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Abstract: Remote sensing image registration plays an important role in military and civilian fields,
such as natural disaster damage assessment, military damage assessment and ground targets
identification, etc. However, due to the ground relief variations and imaging viewpoint changes,
non-rigid geometric distortion occurs between remote sensing images with different viewpoint, which
further increases the difficulty of remote sensing image registration. To address the problem, we
propose a multi-viewpoint remote sensing image registration method which contains the following
contributions. (i) A multiple features based finite mixture model is constructed for dealing with
different types of image features. (ii) Three features are combined and substituted into the mixture
model to form a feature complementation, i.e., the Euclidean distance and shape context are used
to measure the similarity of geometric structure, and the SIFT (scale-invariant feature transform)
distance which is endowed with the intensity information is used to measure the scale space extrema.
(iii) To prevent the ill-posed problem, a geometric constraint term is introduced into the L2E-based
energy function for better behaving the non-rigid transformation. We evaluated the performances of
the proposed method by three series of remote sensing images obtained from the unmanned aerial
vehicle (UAV) and Google Earth, and compared with five state-of-the-art methods where our method
shows the best alignments in most cases.

Keywords: remote sensing; image registration; multiple image features; different viewpoint;
non-rigid distortion

1. Introduction

Remote sensing image registration refers to the fundamental task in image processing to align
two or more images of the same scene (i.e., the sensed images and the reference images), which
can be multiview (obtained from different viewpoint), multitemporal (taken at different times) and
multisource (derived from different sensors). In this paper, we mainly focus on registering the remote
sensing images taken from different viewpoint. As a basic technology in the field of remote sensing
image processing, it has been widely used in the field of military and civilian such as natural disaster
damage assessment, resource census, assignment of climate changes, military damage assessment,
environment monitoring and ground targets identification, etc.
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Existing remote sensing image registration methods can be approximately classified into two
categories: area-based methods and feature-based methods. Various reviews on image registration
methods can be found in [1–5]. Area-based methods use the pixel intensities of identical image
windows to estimate similarity while feature-based methods extract image features (e.g., points, lines,
and regions) and match them using similarity criteria [6]. When there are noises, complex distortion
and significant radiometric differences between the images to be aligned, the computation complexity
or the search space of the area-based methods will increase nonlinearly with the transformation
complexity and feature-based methods are more robust and preferable. In this paper, the captured
remote sensing images exist the local non-rigid geometric distortions caused by ground relief variations
and imaging viewpoint changes, thus we mainly focus on feature-based methods for registration. Such
methods generally consists of three steps [7]: (i) feature descriptors extraction; (ii) feature point sets
registration; (iii) image transformation and resampling.

Generally, a good feature descriptor should be distinctive and at the same time robust to
changes in viewing conditions as well as to errors of the point detector [8]. For desirable local
image descriptors, to improve distinctiveness while maintaining robustness is the main concern [9].
Among the popular local invariant features which have been proposed in remote sensing image
registration (e.g., Harris [10], scale-invariant feature transform (SIFT) [11,12] and speeded-up robust
features (SURF) [13]), Mikolajczyk et al. [8] demonstrated that the performance of SIFT [11] under
affine transformation, scale change, rotation, image blur, jpeg compression, and illumination change
outperforms other local invariant descriptors in most of the tests. There are various researches for
remote sensing image registration based on the variants of SIFT algorithm or the combination of SIFT
and some other algorithms. Li et al. [14] proposed a new criterion named scale-orientation joint
restriction criteria in order to overcome the intensity difference between remote sensing image pairs.
Sedaghat et al. [6] introduced an automatic registration algorithm by extracting high-quality SIFT
features in the uniform distribution of both the scale and image spaces. In addition, other variants
of SIFT such as PCA-SIFT [15], SAR-SIFT [16], AB-SIFT [17] and SIFT-DRS [18] are also proposed in
literatures. Furthermore, Goncalves et al. [19] developed a new AIR (Automatic image registration)
method based on the combination of image segmentation and SIFT, and the method is complemented
by a robust procedure of outlier removal. In [20], a novel coarse-to-fine scheme for automatic image
registration based on SIFT and MI is proposed, and their method achieved the outlier removal and
also can generally reject most incorrect matches.

Feature-based methods are typically formulated as a point set registration problem, since point
representations are general and easy to extract. In order to achieve a robust point registration, it is
crucial to construct putative correspondences based on local invariant feature similarity at first and
then estimate the spatial transformation based on geometric structure feature constraint [21–23]. Here,
we briefly review some point set registration methods since our method is based on feature point.
Fischler et al. proposed the classical random sample consensus (RANSAC) [24] algorithm. Myronenko
and Song [25] introduced a probabilistic method, called the coherent point drift (CPD) algorithm,
for both rigid and non-rigid point set registration. Moreover, Liu and Yan [26] investigated how to
discover common visual pattern discovery via spatially coherent correspondences and recover the
correct correspondences. Zhang et al. [27] defined the spatially consistent topic model by making full
use of the correlation between image classification and annotation. Recently, Ma et al. proposed a
robust L2-minimizing estimate (L2E) [28] for non-rigid point set registration, they later proposed a
flexible and general algorithm called locally linear transforming (LLT) [29] for both rigid and non-rigid
registration on remote sensing images. More recently, Yang et al. [30] proposed a new method named
GLMDTPS, which considers global and local structural differences as a linear assignment problem.

Although the aforementioned methods have been proposed for different applications, there still
exists the following problems for remote sensing image registration. (i) These methods use either
the local invariant features or geometric features, thus the distinctiveness capability of the feature
points is lost in the complex remote sensing registration patterns. For example, methods for image
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registration which use only SIFT [11,12] or its variants [6,14–20] suffer from inaccurate registration of
SIFT. In addition, the performances of the methods [23–30] which consider only the geometric structure
features is limited by the assumption that the corresponding points have similar structures. (ii) Using
a rigid or affine transformation model is infeasible for registering remote sensing images with different
viewpoints since the images usually contain local non-rigid distortion. (iii) It is ill-posed for mapping
one feature point set to another by a non-rigid transformation model since the solution is not unique.

