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Abstract: Compressive radar imaging has attracted considerable attention because it substantially
reduces imaging time through directly compressive sampling. However, a problem that must
be addressed for compressive radar imaging systems is the high computational complexity of
reconstruction of sparse signals. In this paper, a novel algorithm, called two-dimensional (2D)
normalized iterative hard thresholding (NIHT) or 2D-NIHT algorithm, is proposed to directly
reconstruct radar images in the matrix domain. The reconstruction performance of 2D-NIHT
algorithm was validated by an experiment on recovering a synthetic 2D sparse signal, and the
superiority of the 2D-NIHT algorithm to the NIHT algorithm was demonstrated by a comprehensive
comparison of its reconstruction performance. Moreover, to be used in compressive radar imaging
systems, a 2D sampling model was also proposed to compress the range and azimuth data
simultaneously. The practical application of the 2D-NIHT algorithm in radar systems was validated
by recovering two radar scenes with noise at different signal-to-noise ratios, and the results showed
that the 2D-NIHT algorithm could reconstruct radar scenes with a high probability of exact recovery
in the matrix domain. In addition, the reconstruction performance of the 2D-NIHT algorithm was
compared with four existing efficient reconstruction algorithms using the two radar scenes, and the
results illustrated that, compared to the other algorithms, the 2D-NIHT algorithm could dramatically
reduce the computational complexity in signal reconstruction and successfully reconstruct 2D sparse
images with a high probability of exact recovery.

Keywords: fast compressive radar imaging; compressive sensing; two dimensional normalized
iterative hard thresholding (2D-NIHT) algorithm; compressive radar imaging model;
reconstruction performance

1. Introduction

Radar, an object detection system using radio waves to detect objects and determine their spatial
positions, has been applied in many fields, including radar astronomy, geographical environment
surveillance system, and air defense systems. The demand of radar systems for high-resolution and
high-speed imaging capabilities is increasing and results in a strong desire for higher bandwidths and
more sampling time, which places significant pressure on radar hardware equipment and imaging costs.
However, classical time–frequency uncertainty principles based on the Shannon sampling theorem
have limited the development of high-resolution and high–speed radar imaging [1]. Compressive
sensing, as an effective approach for direct compressive sampling, has great potential application for
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radar imaging and is able to solve the problems that radar systems currently face, that is, the mass
time requirement of signal sampling and reconstruction for high–resolution imaging [2]. Meanwhile,
a compressive imaging method can simplify the structure of a radar system, allowing elimination of the
matched filter for pulse compression at the receiver and thereby reducing the need for analog-to-digital
convertors [3–6].

Some achievements of radar imaging based on the compressive sensing principle have been
reported [1,3,7,8]. Braniuk and co-workers first applied the compressive sensing theorem in
radar imaging systems and confirmed the feasibility of compressive radar imaging by theoretical
analysis and numerical experiments [3]. Zhang and co-workers proposed a framework to realize
high–resolution inverse synthetic aperture radar (ISAR) imaging with limited measured data based
on the theory of compressed sampling [4]. Ender presented generic system architectures and
implementation considerations to address some further steps to compressive radar imaging and
applied the compressive sensing in pulse compression, radar imaging and air space surveillance
with array antennas [9]. An approach that employed pulse accumulation and weighted compressive
sensing was also proposed by Zhang and co-workers under low signal-to-noise ratio (SNR) conditions,
to realize high-resolution imaging and reduce sensitivity to noise [10]. Moreover, many reconstruction
algorithms of compressive radar images have proposed. For example, Xie and co-workers proposed
a smoothed L0 norm (SL0) algorithm to obtain fast radar imaging based on a compressive sensing [11];
Bhattacharya and co-workers used convex optimization through projection onto convex sets or
greedy algorithms to decode compressive synthetic aperture radar (SAR) images [12,13]; and Yu
and co-workers introduced a turbo-like iterative thresholding algorithm to recover SAR images [14].
The methods of compressive radar imaging based on these reconstruction algorithms can obtain
high-resolution radar images with very small amounts of echo data, and improve the radar imaging
speed remarkably, compared with conventional radar imaging methods. However, the radar imaging
time is still very long, especially for high-resolution radar imaging, because the conventional strategies
for 2D signal reconstruction usually involve stacking a matrix of 2D signals into a huge column vector
based on the vector space model, and then recovering the huge vector signal with reconstruction
algorithms in the 1D domain [15,16]. These approaches exponentially increase the computational
complexity involved in recovering 2D sparse signals and the memory requirement for storing the
large-bandwidth data of the radar images [17]. In addition, these approaches ignore the intrinsic spatial
structure of 2D signals [16], especially the coupled range and azimuth information of radar imaging.

