance D [35,43]. Once each pixel has been associated to the nearest cluster center, the
cluster centers adjust to be the mean [R G B x y]T vector of all the pixels belonging to the cluster. This
step can be repeated for 10 iterations, which is enough for most images [35].

(3) In order to provide sufficient numbers of initial samples for the statistical model, the
superpixels, of which sizes are less than the specific threshold g2, are merged with the nearest neighbors
according to the distance measure. Then, the final superpixels of the PolSAR images are obtained.

2.4. Segmentation with Statistical and Shape Features

Traditional FNEA starts with single pixel objects and segments an image by integrating spectral
feature and shape features. It is difficult to use the statistical feature of PolSAR data based on pixels.
Therefore, based on the initial objects generated by SLIC, we substitute the G0 distribution statistical
heterogeneity for spectral heterogeneity in the original FNEA, and then combine the G0 statistical and
shape features to segment PolSAR data.

Similar to Equation (1), the change in total heterogeneity including the G0 statistical and shape
features can be obtained by weighting as follows:

∆h′ = wshp∆hshp +
(

1− wshp

)
∆hstt (22)

where shape heterogeneity is calculated using Equation (4) by averaging the smoothness
and compactness.

Using Equations (3), (4), (14), (18), and (22), the proposed segmentation method starts from
superpixels with a fractal iterative procedure, and satisfies the condition of minimizing the resulting
merged heterogeneity.

The proposed method consists of two main procedures: Generating superpixels as initial objects
using SLIC and FNEA segmentation based on superpixels. The former utilizes Pauli RGB and spatial
information for segmentation, while the latter employs G0 statistics information and shape features.
The value of g2 is related to the start time using statistics information. A greater value of g2 delays the
use of statistical information.

Each iteration of superpixel-based FNEA needs to traverse all the objects, and then the object
information is updated after the iteration. In order to ensure the accuracy of the boundary, each object
is merged once, at most, in each iteration, similar to the region growing algorithm.

In summary, the details of proposed segmentation method are presented in Algorithm 1.

Algorithm 1. FNEA-based Multi-Feature PolSAR Segmentation.

1: INPUT: PolSAR data, samples number g2, shape weight wshp, scale parameter t.
2: OUTPUT: segmentation result.
3: Generate superpixels of PolSAR data using new SLIC algorithm by Equation (21).
4: Produce initial image objects with the superpixels.
5: do
6: Get the number of image objects NO, a = NO.
7: for each image object i do
8: for each adjacent object j of image object i do
9: Estimate scale matrix Σ, shape parameter α using pixels in object by Equations (19) and (20).
10: Compute the change of heterogeneity ∆h′ by Equations (3), (4), (14), (18), and (22).
11: end for
12: Compare all the ∆h′ to obtain the minimum and set it as ∆hmin
13: if ∆hmin ≤ t then
14: Merge image objects i and j, create a new image object i

⋃
j, and delete objects i, j.

15: a = a− 1.
16: end if
17: end for
18: while (a < NO)
19: Produce segmentation image and the vector of objects boundaries.
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3. Experiment and Results

To verify the proposed method, one simulated data set, and three different real-world PolSAR
data sets are used in the rest of this section. Moreover, different segmentation methods were adopted
for comparison. This section is divided into two subsections to describe the experimental data sets and
report on the experimental details of the simulated PolSAR data, RADARSAT-2 image, ESAR image,
and TerraSAR-X image.

3.1. Description of the Experimental Data Sets

The first data set is a simulated single-look PolSAR image, 400 × 400 pixels in size, and contains
eight different classes: Building areas, forest, bush land, grass land, two different types of crops, road,
and a water body. To better reflect the ground reality, the Wishart distribution was adopted to generate
the water body, while the G0 distribution data were adopted to generate the other classes. The initial
scattering vectors and distribution parameters were estimated from a real data set. The Pauli RGB
image is shown in Figure 1a, and the corresponding reference map is shown in Figure 1b. Figure 2
depicts the theoretical PDF of each class.
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The second data set is a section of the single-look C-band RADARSAT-2 PolSAR image of
Northern Flevoland, Netherlands, and has a spatial resolution of 4.7 m × 4.8 m (range × azimuth).
The experimental image is 1400 × 1400 pixels in size and is shown in Figure 3a. The major land cover
classes include homogeneous areas (such as water bodies and farmlands), and heterogeneous areas
(such as forest and urban areas). A manual interpretation using nine categories was used as the ground
truth map, which is shown in Figure 3b.