In this paper, we present a new method for remote sensing image registration with different
viewpoints. Compared with the current methods, the major differences and advantages of this paper
are as follows. (i) Probabilistic model construction: the mixture-feature Gaussian mixture model
(MGMM) is constructed for simultaneously dealing with different types of image features. (ii) Feature
complementation: Making the respective advantages of Geometric structure and intensity information
to complement each other, i.e., the Euclidean distance and shape context to measure the similarity of
global and local geometric structure discrepancies, and the SIFT distance to measure the scale space
extrema, both of which are combined and substituted into the mixture model by which the reliable
correspondence is obtained. (iii) Geometric constraint: a regularization term to prevent the ill-posed
problem based on coherent velocity field is introduced into the L2E-based energy function for better
behaving the non-rigid transformation.

The rest of this paper is organized as follows. Section 2 introduces our method in detail. Section 3
demonstrates the registration performance of our method on various types of remote sensing images
with different viewpoints against other methods, followed by some concluding remarks in Section 4.

2. Methodology

We first introduce the three major contributions of the proposed method: (i) modeling of the
MGMM; (ii) feature specification and combination; and (iii) geometric constrained energy function.
Whereafter the main process is demonstrated, followed by the method analysis.

2.1. Mixture-Feature Gaussian Mixture Model (MGMM)

The motivation behind the development of MGMM is the need for estimating reliable
correspondence using multiple image features whereas the Gaussian mixture model (GMM) can
only work on single feature. In this subsection we detail the derivation of the MGMM.

Based on the reasonable assumption that points from one set are normally distributed around
points belonging to the other set, we therefore consider the registration of two point sets as a GMM
probability density estimation problem. Let yj be the centroid of the jth Gaussian component, xi the ith

data. The probability density function (PDF) is obtained as:

p(xi) = (1− ζ)
m

∑
j=1
Cij p(xi|yj) + ζ

1
n

, (1)

where p(xi|yj) =
1

(2πσ2)
de
2

exp
(
− ‖xi−yj‖2

2σ2

)
with the equal isotropic covariances σ2 shared, Cij =

1
m

are nonnegative equal quantity with ∑m
j=1 Cij = 1, which are called the priors of the GMMs. 1

n is
an additional uniform distribution with a weighting parameter ζ, 0 ≤ ζ ≤ 1 for outlier dealing.
However, p(xi|yj) considers only the Euclidean distance and might lead to insufficient robustness
in some registration scenarios, e.g., although the local structure around xa and xb are different,
p(xa|yj) = p(xb|yj) if ‖xa − yj‖2 = ‖xb − yj‖2.

Consequently, the MGMM which is capable of dealing with multiple image features is developed.
The PDF of the MGMM is formulated as:

f (xi) = (1− ζ)
m

∑
j=1
Mij f (xi|yj) + ζ

1
n

, (2)
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where f (xi|yj) =
1

(2πσ2)
de
2

exp
[
−
(
G ij + αLij

)]
and α is a constant. Gm×n and Lm×n exploit the global

and local geometric structure discrepancies, priorsMm×n are specified by measuring the discrepancy
of intensity information, which is analogous to confidence.

Once we have the PDF of the MGMM, the correspondence between the two point sets can be
easily inferred through the posterior probability of the MGMM which is written as:

pij =
Mij f (xi|yj)

∑m
k=1Mik f (xi|yk) + ζ 1

n
, (3)

where Pm×n is the posterior probability matrix by which the newly estimated coordinates of xi can be
obtained. It is worth nothing that two strategies for constraining P are herein under consideration:
(i) a single normalization enforcing ∑m

j=1 pij = 1 and (ii) a double normalization which additionally
requires ∑n

i=1 pij = 1. Intuitively, the former acts like an one-to-many correspondence estimation,
whereas the latter provides an one-to-one counterpart. In our method, the number of the feature points
are strictly equal because the applied SIFT feature extractor. In addition the outlier to data ratios,
however, are unknown and varied due to the different overlap ratios of each image pair. In this case it
is inappropriate for requiring an one-to-one correspondence since the presence of outliers might trap
the estimation, whereby the first strategy is chosen in this paper.

2.2. Combination and Complementation of Multiple Image Features

The distinctiveness of feature points, which affects the accuracy of the feature matching, are
mainly determined by the robustness of the involved measures. However, different types of measures
have their own advantages and limitations, where our idea is to make their respective advantages
complementary to each other. In order to make the paper more self-contained, we succinctly discuss
the concept of the three features we used, i.e., the Euclidean distance, the SC and the SIFT distance.
The combination of features and the complete form of posterior probability function Equation (3) are
then discussed.

2.2.1. Euclidean Distance

The squared Euclidean distance of xi and yj is simply written as:

gij = ‖xi − yj‖2. (4)

It acts a straightforward global estimation with insufficient robustness in many scenarios. To
alleviate this problem, gij is commonly treated as an argument of a Gaussian function, which therefore
plays a flexible global estimation by the help of the changeable covariances.

2.2.2. Shape Context (SC)

The work in [31,32] proposed the SC. A detailed illustration of the SC is shown in Figure 1. The
SC constructs a polar coordinate with BR bins in the radial direction and BT bins in the tangential
direction, by centering the polar coordinate at xi and yj, it counts the number of points within each
bin and obtains two 1× B sets {hi(b)}B

b=1 and {hj(b)}B
b=1, respectively, where B = BR × BT . The SC

discrepancy of xi and yj is measured using Chi-square distribution as:

lij =
1
2

B

∑
b=1

[hi(b)− hj(b)]2

hi(b) + hj(b)
. (5)

The SC is robust especially in scenarios like contour point set registration and hand-written
characters matching, etc., because the geometric structure of these shapes are quite distinctive.
However, it can also be deteriorated if xi and yj have similar neighborhood structure.
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Figure 1. Illustration of the SC. (a) and (b): diagrams of log-polar histogram bins centered at xi and
yj used in computing the shape contexts. (c) and (d): each shape context e.g., hi or hj is a log-polar
histogram of the coordinates of the rest of the point set measured using the centered point as the origin,
where darker denotes larger value.