To address these drawbacks, some 2D reconstruction algorithms that directly leverage the matrix
structure of 2D sparse signals have been proposed recently [16–21], and some have been used in radar
imaging systems. For example, a fast reconstruction algorithm, called two-dimensional smoothed L0
norm (2D-SL0) algorithm, has been proposed to reduce computational complexity and economize on
the memory required by directly utilizes the matrix structure to recover the 2D sparse signals and is
designed [20], but the reconstruction quality of the natural image is poor. Another novel algorithm
called the 2D orthogonal matching pursuit (2D-OMP) algorithm, which was extended from 1D-OMP,
has been developed to reconstruct 2D sparse signals [17]. In this algorithm, each atom in the dictionary
is a matrix. At each iteration, the best matched matrix atom is selected by projecting the sample
matrix onto 2D atoms and the weights for the selected atoms are then updated via the least square.
This algorithm significantly reduces the computational complexity with a matrix structure, but it
still requires a great deal of memory usage and is suitable only for the square matrix of 2D sparse
signals. In addition, an iterative gradient projection algorithm for 2D sparse image reconstruction
has been proposed, in which the sparse solution is searched iteratively from the 2D solution space
and then updated by gradient descent of the total variation. It recovers the natural image perfectly,
being conducive to reduction in both computational complexity and memory requirements for the
measurement matrix [18]; however, the algorithm suffers from the limitation that the sparse signals
must be square.
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In this paper, we propose a novel reconstruction algorithm of 2D sparse signals, called the 2D
normalized iterative hard thresholding (2D-NIHT) algorithm, which is extended from the normalized
iterative hard thresholding (NIHT) algorithm [22] to reduce the reconstruction time in radar imaging
by recovering radar images in the matrix domain directly, and the effectiveness and superiority of
the algorithm are theoretically proved and demonstrated by experiments. Moreover, we also present
a 2D compressive sampling model of radar imaging systems, which compresses range and azimuth
information simultaneously and also ensures that the 2D-NIHT algorithm can be implemented in
a compressive radar imaging system.

This paper is organized as follows. In Section 2, we briefly present the compressive sensing theory
and the NIHT algorithm. In Section 3, we introduce the radar imaging model based on compressive
sensing. In Section 4, we describe the 2D-NIHT algorithm in detail and prove its convergence.
In Section 5, some experiments using randomly synthetic 2D signals and actual radar images are
presented. Finally, in Section 6, we draw conclusions.

2. Brief Introduction of Compressive Sensing and the NIHT Algorithm

2.1. Compressive Sensing

The basic theory of compressive sensing is formulated as follows. For a k-sparse signal
x ∈ RN , which contains no more than k nonzero elements, a measurement matrix Φ ∈ RM×N ,
and an observation vector (or measurements) y ∈ RM, where M < N, the core problem of compressive
sensing is to reconstruct the sparse signal x by solving the following linear equation:

y = Φx (1)

which acquires no unique candidate signals x for Φx = y because it is under-determined. However,
the signal x can be recovered from Φ and y through many available reconstruction algorithms, such as,
compressive sampling matching pursuit (CoSaMP) [23], iterative hard thresholding (IHT) [24], and
Smoothed L0 norm [25,26] algorithms, with high reliability if the measurement matrix Φ satisfies
the restricted isometry property (RIP) condition [27] and the signal x is sparse enough, that is,
k � N [2]. However, if the signals data are huge, these algorithms are inevitably costly in terms of
the computational complexity for recovering sparse signals as well as the memory usage for storing
the measurement matrices.

2.2. NIHT Algorithm

The NIHT algorithm, extended from the IHT algorithm, was first proposed by Blumensath [22]
and has become an effective method to calculate near-optimal solutions. The algorithm solves the
problem of Equation (1) using the following optimization problem:

x = arg min
x:‖x‖0≤k

‖y−Φx‖+ λ‖x‖0 (2)

where ‖ ‖ denotes the l2-norm, ‖ ‖0 counts the nonzero elements, and λ is the penalty factor.
The algorithm is described as follows.

Let x1 = 0; then,
xn+1 = Hk

(
xn + µnΦT(y−Φxn)

)
(3)

where Hk(x) is a nonlinear operator that sets all but the k maximal elements in absolute terms of x to
be zero, and µn is the step size at the nth iteration. In the NIHT algorithm, µn is adaptively determined
using the following procedures.

Let Πn = supp(xn) denotes the support set of xn, and gn = ΦT(y−Φxn) is the negative gradient
of ‖y−Φx‖2 evaluated at xn at the nth iteration; then, gΠn denotes the sub-vector of gn that contains
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only the elements in the set of Πn, and ΦΠn is the sub-matrix of Φ that contains corresponding columns
indexed by Πn. The adaptive step size µn and new approximation of xn+1 are updated as below.