The third data set is a section of the two-look processed L-band ESAR PolSAR image of
Oberpfaffenhofen, Germany, and has a spatial resolution of 1.5 m × 1.8 m (range × azimuth).
The experimental image is 800 × 800 pixels in size and is shown in Figure 4a. The major land cover
classes include homogeneous areas (such as roads, grasslands, and farmlands) and heterogeneous
areas (such as forests and urban areas). A manual interpretation using 16 categories was used as the
ground truth map, which is shown in Figure 4b.
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The fourth data set is obtained from a subset of an X-band TerraSAR-X PolSAR image of Deggendorf,
German, which is six-look, with a spatial resolution of about 5.0 m × 4.8 m (range × azimuth).
The experimental image, with a size of 541 × 541 pixels, is shown in Figure 5a. The major land
cover classes include homogeneous areas (such as river and farmlands) and heterogeneous areas (such
as forests and building areas). The corresponding optical image is shown in Figure 5b.Remote Sens. 2017, 9, 570 11 of 26 
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RGB image and (b) the reference image from Google Earth.

3.2. Evaluation and Comparison

To verify the improvement in segmentation accuracy by integrating the G0 statistical features into
the FNEA framework and pre-segmenting using SLIC, segmentation experiments were performed
using different methods, namely: (a) FNEA segmentation based on Freeman decomposition
without SAR statistical features (FFD); (b) FNEA segmentation with Pauli RGB image without SAR
statistical features (FPD); (c) improved FNEA with G0 statistical features start from square blocks
(IFGB); (d) improved FNEA using Wishart statistical features with pre-segmenting by SLIC (IFWS);
(e) improved FNEA using K statistical features with pre-segmenting by SLIC (IFKS); (f) improved
FNEA using the G0 statistical features with pre-segmenting by SLIC (IFGS); and (g) segmentation
using the G0 statistical features without shape features based on SLIC pre-segmenting (IFGS-S).

In addition to qualitative visual assessment, the quality of segmentation results requires an
evaluation criterion. Various accuracy metrics describe the similar aspects of the correspondence
between reference objects and segments [44,45], such as the difference in area between reference objects
and the segments they intersect as well as the positional difference between reference objects and
segments. In this paper, area-based measures were used to evaluate the accuracy of the segmentation
results. Let R denote the reference segments that consists of regions representing ground objects, and
S denote segmentation result from the processed SAR image. Two area-based metrics are defined
as follows:

ρd =
R
⋂

S
R

, ρq =
R
⋂

S
R
⋃

S
(23)

where ρd is the area rate of correct segmentation, i.e., detection rate, and ρq is the degree of overlap
between R and S (i.e., quality rate), which takes the false positive rate into consideration. These metrics
are continuous in [0, 1], and the higher values of these metrics mean better segmentation results. Given
that serious over-segmentation may also result in a high segmentation accuracy, the total number of
objects (TN) was introduced as an auxiliary evaluation criterion. In general, the number of objects
should be as small as possible, in the case of satisfying accuracy requirements.
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The segmentation results and accuracy measures of the simulated images using the different
methods are shown in Figure 6 and Table 1, respectively. In Figure 6, the blue lines represent the
boundaries of the segmentation results, and the background is the Pauli RGB image. Figure 6d shows
the local details in the lower left part of the superpixel map, which was produced using SLIC with
4 × 4 pixels, in the desired size of the superpixel.Remote Sens. 2017, 9, 570 12 of 26 
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bush land, forest, and building areas (Figure 6b). As shown in Figure 6c–f, the class boundaries 
became more accurate when statistical information was utilized. However, the Wishart-based IFWS 
method is not applicable to heterogeneous areas like forests and urban areas. The K-based IFKS 
method had inaccurate segmentation results in extreme heterogeneous building areas, as shown in 
the bottom part of Figure 6e. In contrast, the G0-based IFGS method obtained the best segmentation 
results for the areas with different degrees of heterogeneity, with a 98.77% detection rate and a 97.57% 
quality rate. The contrast between Figure 6c,f demonstrates that dentate boundaries appear when 
square blocks are taken as the initial samples for the statistical model. The boundaries of straight 
roads or other regular areas deviated. Compared to the IFGS method, the IFGS-S method obtained 
the wrong segmentation boundaries in partial regular building areas, due to the absence of utilizing 
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Figure 6. Segmentation results of the simulated image using different methods: (a) FNEA segmentation
based on Freeman decomposition without SAR statistical features (FFD); (b) FNEA segmentation
with Pauli RGB image without SAR statistical features (FPD); (c) improved FNEA with G0 statistical
features start from square blocks (IFGB); (d) improved FNEA using Wishart statistical features with
pre-segmenting by simple linear iterative clustering (SLIC) (IFWS); (e) improved FNEA using K
statistical features with pre-segmenting by SLIC (IFKS); (f) improved FNEA using the G0 statistical
features with pre-segmenting by SLIC (IFGS); (g) segmentation using the G0 statistical features without
shape features based on SLIC pre-segmenting (IFGS-S); and (h) SLIC (local enlarged drawing of
lower-left part of the superpixel map).