2.2.3. SIFT Distance

The SIFT algorithm introduced by Lowe is a classic algorithm, it first repeatedly convolves the
images with Gaussians to produce the set of scale space images and obtains the difference-of-Gaussian
images. The feature points are detected by comparing a pixel with its neighbors at the current and
adjacent scales. Histograms of local oriented gradients around each feature points are then computed,
obtaining an 128-dimensional vector as the SIFT descriptor, as shown in Figure 2. Finally, a process for
matching the feature points are carried out. A matching pair is detected, if its distance is closer than τ

times the distance of the second nearest neighbor. Thus, the feature points extracted from the sensed
and reference images are of the same number, i.e., |X| = |Y|, where | · | denotes the cardinality of a set,
and each pair with the same suffix are matched already from the view of intensity information.

Scale
(first
octave)

Scale
(second
octave)

(a) Convolution

Scale
(first
octave)

Gaussian

(b) DoG (c) Extrema

SIFT descriptor

(d) Gradient (e) Accumulation

Figure 2. Illustration of how the SIFT feature descriptor is obtained. (a): Repeatedly convolving
initial image with Gaussians to produce the set of scale space images. (b): Subtracting adjacent
Gaussian images to produce the difference-of-Gaussian images. (c): Extrema detection by comparing
a pixel (marked with red circle) to its 26 neighbors in 3× 3 regions at the current and adjacent scales
(marked with green circles). (d): Feature descriptor creation by computing the gradient magnitude
and orientation at each image sample point. a Gaussian window indicated by the overlaid circle is
used as weighting. (e) Orientation histograms accumulation by summarizing the contents over 4× 4
subregions (a 2× 2 subregions is shown for convenience), with the length of each arrow corresponding
to the sum of the gradient magnitudes near that direction within the region, generating 4× 4× 8
descriptors, where 8 is the number of directions.

The SIFT distance is defined as:
sij = ‖ui − vj‖2, (6)

where S is of m× n dimension. ui and vj are the SIFT descriptors of xi and yj, respectively. We have
introduced three relevant features of our method, i.e., G, L and S. The next concern is to substitute
them into our MGMM.
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2.2.4. Multiple Image Feature Based Correspondence Estimation

The global geometric feature discrepancy are defined by G ij =
gij

2σ2 , where σ2 are the covariances
of the MGMM. It actually forms the Gaussian function of the pairwise Euclidean distance in the context
of f (xi|yj). The local geometric feature discrepancy Lij are defined as the Chi-square distribution of
the SC histograms, i.e., Lij = lij. The Priors of the MGMMs are formulated asMij = 1− s̃ij, where
matrix S̃ is obtained by row-by-row rescaling which makes each entry s̃ij ∈ [0, 1], and are therefore
taken as the confidence. Substituting G ij, Lij andMij into Equation (3), we can therefore rewrite it as:

p∗ij =
(1− s̃ij) exp

[
−
( gij

2σ2 + αlij
)]

∑m
k=1(1− s̃ik) exp

[
−
(

gik
2σ2 + αlik

)]
+ (2πσ2)

de
2

ζ
n

. (7)

The underlying assumption of density function Equation (7) is the decomposition of the process for
human to recognize and categorize objects. Supposing such process is based on the linear combination
among features such as Euclidean distance and density, etc. The priority of certain features may
change during the process. For instance, one can easily categorize different letters according to the
feature of shape at the very beginning, whereafter the accuracy can be further optimized by involving
other features in. Following this idea, an deterministic annealing scheme is applied to control the
fuzziness, which progressively decreases the covariances by σ2 ← εσ2 from a large value, where ε is a
constant. In the early stage of iterations, the two point sets have the biggest difference, estimation based
on Euclidean distance is less accurate, yet the local geometric feature discrepancy and the intensity
information are relative strong and stable. The unreliable global correspondence is filtered due to the
property of negative nature exponential function. At the final stage of iterations, xi and yj are very
similar, a direct estimation using the global geometric feature is desirable. In addition, the statuses of
these features interchange as σ2 is small, leading to binary-like correspondences.

Furthermore, the correspondences estimation of the MGMM is a fuzzy-to-binary process, by which
the correspondences are able to be improved gradually and continuously during the optimization
without jumping around in the space of binary permutation matrices.

2.3. Geometric Constraint for L2E Based Energy Optimization

Based on the reliable correspondence estimated by the MGMM, the target coordinate is determined
by x∗i = ∑n

j=1 pijxj. Our next concern is to formulate a criterion, by which a reasonable position T (yi)

of yi is determined. This position in turn improves the accuracy of the correspondence estimation
in the next iteration interlockingly. In this subsection, we formulate the L2E based energy function
with geometrical constraint. Followed by sketching out the related concepts and techniques, i.e., the
L2-minimizing estimate (L2E) and the motion coherent based geometric constraint.

The unknown coordinates of the source point set to be transformed is estimated by using the L2E
based energy function with geometric constraint which is written as:

Q(T , ρ2) = L2E(T , ρ2) +
λ

2
R(T ), (8)

where T is the non-rigid transformation, ρ2 is the parameter of the density models we used to represent
the deviation between the source and target point sets, L2E(·) is the L2E estimator and R(·) is the
geometric constraint on T based on the Tikhonov regularization theory [33], the constant λ controls
the strength of the constraint.