Given the approximation of xn at the nth iteration and its support set Πn, the adaptive step size
µn is calculated by the following equation:

µn = gT
Πn gΠn /gT

Πn ΦT
Πn ΦΠn gΠn (4)

and the new proposition xn+1 is obtained from xn by the following equation:

xn+1 = Hk

(
xn + µnΦT(y−Φxn)

)
(5)

If the support set of xn+1 is equal to that of xn, namely, Πn+1 = Πn, then xn+1 = xn+1.
However, if Πn+1 6= Πn, the step size µn obtained in Equation (4) cannot guarantee that the

Equation (2) has a maximal reduction, and the approximation of xn converges. In this case, the sufficient
condition for the algorithm to guarantee convergent approximation of xn is that µn < ωn, where

ωn = (1− c)‖xn+1 − xn‖2
2/‖Φ

(
xn+1 − xn

)
‖

2

2
(6)

and c is a small constant. Therefore, in the case that Πn+1 6= Πn, it is necessary to calculate ωn and
check whether µn < ωn. If this holds, then xn+1 = xn+1 and Πn+1 = supp

(
xn+1). Otherwise, the step

size must be shrunk; in [22], it is proposed to shrink the step size µn by updating µn ← µn/(κ(1− c)) ,
where κ > 1/(1− c). A new proposition xn+1 is then calculated based on the shrunken step size
µn, and a new ωn is obtained for rechecking whether µn < ωn. These procedures are repeated until
µn < ωn, and then xn+1 = xn+1 and Πn+1 = supp

(
xn+1).

The NIHT algorithm is a modification of the IHT algorithm by the introduction of a simple
adaptive step size and line search, which not only makes the algorithm performance independent
of arbitrary scaling of Φ but also guarantees its convergence regardless of whether the theoretical
conditions for IHT are satisfied. Furthermore, the NIHT algorithm is faster than many other
state-of-the-art approaches that show similar empirical performance, such as the l1 norm algorithm
and OMP algorithm [22].

3. Radar Imaging Model Based on Compressive Sensing

3.1. 2D Compressive Sensing

For a 2D K-sparse signal X ∈ RN1×N2 , a measurement matrix pair A ∈ RM1×N1 and B ∈ RM2×N2 ,
and an observation matrix Y ∈ RM1×M2 , the 2D compressive sensing model is formulated as follows:

Y = AXBT (7)

where BT is the transpose of B, M1 < N1, M2 < N2 and K < M1M2. The sparsity K of the 2D signal

X is defined as Spa(X) =
N2
∑

i=1
‖xi‖0 ≤ K, in which xi denotes the ith column vector of the matrix X,

means that the 2D signal X has no more than K nonzero elements.
One-dimensional compressive sensing can be treated as a special form of 2D compressive sensing

in the case that M2 = N2 = 1. And the 2D compressive sensing model is also equivalent to the 1D
compressive sensing model by the following operations:

Φ = B⊗ A, y = vct(Y), x = vct(X) (8)
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where ‘⊗’ denotes the operation of the Kronecker product and vct( ) denotes the vectorization of
a matrix by stacking the columns of the matrix into a single column vector. Therefore, some properties
of 1D compressive sensing are also suitable for 2D compressive sensing.

3.2. Compressive Radar Imaging Model

For a typical stepped frequency radar, the echo data of the mth (m = 0, 1, . . . , P− 1) aspect angle
and nth (n = 0, 1, . . . , Q− 1) sampling frequency point can be described as:

unm =
P−1

∑
p=0

Q−1

∑
q=0

δpq exp
(
−j2π

pn
P

)
exp

(
−j2π

qm
Q

)
(9)

where δpq(p = 0, 1, . . . , P − 1, q = 0, 1, . . . , Q − 1) denotes the scattering intensity of the discrete
position, P is the number of aspect angles and Q denotes the number of sub-pulse in a burst [21].

Suppose N1 = P and N2 = Q, and let U = [unm]N1×N2
and δ =

[
δpq
]

N1×N2
denote matrix of echo

data and scattering intensity of the discrete position, respectively. Ψd =
[
exp

(
−j2πqm

N2

)]
N2×N2

and

Ψr =
[
exp

(
−j2πpn

N1

)]
N1×N1

represent the discrete Fourier dictionary of azimuth and range, respectively.

Then, a typical radar imaging model can be formulated as follows:

U = ΨrδΨd (10)

To apply the 2D compressive sensing in a radar imaging system, an effective compressive sampling
method should be designed at first for reducing the length of observation signals. Compared with the
1D compressive sampling model by which a small number of either frequency points or aspect angles
is randomly sampled [9,28], the 2D compressive sampling method compresses and randomly samples
both of frequency points and aspect angles simultaneously. Moreover, in the process of compressive
sampling of a radar system, any pixel δpq of a scene has just two states: sampled or un-sampled.
So, the sampling matrix is designed specially and each entry of the matrix is either 1 or 0, indicating
that the corresponding pixel of the radar imaging scene is sampled or un-sampled, respectively.
The 2D compressive sampling method in radar imaging is designed by the following procedures: (i) set
a matrix D ∈ RN2×N1 , in which each entry dij is either 0 (i 6= j) or 1 (i = j); (ii) randomly select M1