Table 1. Segmentation accuracy measures of the simulated image.

Method ρd (%) ρq (%) TN

FFD 94.33 89.27 26
FPD 98.22 96.50 26
IFGB 97.12 94.40 26
IFWS 98.47 96.98 26
IFKS 98.11 96.29 27
IFGS 98.77 97.57 25

IFGS-S 98.70 97.44 29

As shown in Table 1, the proposed IFGS method obtained the best detection and quality rates
with the least number of generated objects, while the FFD method had the worst segmentation results.
For the FFD method, inaccurate segmentation boundaries appeared, especially for classes with similar
polarimetric features (Figure 6a). The results of the Pauli-based FPD method is greatly affected by
speckle noise, which causes blurred segmentation boundaries between classes of crops, bush land,
forest, and building areas (Figure 6b). As shown in Figure 6c–f, the class boundaries became more
accurate when statistical information was utilized. However, the Wishart-based IFWS method is
not applicable to heterogeneous areas like forests and urban areas. The K-based IFKS method had
inaccurate segmentation results in extreme heterogeneous building areas, as shown in the bottom
part of Figure 6e. In contrast, the G0-based IFGS method obtained the best segmentation results for
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the areas with different degrees of heterogeneity, with a 98.77% detection rate and a 97.57% quality
rate. The contrast between Figure 6c,f demonstrates that dentate boundaries appear when square
blocks are taken as the initial samples for the statistical model. The boundaries of straight roads or
other regular areas deviated. Compared to the IFGS method, the IFGS-S method obtained the wrong
segmentation boundaries in partial regular building areas, due to the absence of utilizing the shape
features as shown in Figure 6g. In conclusion, the proposed superpixel-based IFGS method, utilizing
the G0 distribution and shape features, obtained accurate and precise segmentation boundaries for the
different areas.

The segmentation results and superpixel map of single-look RADARSAT-2 and two-look
ESAR PolSAR images, using these different methods are shown in Figures 7 and 8, respectively.
In Figures 7 and 8, the blue lines represent the boundaries of the segmentation results, and the
background is a Pauli RGB image. The superpixel maps of the RADARSAT-2 and ESAR images
were produced using SLIC, with 4 × 4 pixels, in the desired size of the superpixel. The segmentation
accuracies are presented in Tables 2 and 3, respectively.
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Figure 7. Segmentation results of the single-look RADARSAT-2 PolSAR image using different methods:
(a) FFD; (b) FPD; (c) IFGB; (d) IFWS; (e) IFKS; (f) IFGS; (g) IFGS-S; and (h) SLIC (local enlarged drawing
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rectangle of (f).

Table 2. Segmentation accuracy measures of the single-look RADARSAT-2 image.

Method ρd (%) ρq (%) TN

FFD 89.30 78.26 558
FPD 88.49 77.07 553
IFGB 90.35 80.10 546
IFWS 89.14 78.17 564
IFKS 89.17 78.03 543
IFGS 91.33 81.53 541