2.3.1. L2E

L2E [34] is a robust estimator which minimizes the L2 distance between densities, and is
particularly appropriate for analyzing massive datasets where outlier rejecting is impractical.
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Suppose we have a density model p(z|θ), our goal is to minimize the estimate of L2 distance with
respect to θ as θ∗ = arg minθ

∫
[p(z|θ)− p(z|θ0)]

2 dz, where the true parameter θ0 is unknown. After
omitting the constant

∫
p(z|θ0)

2dz, parameter θ is estimated by minimizing the L2E criterion as:

θ∗L2E = arg min
θ

[∫
p(z|θ)2dz− 2

m

m

∑
i=1

p(z|θ)
]

. (9)

The robustness of the L2E estimator can be shown by comparing against the maximum
log-likelihood estimator (MLE). Consider a sample of size 500 from a normal distribution N (0, 1)
which stands for the inliers, five normal distributed samples N (5, 1) in a tendency of increasing size
(e.g., 25, 50, 100, 150, 250) act as outliers. The estimated means are shown in Figure 3. L2E has a
stable global minimum at approximately 0, as well as a local minimum at approximately 5 which
becomes deeper as the number of outliers increases. This is reasonable since the outliers are from
N (5, 1). By contrast, MLE is not resistant to outliers, since the global minimum deviates more under
heavier contamination.

Figure 3. The robustness comparison between L2E and MLE. We estimate the mean of a normally
distributed sample N (0, 1) with contaminations of extra samples N (5, 1). The outlier to the inlier
ratios are 5%, 10%, 20%, 30% and 50%. The vertical dash lines indicate the extrema. L2E has a global
minimum at approximately 0 and a local minimum at approximately 5, both of which conform to
the inlier and outlier distributions, respectively. However, the deviation of MLE increases as the
ratio grows.

2.3.2. Motion Coherent Based Geometric Constraint

The key constraint of a rigid transformation is that all distances are preserved. However, once
non-rigidity is allowed, there are an infinite number of ways to map one point set onto another. An
appropriate constraint is necessary to solve this ill-posed problem. To this end, the motion coherent
based geometric constraint is introduced into our method.

In motion perception, there are a number of important phenomena involving coherence. Velocity
coherence is a particular way of imposing smoothness on the underlying transformation. The concept
of motion coherence is proposed in the motion coherence theory [35] which is intuitively interpreted as
that points close to one another tend to move coherently. Examples of velocity fields with two different
levels of motion coherence for two different point correspondences are illustrated in Figure 4. Since
our focus is on its application in remote sensing image registration, we will not drill-down further into
the theoretical model but directly write the geometric constraintR(T ) in the form as:

R(T ) = ‖T ‖2 (10)

It implies that we are imposing motion coherence among the SIFT feature points, and discouraging
the undesired transformation, e.g., as shown in Figure 4c, over the whole warping plane. With a
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large λ, the constraint produces globally smooth transformation, while it produces more arbitrary
transformation with small values.

(a) (b) (c)

Figure 4. Illustration of the velocity field. (a): two given point pairs. (b): a coherent velocity field. (c): a
velocity field that is less coherent.

2.4. Main Process

Given a sensed image Is of size Nw × Nh and a reference image Ir of size N′w × N′h, our
goal is to obtain a transformed image It of size N′w × N′h by recovering the underlying geometric
transformation from Is to Ir. The main process of our method consists of three steps as shown in
Figure 5: (i) extraction of the feature point sets, (ii) registration of the extracted feature point sets, and
(iii) image Transformation and resampling, where the second step comprises an alternating two-step
process: correspondence estimation and transformation updating of the feature point sets.

Ir,Is

X, YU, V

Geometric

Global G
Local L

Intensity S

(a) Feature complementation

Intensity

Multiple image featuresMultiple image features

MGMM

Energy function

Constrained L2E
Y← T (Y)

X∗

G,L,M

(b) Feature point set registration

TPS
Bicubic interpolation

Backward approach

(c) Image transformation

Ŷ
It

Figure 5. The summary of our method. (a): Extracting putative corresponding set {xi, yi}n
i=1 and

SIFT descriptor set {ui, vi}n
i=1 using SIFT algorithm, and obtaining two types of discrepancies, i.e., the

global and local geometric structure discrepancies G and L, and intensity information discrepancy S.
(b): substituting the combined features into the optimization framework and obtaining the transformed
point set Ŷ, note that a loop is included. (c): Image registration based on the backward approach.

2.4.1. Extraction of the Feature Point Sets

SIFT algorithm is employed for feature point sets extraction. By {Ym×de , Vm×ds} and
{Xn×de , Un×ds} we denote the feature point sets and SIFT descriptor sets extracted from the sensed
and reference images, respectively, where Y = {y1, y2, ..., ym}T and X = {x1, x2, ..., xn}T are the de

dimensional geometrical coordinates of the source and target point sets , and V = {v1, v2, ..., vm}T and
U = {u1, u2, ..., un}T are the intensity information, namely the ds dimensional SIFT descriptors for X
and Y, respectively. Note that T (Y) (initial T (Y) = Y) denotes the transformed set Y in each iteration,
and a general derivation is realized by using different suffixes n and m where m = n actually.
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2.4.2. Feature Point Set Registration

Correspondence estimation: The pairwise global and local geometric structure discrepancies G
and L, and the SIFT distance S are obtained by Equations (4)–(6), respectively. The posterior probability
matrix, which is also known as the correspondence matrix is then written as:

p∗ij =
(1− s̃ij) exp

[
−
(
‖xi−yj‖2

2σ2 + α
2 ∑B

b=1
[hi(b)−hj(b)]2

hi(b)+hj(b)

)]
∑m

k=1(1− s̃ik) exp
[
−
(
‖xi−yk‖2

2σ2 + α
2 ∑B

b=1
[hi(b)−hk(b)]2

hi(b)+hk(b)