rows of D to produce a sampling matrix Dr, and M2 columns of D to produce a sampling matrix Dd,
respectively. The sampling matrix pair Dr and Dd compress the range information from N1 to M1 and
azimuth information from N2 to M2, respectively. In order to more clearly describe the 2D compressive
sampling process, a simple example is given, as shown in Figure 1. It is obvious that the sampling
process can compress a matrix X to a matrix Y of lower dimensions, and Y can be also regarded as
the set of M1M2 elements collected from the original scene X at the rows and columns, which are
determined by the column position of “1” of Dr and DT

d , respectively. Moreover, the compressive
sampling method is actually feasible, which has been demonstrated by its application in compressive
imaging with atomic force microscopy [29] and scanning ion conductance microscopy [30].
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Figure 1. The simple example of 2D compressive sampling. X—an original scene; Dr, Dd—sampling
matrix pairs; Y—an observation matrix; C—a matrix denoting the locations of the elements of Y in the
original scene X (Green shading block in matrix at the bottom left corner).

Then, the 2D compressive radar imaging model is formulated as follows:

Y = DrUDd = DrΨrδΨdDd (11)

The 2D compressive radar imaging model has the capability of dramatically reducing the sampled
pixels of a radar scene from N1 × N2 dimensions to M1 × M1 dimensions and reconstructing the
scene in matrix domain with much less reconstruction time using the 2D-NIHT algorithm presented
as below.

4. 2D-NIHT Algorithm

4.1. Description of the 2D-NIHT Algorithm

In this study, inspired by the conventional NIHT algorithm, a 2D-NIHT algorithm is proposed to
recover 2D sparse signals based on the 2D compressive sensing model, as described in the Equation (7),
by solving the following optimization problem:

X∗ = arg min
Spa(X)≤K

‖Y− AXBT‖2
F + λ ∗ Spa(X) (12)

where ‖ ‖F denotes the Frobenius norm of a matrix, that is, ‖X‖F =

√
N1
∑

i=1

N2
∑

j=1
xij

2.

The above optimization problem can be solved by the following iterative procedures:

Xn+1 =K

[
Xn + µn AT

(
Y− AXnBT

)
B
]

(13)

where K[X] is the nonlinear operation that sets all elements of matrix X as zero except for the maximum
K elements of X in absolute terms.

At the nth iteration, Γn = suppM(Xn) =
{

τn
ij

}
denotes the support matrix of Xn, in which

τn
ij = sgn(abs(xn

ij)) and xij
n are the entries of the matrices Γn and Xn at the ith row and the jth

column, respectively, and sgn() is the signum function. Gn =
{

gn
ij

}
= AT(Y− AXnBT)B is the

negative gradient matrix of ‖Y− AXBT‖2
F evaluated at Xn. Then, GΓn = Gn.× Γn denotes the matrix
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derived from Gn by setting gij
n = 0 if τij

n = 0, in which the “.×” is the element-wise multiplication,
and ΦΓn = AGΓn BT . Similar to the arguments in [22], the step size µn is calculated by the
following equation:

µn = ‖GΓn‖2
F/‖ΦΓn GΓn‖2

F (14)

Hence, a new proposition Xn+1 is calculated by the following equation:

Xn+1
=K

[
Xn + µn AT

(
Y− AXnBT

)
B
]

(15)

Next, it is necessary to determine whether the new proposition is an approximation solution Xn+1

to the problem in Equation (12) at the (n + 1)th iteration by comparing the support matrices Γn and
Γn+1 = suppM

(
Xn+1

)
described as follows.

If Γn is equal to Γn+1, then Xn+1 = Xn+1; otherwise, the sufficient condition must be satisfied to
guarantee the convergence of the approximation solution of X, that is, µn < ωn, where:

ωn = (1− c)‖Xn+1 − Xn‖
2
F/‖A

(
Xn+1 − Xn

)
BT‖

2

F
(16)

and c is a small constant. If µn ≥ ωn, then the step size µn must be shrunk by updating
µn ← µn/(κ(1− c)) with a constant κ > 1/(1− c), and a new proposition Xn+1 is calculated based
on the shrunk step size µn by Equation (15). The new ωn is accordingly obtained for rechecking
whether µn < ωn. These procedures are repeated until µn < ωn, and then Xn+1 = Xn+1 and
Γn+1 = suppM

(
Xn+1).

The implementation of the 2D-NIHT algorithm is listed in Algorithm 1.
In general, compared with NIHT method, which places a great demand on memory space for

measurement matrix storage, the 2D-NIHT algorithm realizes 2D sparse signal recovery in matrix domain
with far less storage space requirement. The 2D-NIHT algorithm requires M1N1 + M2N2 memory units
to store the measurement matrices; in contrast, the measurement matrix of NIHT algorithm requires
M1N1×M2N2 memory units. The 2D-NIHT algorithm immensely reduces the storage space requirement
for the measurement matrix, which is valuable in practice, especially for portable radar systems.

Algorithm 1. 2D normalized iterative hard thresholding algorithm.