IFGS-S 89.53 78.68 590
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For the single-look RADARSAT-2 image, the proposed IFGS method also obtained optimal
segmentation results. The contrast between Figure 7a,b and Figure 7c–f demonstrated that the
utilization of statistical information helped to suppress the influence of the speckle noise, and generated
accurate class boundaries. The segmentation results in Figure 7c,f certify that the superpixel-based
method could avoid serrated boundaries. Moreover, the detection rate and quality rate of the IFGS
method increased by approximately 1% and 1.4%, compared to the IFGB method, according to
Table 2, which validated the effectiveness of the superpixels. As shown in Figure 7d–f and Table 2,
the Wishart-based IFWS method obtained seriously fragmented results in areas of high heterogeneity,
like the city areas located in the upper right of Figure 7d, and the K-based IFKS method had difficulty
segmenting the small rivers accurately. Compared to the IFGS method, the IFGS-S method achieved
blurred segmentation boundaries in urban areas, forest, and water areas due to the absence the shape
feature. In summary, employing shape features and statistics information comprehensively contributed
to generating better segmentation results. According to Table 2, the proposed superpixel-based IFGS
method obtained the highest accuracy with the least number of segmentation objects, and the detection
rate and quality rate were 91.33% and 81.53%, respectively. The above-mentioned results indicate that
the proposed method is applicable to single-look high-resolution PolSAR images.
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For the multi-look ESAR image, the proposed IFGS method still obtained optimal segmentation
results. As shown in Figure 8a,b, the segmentation results of the FFD and FPD methods, which
utilized polarimetric decomposition features, were greatly affected by the speckle noise, resulting in
blurred segmentation boundaries. In contrast, the statistics-based segmentation method suppressed
the influence of speckle noise and achieved more accurate segmentation boundaries between the
different classes, as shown in Figure 8c–f. However, when the square blocks were taken as initial
samples for the statistical models, serrated and inaccurate segmentation boundaries occurred, as
shown in Figure 8c. The contrast between Figure 8d–f certifies that the G0-based IFGS method obtained
better segmentation results (such as for roads in the forest) than the Wishart-based IFWS or the
K-based IFKS method. For the IFGS-S method, the blurred segmentation boundaries occurred in areas
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with little change in statistics and polarimetric information, especially for the inner areas of forest,
urban, and farmland in Figure 8g. According to Table 3, the proposed IFGS method obtained the
highest accuracy with the least number of segmentation objects, similar to that of the single-look
RADARSAT-2 image. Specifically, the detection and quality rates of the IFGS method were 88.46%
and 72.07%, respectively. This demonstrates the effectiveness of the proposed method for multi-look
high-resolution PolSAR images.

In order to further validate the effectiveness of the proposed method, the segmentation results of
the third set of ESAR data, generated using the GSRM method [5] and the MW-WMRF method [15]
were used as comparison. Figure 9a,b demonstrates the representation maps of the GSRM method and
the MW-WMRF method, respectively. The Pauli RGB of each pixel was replaced by the average Pauli
RGB of the segment that the pixel belonged to. Similarly, Figure 9c,d gives the representation maps of
the proposed method at different scales. Specifically, a number of isolated small segments occurred in
heterogeneous areas like forest (area A of Figure 9a) and urban areas (area B of Figure 9a) for the GSRM
method, which decreased the visibility and accuracy of the representation map. As for the MW-WMRF
method, the segmentation results of urban areas were broken due to the utilization of the Wishart
distribution, which is shown in area B of Figure 9b. The boundaries between the different types of
farmlands for these two methods were inaccurate (area C of Figure 9a,b). The boundaries for forests of
different height were not accurate enough (area A of Figure 9a,b). In contrast, accurate boundaries
of farmlands and forest were obtained, with different segmentation scales, for the proposed method
(area A and area C of Figure 9c,d), and the urban areas were entirely segmented (area B of Figure 9c,d).
Furthermore, the detection rates of the GSRM, MW-WMRF, and IFGS (t = 13) method were 87.86%,
90.20%, and 90.60%, respectively. In summary, the proposed method obtained better segmentation
results compared to the GSRM method and the MW-WMRF method.
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Figure 9. Representation maps (Pauli RGB images) of segmentation results for the ESAR data using
different methods: (a) GSRM; (b) MW-WMRF; (c) IFGS, t = 17, wshp = 0.05, g2 = 16; and (d) IFGS, t = 13,
wshp = 0.05, g2 = 16.
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Table 3. Segmentation accuracy measures of the two-look ESAR image.

Method ρd (%) ρq (%) TN

FFD 83.31 65.13 348
FPD 86.65 69.57 335
IFGB 87.90 71.29 335
IFWS 87.94 71.34 342
IFKS 87.57 70.82 334
IFGS 88.46 72.07 334

IFGS-S 85.38 67.85 343

For the X-band multi-look TerraSAR-X image, the proposed IFGS method also performed well.
As shown in Figure 10, the river, bridge, lakes, and building areas in the southeastern area of the river
were all accurately segmented. Accurate and delicate boundaries of different types of farmlands and
of the inner area of the forest were achieved. Compared to Figure 10a, the segmentation results in
Figure 10b were more precise and obtained a higher quantity of objects when the segmentation scale
decreased to 12. This experiment further demonstrated the applicability of the proposed method for
high-resolution PolSAR images.
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4. Discussion

4.1. Main Features of the Proposed Method

A superpixel-based FNEA segmentation method for high-resolution PolSAR data, using Pauli
polarimetric, spatial, and G0 distribution statistical features, is proposed. The proposed method was
successfully applied to simulated and real-world PolSAR data sets.