)]
+ (2πσ2)

de
2

ζ
n

, (11)

where P∗ is of size m× n. s̃ij, s̃ij ∈ [0, 1] is the rescaled SIFT distance, σ2 are the equal covariances
of the MGMM, constant ζ is the outlier weighting, and B bins are used to construct the SC log-polar
coordinate. Hence, the estimated corresponding set is obtained by

X∗ = P∗X. (12)

After computing X∗ , the non-rigid transformation is modeled by the current correspondence X∗

and the source point set Y.
Transformation updating: The Resiz representation theorem states that if ψ is a bounded linear

function on a Hilbert spaceH, then there is a unique vector ν inH, making ψt = 〈t, ν〉 for all ψ ∈ H.
Thus the cumbersome mapping problem reduces to find the unique vector ν. This motivates us to
model the non-rigid transformation T by requiring it to lie within the reproducing kernel Hilbert
space (RKHS).

We first define a RKHS H by choosing a positive definite kernel, here we adopt the Gaussian
kernel, which is in the form Θ(yi, yj) = exp(− 1

2β2 ‖yi − yj‖2), where β is a constant to control the
spatial smoothness and Θ is of size m× m. According to the representation theorem, the optimal
transformation function T takes the form

T (Y) = Y + ΘW, (13)

where Wm×de = {w1, w2, ..., wm}T is the coefficient matrix. Hence, the minimization over energy
function Equation (8) boils down to finding a finite coefficients matrix W.

The non-rigid transformation T (Y) is equivalent to the initial position plus a displacement
function i.e., T (Y) = Y + V(Y). It is worth nothing that R(T ) and R(V) are exactly the same, i.e.,
R(T ) = R(Y + V(Y)) = R(V), sinceR(T ) is invariant under affine transformations. In this paper,
we solve for V instead of T . The complete energy function Equation (8) takes the form as:

Q(W, ρ2) =
1

2de(πρ)
de
2

− 2
m

n

∑
i=1

1

(2πρ2)
de
2

exp


∥∥∥x∗i −∑m

j=1 Θ(yi, yj)wj

∥∥∥2

2ρ2

+ λtr(WΘW), (14)

where constant λ controls the strength of the constraint, tr(·) denotes the trace of a matrix. Taking
derivative of Equation (14) with respect to coefficient matrix W, we obtain:

∂Q
∂W

=
2Θ[U� (E⊗ 1)]

mρ2(2πρ2)
de
2

+ 2λW, (15)

where Um×de = ΘW−X∗, Em×1 = exp{diag(UUT)/2ρ2}, 11×de is a row vector with all ones, diag(·) is
the diagonal of a matrix, symbols � and ⊗ denote the Hadamard product and the Kronecker product.

A gradient-based numerical optimization technique is employed to solve this optimization
problem based on Equation (15). Moreover, non-rigid point set registration has high degrees of
flexibility, trapping the optimization process by local extrema. Therefore, we improve the convergence
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by adopting another deterministic annealing on the covariances ρ2. It initializes with a large value
for ρ2 which progressively decreases by ρ2 = κρ2, where κ is a constant. And the energy function
Equation (14) will converge to an optimal solution eventually.

After updating the coordinates of the source point set by Y← T (Y), we anneal the covariances
of the MGMM by σ2 ← εσ2, then return to correspondence estimation and continue the registration
process until the maximum iteration number is reached. The pseudo-code of the feature point sets
registration of our method is outlined in Algorithm 1. In addition,

Algorithm 1: Feature matching using multiple features for remote sensing registration
input :Two point sets X and Y
output :Transformed point set Ŷ
parameter : α, ζ, β, ε, λ and κ

1 Initialize σ2 and W;
2 Construct Gaussian kernel Θ;
3 repeat
4 Correspondence estimation:
5 Compute G, L and S by Equation (4)–(6), respectively;
6 Compute the posterior probability matrix P∗ Equation (11);
7 Compute the corresponding target point set by X∗ = P∗X;
8 end
9 Transformation estimation:

10 Initialize ρ2;
11 repeat
12 Optimize the energy function Equation (14) by a numerical technique;
13 using the gradient function Equation (15);
14 Update the coefficient matrix W;
15 Anneal ρ2 ← κρ2;
16 until reach tρ iteration number;
17 Update the source point set by Y← T (Y);
18 end
19 Anneal σ2 ← εσ2;
20 until reach tσ iteration number;
21 The transformed source point set Ŷ is obtained in the final iteration.

2.5. Image Transformation and Resampling

Once we have the transformed sensed feature point set Ŷ, a mapping function can be constructed
based on the corresponding set, i.e., I = {yi, ŷi}m

i=1 and thus to register the images. There are two
choices. (i) Forward approach: directly transforming the sensed image Is using the mapping function.
(ii) Backward approach: determining the transformed image It from Is using the grid of the reference
image Ir and the inverse of the mapping. Since (i) is complicated to implement, as it can produce holes
and/or overlaps in the output image due to the discretization and rounding, we use the backward
approach for image transformation, and the flowchart is shown in Figure 6.
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(a) Mapping Ŷ to Y using TPS

Estimated TPS model P

Y Ŷ

Reference Ir Grid ΓrPixel
indexing

(b) Mapping Γr using P

Grid Γs

Grid Γ̂
r

Γ̂∗ = Γ̂
r ∩ Γs

(c) Limiting indexes to boundaries (d) Getting green part from Is as It

based on the index

Γ̂∗

It

Figure 6. Illustration of the image transformation and resampling. (a) Computing a TPS transformation
model P which maps Ŷ back onto Y, meanwhile, constructing a grid Γr which is of the same
size as Ir; (b) Mapping Γr using P , obtaining Γ̂

r; (c) Limiting indexes to boundaries of Γ̂r ∩ Γs;
(d) Getting intensities from Is within boundaries to generate It, each pixel in It is determined by the
bicubic interpolation.