Input: A, B, Y, K.

Initialize: X1 = 0, Γ1 = suppM
(

HK

(
ATYB

))
.

Iterate for n = 1, until the stopping criterion is met:
Step 1. Gn = AT(Y− AXnBT)B;
Step 2. µn = ‖GΓn‖2

F/‖ΦΓn GΓn‖2
F ;

Step 3. Xn+1
=K [Xn + µnGn];

Step 4. Γn+1 = suppM
(

Xn+1
)

;

Step 5. If Γn is equal to Γn+1, then go to Step 6; otherwise

set ωn = (1− c)
(
‖Xn+1 − Xn‖

2
F

)
/‖A

(
Xn+1 − Xn

)
BT‖

2

F
,

and repeat the following procedures until µn < ωn:

µn ← µn/(κ(1− c)) , Xn+1
= HK(Xn + µnGn),

ωn = (1− c)
(
‖Xn+1 − Xn‖

2
F

)
/‖A

(
Xn+1 − Xn

)
BT‖

2

F
;

Step 6. Xn+1 = Xn+1;
Step 7. Γn+1 = suppM

(
Xn+1);

Step 8. n = n + 1.
Output: X∗ = Xn+1.
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4.2. Convergence of the 2D-NIHT Algorithm

The sufficient condition for the convergence the 2D-NIHT algorithm is given in the following
convergence theorem.

Theorem 1. Given a 2D compressive sensing model Y = AXBT , where X is a 2D K-sparse signal and XK is
the best K-term approximation of the signal X, if the matrix Φ = B⊗ A satisfies the RIP condition for any
2K-sparse signal x = vct(X):

0 < α2K ≤
‖Φx‖
‖x‖ ≤ β2K (17)

where α2K and β2K are two constants, then the 2D-NIHT algorithm can recover X by an approximation
Xn at the nth iteration, satisfying:

‖X− Xn‖F < 2−3n/2‖XK‖F + 3.557/α2
2K‖E‖F + ‖X− Xk‖F (18)

where E = Y− AXKBT is the observation error.

Furthermore, after no more than:

n∗ =
⌈

2
3

log2

(
‖XK‖F

ε̃K

)⌉
(19)

Iterations, the 2D-NIHT algorithm recovers X with an accuracy of:

‖X− Xn∗‖F ≤ 7.114/α2
2K‖E‖F + 2‖X− Xk‖F (20)

where:
ε̃K = 3.557/α2

2K‖E‖F + ‖X− Xk‖F (21)

Theorem 1 (proof shown in Appendix A) indicates that the 2D-NIHT algorithm can find an optimal
solution that approximates the true signal with finite iterations, and the approximation is bounded
by 2ε̃K, which includes two parts: one is determined by the observation error E and the other is
determined by the deviation between the signal X and the best K-term approximation. Assuming that
the observation error is zero and X is K-sparse, the algorithm can recover X exactly. For practical radar
imaging, the reconstruction error is naturally bounded by the observation error.

5. Results

In this section, on the one hand, an experiment with syncretic sparse images was conducted
to demonstrate the feasibility of the 2D-NIHT algorithm and its superiority to the NIHT algorithm
in reconstruction time. On the other hand, two SAR scenes were used to exam the reconstruction
performance of the 2D-NIHT algorithm under different SNR levels and its superiority to other five
efficient reconstruction algorithms of sparse signals in compressive radar imaging systems. All data
were analyzed in the Matlab R2013a environment using an Intel Core 4, 3.20 GHz processor with
4.0 GB of memory under the Microsoft Windows 7 operating system. The reconstruction time, which
is the CPU time, was utilized as an indicator of the computational complexity of signals reconstruction.
The probability of exact recovery, which is a crucial criterion for evaluating the practicability of the
algorithm, was calculated by the equation P(X) = 1− ‖X− X∗‖0/(N1 × N2), where X ∈ RN1×N2 ,
and X∗ ∈ RN1×N2 were original signals and the recovered signals, respectively.
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5.1. Experiments on Synthetic Images

5.1.1. Efficiency of the 2D-NIHT Algorithm in 2D Signal Reconstruction

In this experiment, a randomly synthetic 2D sparse signal of X with size of 256 × 128 and
a sparsity of 200, as shown in Figure 2a, was used to validate the efficiency of the 2D-NIHT algorithm.
The observation matrix Y was acquired by the model Y = AXBT with the compressive sampling rate
of 0.5 in both row and column, and then the recovered signal X∗was reconstructed using the 2D-NIHT
algorithm from Y. As shown in Figure 2b, it was obvious that the algorithm perfectly recovered the
synthetic 2D sparse signal without any information loss. And, as shown in Figure 2c, it took a finite
number of iterations, which was even far less than the sparsity K of the signal. Moreover, only 0.25 s
was spent on the whole process of the sparse signal recovery.