The main feature of the method is the comprehensive utilization of G0 distribution and shape
information, based on FNEA. In related studies, traditional FNEA used polarimetric and geometric
shape features for PolSAR image segmentation [8,9,25,26], which is easily influenced by speckle
noise. Given the absence of statistical characteristics for PolSAR data, the statistical feature is
introduced into the FNEA framework in the proposed approach. Many other methods use the classical
complex Wishart distribution in order to represent scattering matrix statistics for PolSAR image
segmentation [15,17,19–21,27]. Considering the ability to modeling varying degrees of texture [30,36],
G0 distribution is more suitable for heterogeneous or homogeneous areas in high-resolution PolSAR
data compared to the Wishart or K distribution. Thus, the proposed method adopts the G0 distribution
to suppress speckle noise and obtains consistent segmentation results compared with the traditional
FNEA method.
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Another feature of our method is adding pre-segmentation using SLIC with the polarimetric
features in order to generate initial samples for the application of the G0 statistical model. It is
essential to robustly estimate model parameters with enough samples. Most of the previous work
collected initial samples from image blocks within square windows [32], which led to segmentation
results with obvious dentate boundaries. To handle this problem, superpixels were introduced for
pre-segmentation in the proposed approach. Given the excellent boundary adherence, SLIC was used
in our approach, which combined the polarimetric distance of Pauli RGB compositions and spatial
distance. This approach is capable of achieving accurate segmentation results with precise boundaries
between the different areas.

4.2. Sensitivity Analysis of the Parameters

According to the experiments using simulated PolSAR data and real-world PolSAR images
(include RADARSAT-2 and ESAR data), the desired number of initial samples (g2), shape weight wshp,
and scale parameter t affected the segmentation accuracy; a detailed analysis is as follows.

4.2.1. Number of Initial Samples

As we know, an appropriate number of samples is essential for parameter estimation, namely,
the size of superpixels, g2, affects the use of the G0 distribution in our method. When the size
of the superpixels was too small, parameter estimation of the G0 distribution became unstable,
which made the calculation of statistical heterogeneity inaccurate. On the other hand, statistical
features were not adapted for superpixel generation. The time utilizing this statistic’s feature for the
superpixel-based FNEA can be delayed when the size of superpixels g2 become too big, which could
affect the subsequent segmentation accuracy. Therefore, the proper size of a superpixel is one of key
issues for the segmentation experiment.

An additional experiment was conducted to explore the minimum size of the superpixels.
Abstractly, enough samples ensure stable parameter estimation of the G0 distribution, and there
was little in terms of statistical heterogeneity differences between adjacent objects in one class. Three
different simulated PolSAR images were used in the experiment, which only contained forest, crops,
and roads, and is mentioned here in Section 3.1. The three simulated PolSAR images were divided
into different sizes of blocks to calculate the standard deviation of the normalized G0 heterogeneity
(∆hstt/g2) between adjacent objects [32]. Figure 11 shows the changes of ∆hstt/g2 with different sizes
of blocks. As observed in Figure 11, the standard deviation became stable when the size of the blocks
was large enough. In contrast, the standard deviation increased sharply when the size of the blocks
was less than 16 pixels, which means that there were large statistical heterogeneity differences, due to
the unstable parameter estimation using a small number of samples. Consequently, the superpixels
should contain at least 16 pixels in order to ensure the stable calculation for G0 heterogeneity.
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Another experiment was conducted to analyze the effect of size of superpixels on the segmentation
accuracy. In the process of generating superpixels, different desired sizes of superpixels were set,
and the proposed IFGS method was used in the segmentation experiment. The changes in the
detection and quality rates using the different desired sizes of superpixels for the simulated data,
ESAR, and RADARSAT-2 images are shown in Figure 12. In practice, all the superpixels of a small
size were merged with neighboring, larger superpixels in the generation process. The initial sizes of
the superpixels were generally larger than the desired size of the superpixels. The desired sizes of the
superpixels were set from 3 pixels × 3 pixels to 10 pixels × 10 pixels in this experiment.

Remote Sens. 2017, 9, 570 18 of 26 

 

Another experiment was conducted to analyze the effect of size of superpixels on the 
segmentation accuracy. In the process of generating superpixels, different desired sizes of superpixels 
were set, and the proposed IFGS method was used in the segmentation experiment. The changes in 
the detection and quality rates using the different desired sizes of superpixels for the simulated data, 
ESAR, and RADARSAT-2 images are shown in Figure 12. In practice, all the superpixels of a small 
size were merged with neighboring, larger superpixels in the generation process. The initial sizes of 
the superpixels were generally larger than the desired size of the superpixels. The desired sizes of the 
superpixels were set from 3 pixels × 3 pixels to 10 pixels × 10 pixels in this experiment. 