Let Ŷ be the source, Y the target, the TPS kernel is defined asK(ŷi, ŷj) = ‖ŷi − ŷj‖2 log ‖ŷi − ŷj‖,
thus, the TPS transformation model is obtained by

P =

(
K Q

QT O

)−1


Y

0

0

0

 (16)

where the TPS model P is of size (m + 3)× 3, O is a 3× 3 matrix of zeros and Q is the m× 3 matrix
with the ith row denotes (1, ŷia, ŷib), where ŷia and ŷib indicate the coordinates of ŷi.

A regular grid Γr
Z×2 = {γr

1, γr
2, ...γr

Z}T is obtained by a pixel-by-pixel indexing process on the
reference image Ir, where Z = N′w × N′h. Let grid Γr be the source point set, P the TPS transformation
model, the transformed grid is obtained by first computing

Γ̂r
Z×3 =

(
K′ Q′

)
P , (17)

then restoring the dimension of the grid to 2 by Γ̂r ←
(

Γ̂r
(·,1) Γ̂r

(·,2)

)
, where the Z × m kernel

K′ = ‖γr
i − ŷj‖2 log ‖γr

i − ŷj‖, Q′ is the Z × 3 matrix with the ith row denotes (1, (γr
i )a, (γr

i )b) and
Γ̂r

(·,i) denotes the ith column of Γ̂r . Let Γs be the grid obtained on Is, we have

Γ̂∗ = Γ̂r ∩ Γs. (18)

Finally, the transformed image It is obtained by getting intensities from the sensed image Is based
on Γ̂∗, and setting the rest of pixels to black. Note that the bicubic interpolation is used to improve the
smoothness of It, to be more precisely, the intensities of each pixel in It is determined by summing the
weighted neighbor pixel intensities within a 4× 4 window.

2.6. Method Analysis

Figure 7 demonstrates the advantage of the MGMM by comparing against the single feature
based method, e.g., CPD. At the first iteration, we can see that the initial estimated coordinates by CPD
are the regional center of masses, while they are close to the real target coordinates using our method.
This helps us recover a good initial pose for aligning the two point sets. Iterating CPD even more, the
estimated coordinates are still regional center of masses, and a much better source coordinates obtained
by our method. Finally, our method outperforms with less iterations. The obvious difference within
red rectangles results from that the estimating ranges i.e., covariances σ2 of the GMMs in CPD wane
to too small a magnitude whereas the distance between points are relatively large. The meaningless
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probabilities P∗ provide a bad X∗, which can not lead T (Y) anymore. Moreover, we see that many
green circles are missing from the red rectangle in CPD, and collapsed to (0, 0), in the contrary, all
the green circles correctly distribute to where they should be, yet only the outliers have no circles in
our method.

Figure 7. Demonstration of the advantage of the MGMM. Red ∗: the target feature point set X. Green ◦:
the estimated corresponding point set X∗. Blue +: the source feature point set T (Y). Upper row and
lower row: registration process of CPD and our method. X and Y are extracted from a remote sensing
image pair.

To examine by which the reliability of our method is mainly contributed, we also additionally
compare the accuracy of the feature point sets registration using our method against GMMREG [36],
which considers the registration problem as one of the aligning two Gaussian mixture models, and
estimates the transformation by minimizing the L2 distance between the two models. As shown
in Figure 8, though the L2E estimator is employed, there exists obvious deviations in the result
of GMMREG, while our method shows feasible performance. This implies that the accuracy of
correspondence and transformation is mainly improved by the strategy based on the complementation
and combination of multiple image features using the MGMM.

Figure 8. Examination of the availability of the MGMM. Red ∗: the target feature point set X. Blue ◦:
the source feature point set T (Y). (a,b) registration result of GMMREG and our method. Obvious
deviation exists in the result of GMMREG.

2.6.1. Computational Complexity

The local geometric feature discrepancy is measured by using the SC, it takes O(m) time to
build the SC for one point, which therefore takes O(m2) time to build for m points. Note that the
Hungarian algorithm which is used to solve the problem of bipartite graph matching with worst-cost
time O(m3) is not included in our method. The Matlab Optimization toolbox, e.g., the Matlab function
fminunc, which implicitly uses the BFGS Quasi-Newton method with a mixed quadratic and cubic line
search procedure,. is used for solving the numerical optimization method, and the total complexity is
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approximately O(m3 + 2m2). Overall, the time complexity of our method is O(m3). For storing kernel
Θ, the space complexity of our method is O(m2).

2.6.2. Parametric Setting

The default threshold 1.5 is used to extract the putative corresponding set {xi, yi}n
i=1 as well as

the SIFT descriptors {ui, vi}n
i=1. The bins of the SC is set to default, i.e., B = 12× 5. The constant

α controls the trade-off between the global and local geometric feature discrepancy. The constant ζ

weights the uniform distribution 1
n for outlier dealing. The two annealing schemes, i.e., gradually

update σ2 ← εσ2 and ρ2 ← κρ2, which deal with the non-convexity play important role in our method.
A slow annealing, e.g., close to 1, is always preferred without the consideration of the efficiency issue.
The constant tσ and tρ determine the maximum iteration numbers of our method and the function
fminunc in Matlab. β determines the neighborhood size of the source point set. λ controls the influence
of the geometric constraint on the transformation T . We set α = 10, ζ = 0.3, ε = 0.9, κ = 0.75, β = 2
and λ = 3, and initializing σ2 and ρ2 to 1 and 0.05, respectively. Due to the iterations need termination
conditions, we use the function fminunc in Matlab with the options: {MaxIter = 50}, namely tρ = 50,
and set tσ = 100.