Figure 2. The results of recovering a synthetic 2D sparse signal using the 2D normalized iterative hard
thresholding (2D-NIHT) algorithm. (a) The original signal; (b) The recovered signal; (c) The curve of
error versus iterations.

5.1.2. Comparison with the NIHT Algorithm

To demonstrate the superiority of the 2D-NIHT algorithm to the NIHT algorithm, a series of
synthetic images were used to test their reconstruction performances. The reconstruction performances
of the 2D-NIHT and the NIHT algorithms were comprehensively compared by varying the sparsities
and lengths of measurements, respectively.

To test the reconstruction performance of the two algorithms under various sparsities, some
randomly synthetic 2D sparse signals Xi(i = 1, 2, . . . , 30) ∈ R100×100 with different sparsities were used
as testing images, and the measurements of a fixed length were acquired with a constant compressive
sampling rates of 0.5 for both rows and columns. To test the reconstruction performance of the NIHT
algorithm, the 2D signals were also vectorized by xi = vct(Xi) ∈ R10000 firstly and the measurements
were acquired based on Equation (1) with a constant compressive sampling rate of 0.25 for any signal
xi. The reconstruction performances of the two algorithms, as shown in Figure 3a, demonstrated that,
on one hand, both algorithms could obtain the probability of exact recovery of 1 with a smaller sparsity
(≤550), and then their probabilities of exact recovery of both algorithms decreased as the sparsity
increased; on the other hand, the reconstruction time of the 2D-NIHT algorithm was far less than that
of the NIHT algorithm, and the difference of recovery time between the two algorithms became larger
with an increase in the signal sparsity.
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Figure 3. Comprehensive comparison of reconstruction performance between the 2D-NIHT algorithm
and the NIHT algorithm. (a) The comparison of the probability of exact recovery and the computational
complexity of the 2D-NIHT and NIHT algorithms under different sparsities; (b) The comparison of the
probability of exact recovery and the computational complexity of the 2D-NIHT and NIHT algorithms
under different lengths of measurement. Note: “Pro_2D” and “Pro_1D” denote the probability of exact
recovery for the 2D-NIHT algorithm and the NIHT algorithm, respectively; “Time_2D” and “Time_1D”
denote the reconstruction time of the 2D-NIHT algorithm and the NIHT algorithm, respectively.

To test the reconstruction performance of the two algorithms with measurements of various
lengths, 2D sparse signals Xi(i = 1, 2, . . . , 12) ∈ R100×100 with a fixed sparsity of K = 100 were
generated for testing and the measurements were obtained with different lengths. For the sparse
signal Xi, the lengths of the measurement for the 2D-NIHT algorithm were set as M1i = M2i =

10 + 5i and the lengths of measurement for NIHT algorithm was set as Mi = M1i ×M2i accordingly.
The reconstruction performances of the two algorithms, as shown in Figure 3b, indicated that both
algorithms could acquire a very high probability of exact recovery with measurements of large size
(>40 × 40), while the reconstruction time of the NIHT algorithm was far greater than that of the
2D-NIHT algorithm.

Overall, the 2D-NIHT algorithm and the NIHT algorithm displayed a similar tendency in the
probability of exact recovery with respect to the sparsity of signals and the size of measurements,
indicating that they had consistent performances in the reconstruction convergence and accuracy,
and the reconstruction time of the 2D-NIHT algorithm was much less than that of the NIHT algorithm,
illustrating that the proposed 2D-NIHT algorithm dramatically reduced computational complexity in
signal reconstruction.

5.2. Experiments on Actual Radar Images

In this section, two SAR scenes were used to verify the efficiency and superiority of the 2D-NIHT
algorithm in compressive radar imaging systems, as shown in Figure 4. One was a simple scene that
acquired 11 point targets (Figure 4a), and the other was a helicopter acquired by a SAR (Figure 4b).
The SAR parameters were set such that the carrier frequency was 2 GHz, the working frequency was
9.5 GHz–10.5 GHz with a step size 20 MHz, the sampling number was N1 = 64, the observation
azimuth varied within −3.2◦~3.0◦, and corresponding sampling number was N2 = 64. In addition,
it was unavoidable that there were noises in the actual radar imaging system, so, the noises of
different SNR levels were also added in the echo signals to explore the influence of the noise on the
reconstruction performance of the 2D-NIHT algorithm.
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Figure 4. The original radar scenes. (a) 11 point targets; (b) A helicopter acquired by a SAR system.

To test radar imaging performance using the 2D-NIHT algorithm in the presence of noise, Gaussian
white noises with different SNR levels (noise free, 30 dB and 20 dB) were added into the echo signals.
Figure 5 shows the imaging results of the 11 point targets (Figure 5a) and the helicopter (Figure 5b) with
different SNR levels of noises using the 2D-NIHT algorithm. The compressive sampling rates were 0.5 in
the range and azimuth information for the two SAR scenes. The imaging results illustrated that the
actual target positions and amplitudes of the both scenes were reconstructed without any information
loss at the higher SNR level (noise free and 30 dB). At the low SNR level (20 dB), the imaging results
contained some false values at the target positions for both scenes. Moreover, it was obvious that the
reconstructed image using the 2D-NIHT algorithm was clean without any noise, because the nonlinear
operation process of K[X] in the 2D-NIHT algorithm was capable of setting N1 × N2 − K elements of X
as 0 and these elements contained most of the noises. Therefore, the 2D-NIHT algorithm is an effective
method to remove background noise used in compressive radar imaging systems.