 
(a) 

 
(b) 

Figure 12. Segmentation accuracy obtained using the IFGS method for the simulated data, ESAR, and 
RADARSAT-2 data, with different desired sizes of superpixels: (a) detection rate; (b) quality rate.  

As shown in Figure 12, the segmentation accuracy fluctuated and decreased slowly when the 
desired size of the superpixels increased. For the simulated image, the detection rate and quality rate 
decreased when the desired size of the superpixels increased from 4 pixels × 4 pixels to 10 pixels × 10 
pixels. Specifically, the larger superpixels lead to delayed utilization of statistical information, and 
then caused a decrease in the segmentation accuracy. On the other hand, when the desired size of the 
superpixels was 3 pixels × 3 pixels, the number of samples could not ensure stable parameter 
estimation and generated inaccurate segmentation results. For the ESAR and RADARSAT-2 images, 
the detection rate and quality rate fluctuated when the desired size of superpixels increased due to 
the complexity of the real ground objects. Similarly, when the desired size of superpixels was 4 pixels 
× 4 pixels, the segmentation of the ESAR and RADARSAT-2 image obtained the highest detection 

87

89

91

93

95

97

99

3*3 4*4 5*5 6*6 7*7 8*8 9*9 10*10

Se
gm

en
ta

tio
n 

A
cc

ur
ac

y 
ρ d

(%
)

The Desired Size of Superpixels

Simulated data

ESAR data

70

74

78

82

86

90

94

98

3*3 4*4 5*5 6*6 7*7 8*8 9*9 10*10

Se
gm

en
ta

tio
n 

A
cc

ur
ac

y 
ρ q

(%
)

The Desired Size of Superpixels

Simulated data

ESAR data

Figure 12. Segmentation accuracy obtained using the IFGS method for the simulated data, ESAR, and
RADARSAT-2 data, with different desired sizes of superpixels: (a) detection rate; (b) quality rate.

As shown in Figure 12, the segmentation accuracy fluctuated and decreased slowly when
the desired size of the superpixels increased. For the simulated image, the detection rate and
quality rate decreased when the desired size of the superpixels increased from 4 pixels × 4 pixels
to 10 pixels × 10 pixels. Specifically, the larger superpixels lead to delayed utilization of statistical
information, and then caused a decrease in the segmentation accuracy. On the other hand, when the
desired size of the superpixels was 3 pixels × 3 pixels, the number of samples could not ensure stable
parameter estimation and generated inaccurate segmentation results. For the ESAR and RADARSAT-2
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images, the detection rate and quality rate fluctuated when the desired size of superpixels increased
due to the complexity of the real ground objects. Similarly, when the desired size of superpixels
was 4 pixels × 4 pixels, the segmentation of the ESAR and RADARSAT-2 image obtained the highest
detection and quality rates. Thus, superpixels were generated with a desired size of 4 pixels × 4 pixels
for these three images. Sixteen pixels were used for parameter estimation of the G0 distribution for the
proposed method.

4.2.2. Weight of Features

According to the previously presented segmentation experiments, shape features improved the
segmentation performance for the three different images. Shape weight wshp affected the use of
statistical and shape features, according to Equation (22). In order to set an appropriate feature weight,
the ratios of the average changes in shape heterogeneity and statistical heterogeneity (∆hshp/∆hstt)
were calculated for the simulated data, ESAR data and RADARSAT-2 date, when the shape feature
weight was 0 and 1, respectively. The ratios shown in Table 4 indicate that the shape heterogeneity was
apparently larger than the statistical heterogeneity in the proposed IFGS segmentation. A relatively
small shape weight should be set to balance the shape features and statistical features.

Table 4. Ratios (∆hshp/∆hstt) calculated for the simulated data, ESAR, and RADARSAT-2 image in
segmentation with the shape weight of 0 and 1.

PolSAR Data
∆hshp/∆hstt

wshp = 0 wshp = 1

Simulated image 1.48 2.07
ESAR image 2.09 2.25

RADARSAT-2 image 6.55 8.25

Further experiments were conducted to analyze the effects of weight of shape features on
segmentation accuracy. In the process of the proposed IFGS segmentation using the desired superpixel
size of 4 pixels× 4 pixels, different shape weights, in the 0–0.3 range, were set. The changes in detection
and quality rates, using different shape weights for the simulated data, ESAR, and RADARSAT-2
images, are shown in Figure 13.