3. Experiments and Results

SIFT [11], SURF [13], CPD [25], GLMDTPS [30], RSOC [21], totally five state-of-the-art methods
are compared against our method in the experiments. These methods can mainly categorize into three
types based on the methods of feature extraction. Type 1: using open source VLFeat toolbox with
default threshold 1.5, i.e., SIFT, CPD, GLMDTPS and ours. Type 2: using open source VLFeat toolbox
with specific built-in setting, i.e., RSOC. Type 3: using Matlab open source OpenSURF function with
default setting, i.e., SURF. Since both the feature matching and image registration are considered in
our method, we fairly design three series of experiments. (I) Due to the employment of the same
feature point sets, quantitative comparison on feature matching is carried out on methods of Type 1
using the precision ratio (PR). However, since no inlier set is outputted from GLMDTPS, the compared
methods are SIFT, CPD and ours. (II) Quantitative comparison and Qualitative demonstration on
image registration are carried out on all the methods using the root of mean square error (RMSE), mean
absolute error (MAE) and standard deviation (SD). (III) By using the different datasets, quantitative
and qualitative demonstration on feature matching and image registration are carried out to examine
the availability and robustness of our method using the PR, RMSE, MAE and SD. Three datasets
are used which are: (i) 100 pairs of UAV images with horizontal viewpoint changes; (ii) 150 pairs of
UAV images pairs with vertical viewpoint changes; and (iii) 50 pairs of satellite images registration
with horizontal and vertical viewpoint changes. The experimental design is shown in Table 1. All
experiments are tested on a PC with 2.20 GHz Intel CPU and 8 GB memory.

Table 1. The experimental design.

Series Criteria Compared Methods Datasets Used

I PR SIFT, CPD, Ours (i), (ii)
II All All (i), (ii)
III All Ours (iii)

Generally, the downsampled image size is selected based on the performance and accuracy
requirements of the underlying system. High sampling rates might lead to more locally accurate at the
cost of the far more time-consuming, whereas the globality is our main concern. Therefore, a procedure
of downsample, which is based on the bicubic interpolation using Matlab imresize function, is carried
out on all image pairs. The downsampled images have a resolution in the range from 640× 450 to
1100× 850 pixels, thus the more compact feature points can therefore be extracted. The number of the
extracted feature points for Type I to III methods are shown in Table 2.
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Table 2. Numbers of the extracted feature points.

Type 1 Type 2 Type 3

87 to 505 30 35 to 165

3.1. Evaluation Criterion

Precision =
TP

TP + FP
, (19)

where TP denotes true positive, FP denotes false positive, 0 ≤ Precision ≤ 1. To obtain the estimated
inlier set I , different approaches are used based on the characteristic of each method. For SIFT, it is
just an array from 1 to n; for CPD and our method, it is obtained by:

I = {i : (PT1)i > $}, (20)

where the threshold is set to $ = 0.75 empirically.
The RMSE, MAE and SD are used to quantify the registration accuracy. We manually determine

at least 10 pairs of landmarks between the sensed image and the reference image as ground-truth, and
all the landmarks are well-distributed and selected on the easily identified places around the interest
areas. The related formulations and the definitions in statistics are as follows:

RMSE =

√√√√ 1
m′

m′

∑
i=1

(yt
i − xt

i), (21)

The root mean square error is a frequently used measure of the distance between selected landmark
and its corresponding point actually located, where m′ is the total number of the selected landmark,
and yt

i is the landmark that corresponds to xt
i ;

MAE =

m′

∑
i=1
|yt

i − xt
i |

m′
; (22)

the mean absolute error is a quantity used to measure how close the landmark are to its
corresponding point;

SD =

√√√√ 1
m′

m′

∑
i=1

[
d(xt

i , yt
i)− RMSE

]2, (23)

the standard deviation informally measures how far the distance of a landmark pair are spread out
from its RMSE, where d(·, ·) denotes the distance.

3.2. Results on Feature Matching

The quantitative results are shown in Table 3. Feature matching results on eight typical image
pairs are demonstrated in Figure 9, as well as the quantitative results of the eight selected image pairs.

Table 3. Experimental results of series (I). Quantitative comparisons on the mean PR of Type I method
are carried out. Bold fonts indicate the best results. All Units are in percentage.

Dataset SIFT CPD Ours

(i) 78.30 90.81 98.25
(ii) 72.78 90.17 97.15
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Figure 9. Feature matching demonstrations on eight typical image pairs of dataset (i) and (ii). For each
image pair, rows from the first to the fourth are: the image pair, the results on feature matching of ours,
SIFT and CPD, respectively. Blue lines indicate true positive and true negative, red lines indicate false
positive and false negative. The PRs of three methods on each image pairs are listed from (a) to (h) as
follows. Ours: 99.00, 99.29, 97.31, 97.40, 99.32, 99.62, 98.31, 98.89; SIFT: 85.68, 85.18, 45.12, 60.26, 82.43,
80.34, 82.43, 83.55; CPD: 86.86, 88.14, 85.02, 88.24, 87.22, 85.55, 89.76, 85.23.

The extraction of the SIFT feature point sets is based on the intensity information, or, to be more
precisely, the scale-space extrema. However, for all the data which contain viewpoint changes, the
objects captured in one image may be missing or distorted non-rigidly from another image, which
further lead to false matching. Based upon the SIFT putative corresponding set, CPD estimates
the correspondence using Euclidean distance, a single global geometric structure discrepancy for
correspondence estimation. The motion coherent based geometric constraint is employed to regularize
the displacement field between the point sets. However, as we mentioned before, the regular
Gaussian mixture model is incapable of dealing with mixture features, and for Euclidean distance,
p(xa|yj) = p(xb|yj) if ‖xa − yj‖2 = ‖xb − yj‖2 even when the neighborhood structure of xa and xb
are totally different. In our method, both the intensity information and the global and local geometric
structure discrepancies are considered, the complementation and combination of these features provide
a reliable correspondence estimation. We summarize the key components employed in these three
method as: (I) intensity information discrepancy; (II/III) global/local geometric structure discrepancy;
(IV) geometric constraint. Thus, SIFT use only (I), CPD employs (II) and (IV), and our method adopts
both. Therefore, the result shows a increasing tendency on PR from left to right.