In addition, four other algorithms, including CoSaMP, SL0, block-based compressive sensing
(BCS) [31], and NIHT algorithms, were used to recover the two scenes without noises, and their
reconstruction performances were compared with the 2D-NIHT algorithms in terms of reconstruction
time and probability of exact recovery. The simulation for each SAR scene was repeated 20 times
with every algorithm, and the statistical average values and standard deviations in reconstruction
time and probability of exact recovery for the five algorithms were achieved, as shown in Table 1.
The results demonstrate that, compared with the other four algorithms, the 2D-NIHT algorithm could
acquire the reconstructed images with ultrahigh probability of exact recovery, and its performance
in reconstruction time was only a little inferior to the BCS model, which, however, had the worst
performance for the probability of exact recovery. Therefore, the 2D-NIHT is capable of significantly
reducing the computational complexity and reconstruction time for recovering radar images and has
an overall performance superior to the other four algorithms.
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Figure 5. The imaging results of two scenes with different SNR levels of noises using a 2D-NIHT
algorithm. (a) Imaging results of the 11 point targets at different SNR levels; (b) Imaging results of the
helicopter at different SNR levels.

Table 1. Comparison of the five algorithms, including CoSaMP, SL0, BCS, NIHT and 2D-NIHT
algorithms, in terms of reconstruction time and probability of exact recovery.

CoSaMP SL0 BCS NIHT 2D-NIHT

11 point targets

Recovery time (s) 0.069 ± 0.134 30.80 ± 1.64 0.049 ± 0.024 0.629 ± 0.115 0.055 ± 0.037

Probability of
exact recovery 1 1 0.652 ± 0.038 1 1

helicopter

Recovery time (s) 128.79 ± 3.495 34.679 ± 0.902 0.172 ± 0.044 5.176 ± 0.13 0.237 ± 0.139

Probability of
exact recovery 0.976 1 0.476 ± 0.020 0.976 1

6. Conclusions

In this paper, a 2D-NIHT algorithm was proposed to solve the problem that compressive radar
imaging systems confront, that is, the high computational complexity involved in recovering sparse
signals. The algorithm recovered 2D sparse signals by directly leveraging the matrix structure of
the signals with robust and ultra-high probability, as proved theoretically and demonstrated by
experiments. The number of iterations of the 2D-NIHT algorithm in signal reconstruction is far fewer
than the sparsity of the testing signals, and reconstruction time of the 2D-NIHT algorithm is far less
than that of the NIHT algorithm, indicating that the 2D-NIHT algorithm dramatically reduces the
computational complexity and reconstruction time compared with the NIHT algorithm. Particularly,
the radar scenes can be also recovered successfully by the 2D-NIHT algorithm with high reconstruction
performance, and the 2D-NIHT algorithm also displays significant superiority in overall reconstruction
performance in radar imaging system to other four algorithms. Moreover, the 2D-NIHT algorithm
offers great potential for general application of compressive sensing in electromagnetics and remote
sensing to realize fast imaging.
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Appendix A

If the measurement matrix satisfies the RIP condition in the 1D compressive sensing model (1),
then the following lemma holds, which have been proved in [23].

Lemma A1. Suppose that the matrix Φ satisfies the RIP with a restricted isometry constant δK and an index
set Γ such that K = |Γ|, then, for any K-sparse signal u, the following inequality holds

‖ΦT
Γ u‖ ≤

√
1 + δK‖u‖ (A1)

There is also a relation between the Frobenius norm and the Euclidean norm in the Kronecker
product of matrices, stated as in the following Lemma.

Lemma A2. For any matrices W ∈ RM1×M2 , Q ∈ RM1×N1 , P ∈ RM2×N2 and Z ∈ RN1×N2 , there exists the
following equivalence relationship between the Frobenius norm and the Euclidean norm:

‖W −QZPT‖F = ‖vct(W)− P⊗Q× vct(Z)‖ (A2)

The following notions will also be used in our proof.
Suppose XK is the best K-term approximation of the K-sparse signal X; then,

Y = AXKBT + E (A3)

Rn = XK − Xn (A4)

an+1 = Xn + µn AT(Y− AXnBT)B
= Xn + µn AT(AXKBT + E− AXnBT)B (A5)

Xn+1 = HK

[
an+1

]
(A6)

Then, the proof of Theorem 1 is described as follows.