As shown in Figure 13, the weight of the shape also had a significant effect on the proposed
IFGS segmentation method. For the simulated image, the detection rate and quality rate improved
when weight of shape features increased from 0 to 0.05, and decreased when the weight of the shape
features exceeded 0.05. Specifically, as the shape weight increased to more than 0.15, the relatively
small statistical heterogeneity was not fully utilized, and the segmentation accuracy sharply decreased.
When the shape weight varied from 0.02 to 0.08, the integrated utilization of the statistical features
and shape features obtained a higher accuracy than single use of the statistical features. For the ESAR
image, when the shape weight exceeded 0.1, the segmentation accuracy of the IFGS method was lower
than that of the IFGS-S method. However, the same situation occurred for the RADARSAT-2 image
when the shape weight exceeded 0.2, which coincided with the case where the ratios (∆hshp/∆hstt)
of RADARSAT-2 image were larger than those of the ESAR image. Similar to the simulated data,
when the weight of shape feature was 0.05, the segmentation of ESAR and RADARSAT-2 images
obtained the highest detection and quality rates. Shape features with a weight of 0.05 were used for
comprehensive utilization of shape and statistical features in the image segmentation experiment.
Moreover, the detection rate of the proposed IFGS method improved by approximately 1%, 3%, and
3% compared to the IFGS-S method and the quality rate improved by approximately 2%, 4%, and
4%, respectively.
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Figure 13. Segmentation accuracy obtained using the IFGS method for the simulated data, ESAR, and
RADARSAT-2 data with different shape weights: (a) detection rate; (b) quality rate.

4.2.3. Scale of Segmentation

Among the three main parameters of the proposed method, scale parameter t is a relative threshold
that determines the average size of objects, or the number of objects within a scene. It can be flexibly
adjusted, depending on the desired number of objects in the segmentation. An extra experiment was
conducted to analyze the effects of scale parameter on segmentation accuracy. In this segmentation
experiment, the desired superpixel size was set as 4 pixels × 4 pixels, and the shape weight was 0.05.
Different scales were set, and the detection rate and the number of result objects were calculated.
Figure 14 shows the changes in the detection rate and the number of result objects with different
segmentation scales for the simulated data, ESAR, and RADARSAT-2 images.

As shown in Figure 14, the scale had a consistent effect on the proposed IFGS segmentation
method for the three images. As the scale of the segmentation increased, more adjacent objects were
merged and the number of final objects became smaller. This means that adjacent objects with a
minimal feature difference were not reasonably divided, and resulted in a decrease in segmentation
accuracy. On the other hand, the number of objects and segmentation accuracy increased when the
scale became smaller. However, the increased number of objects resulted in broken segmentation
results. The appropriate number of objects should consider as the true application scene.
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For the single-look RADARSAT-2 image, the final segmentation results using four different
scales (scale = 12, 16, 20, 25) are shown in Figure 15. As the segmentation scale increased, the detail
boundary information decreased and the size of single object became larger. Moreover, targets with
larger areas were more intact when they were segmented. As shown in Figure 15a, the narrow
rivers and roads were segmented correctly, while the heterogeneous urban areas and larger water
bodies were over-segmented, causing broken segmentation results. In Figure 15d, the large water
bodies were entirely segmented, but the urban areas, forest areas, and farmland were under-segmented.
The boundaries of narrow roads, rivers, and small lakes were inaccurate. Incorrect boundaries occurred
between adjacent objects with minimal feature differences, especially for different types of farmlands
and forests. In summary, it is necessary to consider the practical use of scale-setting. Specifically,
a larger scale is essential for main category classification, and larger target detection. A small scale is
applicable to focusing on the details of ground objects.
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Figure 14. Segmentation accuracy obtained using the IFGS method for the simulated data, ESAR, and
RADARSAT-2 data with different scales: (a) detection rate; (b) the number of result objects.
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4.3. Time Performance Analysis

The analysis of the proposed method consists two parts: Initial segmentation (SLIC) and
superpixel-based FNEA segmentation (SP-FNEA). The time complexity of SLIC and SP-FNEA are
O(10n) and O(kn), respectively, where n is the number of pixels and k is the number of iterations in
SP-FNEA. The time complexity of the proposed method is O(10n) + O(kn).