3.3. Results on Image Registration

Quantitative comparison using the mean RMSE, MAE and SD are shown in Table 4. The
transformed images and 5× 5 checkboards on eight typical image registration examples from dataset
(i) and (ii) are shown (four examples per dataset) in Figures 10 and 11, respectively.

A low computation complexity is one of the advantages for registering image based on the
extracted feature points. However, its registration accuracy might be poor which in general cannot
obtain accurate dense correspondences. Therefore, the number of the extracted feature points plays
a crucial role to alleviate this problem. In this experiment, SURF and RSOC, which extract relative
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small number of feature points, are sensitive to false matches. Since RSOC employs robust graph
matching technique to remove dubious matches, its performance remains relative high. By contrast,
the result shows that directly yielding the transformed images by the putative corresponding set of
SIFT with a default threshold is not a good idea when viewpoint changes exist. Fewer and more
reliable feature points can generate by setting a high threshold, which in turn limits the registration
accuracy based on more sparse correspondences. GLMDTPS employs mixture features as well. The
global feature is the pairwise Euclidean distance, and the local feature first respectively generates two
index matrices of K nearest neighbors for two point sets. After translating the two currently computing
points together, the local distance is obtained by summing the squared Euclidean distance between
the ith neighbors. The defect of the employed features is that it is sensitive to outliers and similar
neighborhood structure. Unlike the contour point set, the feature point set extracted in remote sensing
images distributes irregularly, the local distance employed by GLMDTPS is therefore ambiguous,
resulting in more dubious estimation in local area.

Table 4. Experimental results on series (II). Quantitative comparisons on image registration measured
using the mean RMSE, MAE and SD are carried out. Bold fonts indicate the best results. All units are
in pixel.

Dataset SIFT SURF CPD GLMDTPS RSOC OURS

RMSE (i) 13.5287 7.9837 3.2386 3.0152 2.2737 1.0171
(ii) 11.4466 7.0627 7.2645 5.5991 4.1743 1.4331

MAE (i) 16.0080 12.2803 7.5404 7.1459 6.4448 4.0271
(ii) 14.2989 9.8411 10.3778 9.1102 7.3585 3.9188

SD (i) 14.1826 10.2241 5.8594 5.4353 4.8013 3.1957
(ii) 11.9613 8.2523 4.3619 7.6531 5.7844 3.0021
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Figure 10. Registration examples on four typical image pairs from dataset (i). The first two rows: the
sensed and reference image, with the yellow crosses denoting the landmarks. Rows from the third to
the end are the registration results of ours, SIFT, SURF, CPD, RSOC and GLMDTPS. For each method,
the registration results are shown using two rows, with the upper row showing the transformed image,
and the lower row showing the 5× 5 checkboard. The registration errors are highlighted using the red
rectangles.
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Figure 11. Registration examples on four typical image pairs from dataset (ii). The first two rows: the
sensed and reference image, with the yellow crosses denoting the landmarks. Rows from the third to
the end are the registration results of ours, SIFT, SURF, CPD, RSOC and GLMDTPS. For each method,
the registration results are shown using two rows, with the upper row showing the transformed image,
and the lower row showing the 5× 5 checkboard. The registration errors are highlighted using the red
rectangles.

3.4. Reliability and Availability Examination of Our Method

In this series of experiment, we examine the reliability and availability of our method using
Satellite Image with Horizontal and Vertical Viewpoint Changes. The PR, RMSE, MAE and SD are
shown in Table 5, seven typical images are selected to show the image registration results in Figure 12.
We see that our method maintains accurate alignments in all experiments. Which means that our
proposed method can successfully handle the satellite image registration problem in most time.
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Figure 12. Registration examples on the seven typical satellite image pairs. From (a) to (g) are: Berlin,
Las Vegas, Mekong River, Paris, WuHan, Washington and Hawaii. Columns from the left to the right
are: the sensed, reference and transformed images, the 5× 5 checkboards, and the feature matching
results. Blue lines indicate true positive and true negative, red lines indicate false positive and false
negative.

Table 5. Experimental results on series (III). Quantitative tests on feature matching and image
registration are carried out to examine the availability and robustness of our method using the PR,
RMSE, MAE and SD. (a) to (g): results on the corresponding pairs of Figure 12. Mean: the mean of
results on all image pairs of dataset (iii). For the PR, the units are in percentage, for the RMSE, MAE
and SD, the units are in pixel.

(a) (b) (c) (d) (e) (f) (g) Mean

PR 96.88 96.77 95.97 95.77 95.09 98.19 95.57 96.54
RMSE 0.8358 1.3963 1.9556 1.4272 0.7743 1.4342 0.3171 1.1628
MAE 2.1458 4.0208 2.9097 1.9317 2.5778 2.3542 2.2958 2.6051
SD 1.8562 2.5498 2.5171 1.8061 2.1429 2.0098 2.0717 2.1362

4. Conclusions

In this paper, we proposed an accurate method for remote sensing image registration with
different viewpoint. The main contributions of this paper are considered as follows. (i) The MGMM
is constructed for simultaneously dealing with different types of image features. (ii) Two types of
features are using to form a feature complementation, i.e., the Euclidean distance and shape context
to measure the global and local geometric structure discrepancies, and the SIFT distance which is
endowed with the intensity information are combined and substituted into the MGMM by which the
reliable correspondence is obtained. (iii) To prevent the ill-posed problem, a geometric constraint
term based on coherent velocity field is introduced into the L2E-based energy function and achieves
accurate transformation updating. Experiments on three series of remote sensing images obtained
from the unmanned aerial vehicle (UAV) and Google Earth with different viewpoint demonstrate that
our method shows best registration performances against five state-of-the-art methods.
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