Proof. As described in Equation (8), the 2D compressive sensing model is equivalent to the 1D
compressive sensing model, which means that many properties of the 2D compressive sensing are
similar to those of the 1D compressive sensing. Therefore, the proof method of convergence of the
NIHT algorithm can be also applied to that of the 2D-NIHT algorithm. In this proof, at first, the
convergence model of the 2D-NIHT algorithm should be transformed from 2D to 1D; then, we will use
some similar results of [22] to get the convergence properties of the 2D-NIHT algorithm.

Firstly, the convergence model is transformed from 2D to 1D, as described below:
Suppose that the support matrix of the error XK − Xn+1 belongs to the matrix Sn+1 = ΓK ∪ Γn+1;

namely, the non-zero entries of the support matrix of the error must occur on the corresponding
positions of nonzero entries of XK or Xn+1. Similar to ΦSn+1 , it is obvious that there are unique
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corresponding support matrices Sn+1
A and Sn+1

B for matrices A and B, respectively. Because the
following is true:

{Φ}M1(r−1)+v,N1(s−1)+w = {B⊗ A}M1(r−1)+v,N1(s−1)+w = brsavw (A7)

Similar to the proof in [24], we have:

‖XK − Xn+1‖F
≤ ‖XK − an+1‖F + ‖Xn+1 − an+1‖F
≤ 2‖XK − an+1‖F
= 2‖XK − Xn − µn AT

Sn+1
A

(
AXKBT + E− AXnBT)BSn+1

B
‖

F
= 2‖Rn − µn AT

Sn+1
A

(
ARnBT + E

)
BSn+1

B
‖

F
≤ 2‖Rn − µn AT

Sn+1
A

ARnBT BSn+1
B
‖

F
+ 2‖µn AT

Sn+1
A

EBSn+1
B
‖

F

(A8)

Based on Lemma A2, we then have:

‖Rn − µn AT
Sn+1

A
ARnBT BSn+1

B
‖

F
= ‖rn − µnΦT

Sn+1 Φrn‖ (A9)

‖µn AT
Sn+1

A
EBSn+1

B
‖

F
= ‖µnΦT

Sn+1 e‖ (A10)

where rn = vct(Rn). e = vct(E) and ΦT
Sn+1 = BT

Sn+1
B
⊗ AT

Sn+1
A

. Then, the inequality (A8) can be rewritten

as follows:

‖XK − Xn+1‖F
≤ 2‖rn − µnΦT

Sn+1 Φrn‖+ 2‖µnΦT
Sn+1 e‖

= 2‖
(

I − µnΦT
Sn+1 Φ

)
rn‖+ 2‖µnΦT

Sn+1 e‖

= 2‖
(

I − µnΦT
Sn+1 ΦSn+1

)
rn

Sn+1 − µnΦT
Sn+1 ΦSn\Sn+1 rn

Sn\Sn+1‖+ 2‖µnΦT
Sn+1 e‖

≤ 2‖
(

I − µnΦT
Sn+1 ΦSn+1

)
rn

Sn+1‖+ 2‖µnΦT
Sn+1 ΦSn\Sn+1 rn

Sn\Sn+1‖+ 2‖µnΦT
Sn+1 e‖

(A11)

Based on Lemma A1, we have:

‖ΦT
Sn+1 e‖ ≤

√
1 + δK‖e‖ (A12)

Secondly, we also use the results similar to [22], namely:

‖µnΦT
Sn+1 ΦSn\Sn+1 rn

Sn\Sn+1‖ ≤
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where 2 1/ 8Kϒ < . Then, (A11) can also be simplified as: 

2K‖rn
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I − µnΦT
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where 2 1/ 8Kϒ < . Then, (A11) can also be simplified as: 

2K‖Rn‖F + 2µn√1 + δK‖E‖F

(A15)

If δK ≤ δ3K < 1/
√

32 and µn ≤ 1/α2
2K [22], we then have:

‖XK − Xn+1‖F<1/2
√

2‖Rn‖F + 2.170/α2
2K‖E‖F (A16)
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Equation (A16) can also be rewritten as:

‖Rn+1‖F < 1/2
√

2‖Rn‖F + 2.170/α2
2K‖E‖F (A17)

Note that X0 = 0, then by iterative calculation using Equation (A17), we then have:

‖Rn‖F ≤ 2−3n/2‖XK‖F + 3.557/α2
2K‖E‖F (A18)

Finally, we have:

‖X− Xn‖F
≤ ‖X− Xk‖F + ‖XK − Xn‖F
≤ 2−3n/2‖XK‖F + 3.557/α2

2K‖E‖F + ‖X− Xk‖F

(A19)

Furthermore, after no more than:

n∗ =
⌈

2
3

log2

(
‖XK‖F

ε̃K

)⌉
(A20)

iterations, the 2D-NIHT algorithm recovers X with an accuracy of:

‖X− Xn∗‖F ≤ 7.114/α2
2K‖E‖F + 2‖X− Xk‖F (A21)

where:
ε̃K = 3.557/α2

2K‖E‖F + ‖X− Xk‖F (A22)
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