To further analyze the time efficiency of the algorithm, the runtime of SLIC and SP-FNEA for
the different PolSAR images with specific segmentation scales was calculated by averaging multiple
runtimes. A laptop using the 64-bit Windows 10 operating system, a quad-core Intel i5-4210U, 2.40 GHz,
and 8 GB memory was utilized for the segmentation experiments. Table 5 shows the runtimes of
the proposed algorithm for different PolSAR images. As shown in Table 5, the proposed algorithm
has a good time efficiency. Specifically, the runtime of SLIC is linear with data size, meaning that
SLIC has an excellent computational efficiency. For the SP-FNEA algorithm, its runtime efficiency is
associated with the number of iterations and the data size. Generally, the larger scale resulted in the
merger of adjacent objects, and increased the runtime. Moreover, the efficient SLIC avoids SP-FNEA
segmentation, starting from a single pixel, and saving considerable runtime.
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Table 5. Runtimes of the proposed algorithm for different PolSAR images.

PolSAR Data Size Scale t
Time (s)

SLIC SP-FNEA Total

Simulated Data 400 × 400 22 22.52 12.32 34.84
RADARSAT-2 1400 × 1400 16 267.85 238.60 506.45

ESAR 800 × 800 17 88.04 64.66 152.70
TerraSAR-X 541 × 541 16 40.07 27.20 67.27

4.4. Accuracies, Errors, and Uncertainties

We adopted the detection and quality rates to evaluate the performance of the proposed
segmentation, which were calculated according to the ground truth data. These two measures are
widely considered in the field of image segmentation of remote sensing. It is clear that our method
obtained more accurate segmentation results than the other methods, and this advantage was obtained
with the least number of result objects.

According to the previous experiments, several factors affect the segmentation accuracy of the
proposed method. The parameter estimation accuracy of the G0 distribution plays an important role
in the statistical feature-based segmentation method. For the proposed approach, measurement of
statistical heterogeneity and correct object merging depend on the proper estimation of the involved
parameters. The determination of the scale parameters is another factor that causes segmentation
errors for the proposed method. The scales of different types of targets exhibit differences due to
their inequitable heterogeneities. An inappropriate scale parameter leads to under-segmentation in
homogeneous regions or over-segmentation in heterogeneous regions, reducing the segmentation
accuracy of the target of interest. Future development of this approach should include an accurate
parameter estimation method of the G0 distribution and the determination of the segmentation scale.

The improvement of the proposed method was verified using simulated data, and real-world
RADARSAT-2, ESAR, TerraSAR-X images, which mainly cover farmlands, forests, and urban areas.
The experimental results show that the proposed method performed well for targets in these images.
However, the segmentation results may vary for other application scenarios. In-depth experiments
and analyses for other application scenarios, such as forest species classification, building collapse
assessment, and oil spill extraction, have not been conducted in the present study. The applicability of
the proposed method for specific applications of high-resolution PolSAR image remains uncertain.

5. Conclusions

In high-resolution fully polarimetric Synthetic Aperture Radar (PolSAR) images, speckle noise and
heterogeneous regions with rich spatial features makes segmentation a challenging task. In this study,
a novel segmentation algorithm for high-resolution PolSAR data has been developed by combining
spatial, statistical, and polarimetric features. This integrates the statistical features into a fractal
net evolution algorithm (FNEA) framework, and polarimetric features into simple linear iterative
clustering (SLIC) for generating pre-segments. The main improvements are as follows: First, spectral
heterogeneity in the traditional FNEA was substituted by the G0 distribution statistical heterogeneity
to combine shape features and statistical features of PolSAR data. Second, a modified SLIC algorithm
was utilized to generate compact, approximately homogeneous superpixels as the initial samples for
the G0 statistical model, which substituted the polarimetric distance of Pauli RGB composition for the
CIELAB color distance.

Several datasets were utilized in the experiments to verify the validity and applicability of the
proposed method, including a simulated PolSAR data, a spaceborne single-look RADARSAT-2 image,
an airborne multi-look ESAR image, and a spaceborne multi-look TerraSAR-X image. The highest
accuracy for each data set was obtained using the proposed approach with the least number of
generated objects, i.e., 98.77% on simulated data, 88.46% on ESAR image, and 91.33% on RADARSAT-2
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image, respectively. It can thus be concluded that the proposed method achieved accurate and precise
segmentation results for high-resolution PolSAR images.

Nevertheless, the performance of the proposed method could be further improved. For instance,
the parameter estimation of the statistical model, the initial sample generation, the setting of
the weight of features, and the strategy of determining the segmentation scale can be optimized.
Moreover, the information included in the polarimetric decomposition parameters was not fully
utilized in our method, except in the SLIC pre-segmentation. Hence, combining polarimetric features
adequately in the superpixel-based FNEA to improve the performance of high-resolution PolSAR
image segmentation is a promising prospect.
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