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Abstract: Degraded air quality by PM2.5 can cause various health problems. Satellite observations
provide abundant data for monitoring PM2.5 pollution. While satellite-derived products, such as
aerosol optical depth (AOD) and normalized difference vegetation index (NDVI), have been widely
used in estimating PM2.5 concentration, little research was focused on the use of remotely sensed
nighttime light (NTL) imagery. This study evaluated the merits of using NTL satellite images in
predicting ground-level PM2.5 at a regional scale. Geographically weighted regression (GWR) was
employed to estimate the PM2.5 concentration and analyze its relationships with AOD, meteorological
variables, and NTL data across the New England region. Observed data in 2013 were used to test the
constructed GWR models for PM2.5 prediction. The Vegetation Adjusted NTL Urban Index (VANUI),
which incorporates Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI into NTL to
overcome the defects of NTL data, was used as a predictor variable for final PM2.5 prediction. Results
showed that Defense Meteorological Satellite Program/Operational Linescan System (DMSP/OLS)
NTL imagery could be an important dataset for more accurately estimating PM2.5 exposure, especially
in urbanized and densely populated areas. VANUI data could obviously improve the performance
of GWR for the warm season (GWR model with VANUI performed 17% better than GWR model
without NDVI and NTL data and 7.26% better than GWR model without NTL data in terms of
RMSE), while its improvements were less obvious for the cold season (GWR model with VANUI
performed 3.6% better than the GWR model without NDVI and NTL data and 1.83% better than the
GWR model without NTL data in terms of RMSE). Moreover, the spatial distribution of the estimated
PM2.5 levels clearly revealed patterns consistent with those densely populated areas and high traffic
areas, implying a close and positive correlation between VANUI and PM2.5 concentration. In general,
the DMSP/OLS NTL satellite imagery is promising for providing additional information for PM2.5

monitoring and prediction.

Keywords: PM2.5; nighttime light (NTL); Vegetation Adjusted NTL Urban Index (VANUI); aerosol
optical depth (AOD); geographically weighted regression (GWR)

1. Introduction

Fine particulate matter (known as PM2.5, with an aerodynamic diameter less than 2.5 µm) is
hazardous to human health [1,2]. Evidence from both long-term and short-term studies of PM2.5

suggests that high levels of PM2.5 can cause high rates of mortality [3,4], contribute to high risks of
cardiovascular diseases [5,6], and lead to increased possibility of lung function decline [7,8]. Thus,
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accurately characterizing the spatiotemporal distribution and variation in PM2.5 concentration is
crucial for laying a sound basis for improving public health.

In general, two approaches have been introduced to characterize surface PM2.5 concentration.
The first one is to use ground-based PM2.5 monitoring networks. It can provide accurate measurements.
However, its spatial coverage is limited and observed data are only available at certain times
due to sampling frequencies. In addition, these point measurements are insufficient to explain
regional variations, and thus are inevitably subject to errors when estimating PM2.5 concentration
at a regional scale [9]. By contrast, remote sensing (RS) technology can provide continuous spatial
and temporal observations, which may help to solve the problem faced by monitoring networks.
The RS approach uses satellite-retrieved aerosol optical depth (AOD) to estimate PM2.5 pollution in
areas where ground-based monitors are too sparsely distributed [10–12]. A growing body of work
has been done on examining the relationship between RS-retrieved AOD from various sensors and
ground-measured PM2.5 [13–16]. Among them, Moderate Resolution Imaging Spectroradiometer
(MODIS) imagery has been demonstrated to be a quality-guaranteed product and has been widely
used in predicting PM2.5 concentration [17,18]. Apart from AOD retrievals, meteorological variables
and land use information, for instance, have also been utilized to develop more sophisticated statistical
models for PM2.5 estimation [14,19–25]. Results from these studies revealed that the incorporation of
meteorological parameters and land use information into the PM2.5-AOD relationship can improve the
performance of prediction models.

In the last two decades, the nighttime light (NTL) imagery from the Defense Meteorological
Satellite Program/Operational Linescan System (DMSP/OLS) began to play an important role
in various studies, including but not limited to detecting human settlements [26], estimating
population density [27], and mapping urban extent [28–30]. Despite its wide use in demographic and
socioeconomic studies, NTL data has received less attention in PM2.5 pollution monitoring, especially
in those studies concerning complex regions with both urban and rural settings. Only recently, a couple
of studies investigated the effectiveness of DMSP/OLS NTL data in predicting daily PM2.5 average
concentration [31,32]. However, the DMSP/OLS NTL data were used as the only input variable in
these studies for PM2.5 prediction, and the potential contributions of meteorological variables and
AOD measurements were ignored.

This study aimed to evaluate the potential of using DMSP/OLS NTL data, together with
satellite-retrieved AOD data and meteorological data, to estimate the ground-level PM2.5 concentration.
The study area is the New England region, which is composed of urban, suburban, and rural
areas. For this purpose, the geographically weighted regression (GWR) method [33] was chosen
for performing PM2.5 prediction. The performance of the specifically constructed GWR models with
different input variables was cross-validated, and the spatiotemporal variability of the predicted PM2.5

was demonstrated for the year 2013.

2. Materials and Methods

2.1. Study Area

Our study area is the New England region, Northeastern United States. It comprises the states of
Maine (ME), New Hampshire (NH), Vermont (VT), Massachusetts (MA), Connecticut (CT), and Rhode
Island (RI) (Figure 1). The entire New England region has an area of approximately 186,460 km2, with a
population of 14,444,865 as recorded in 2010. Among the six states, MA is the most populous while VT
is the least populous. A prominent characteristic of New England is its densely distributed forests [34],
which cover approximately 80% of its total land. Particularly, ME, NH, and VT are among the top
four most heavily forested states in the United States. Mean annual temperature ranges from 10 ◦C in
southern CT to 3 ◦C in the northern highlands of VT, NH, and ME. Mean annual precipitation ranges
from 790 to 2550 mm, with more rainfall at higher elevations.
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Figure 1. Map of the study area (The islands of Martha’s Vineyard, MA and town of Nantucket, MA 
are not shown here). The grid cell shown in the map is of 10 km × 10 km resolution. 

2.2. Data 

2.2.1. Ground Measurements 

The ground-level PM2.5 measurements over New England from 1 January 2013 to 31 December 
2013 were acquired from the US Environmental Protection Agency (EPA)’s Air Quality System  [35]. 
According to Hu, Waller, Al-Hamdan, Crosson, Estes Jr, Estes, Quattrochi, Sarnatand, and Liu [20], 
PM2.5 values that fall below the detection limit were removed (<2 µg/m3). As a result, 55 monitoring 
sites were counted for the analysis (Figure 1). Please note that the northern area (mainly ME, NH, 
and VT, with very low population density and high forest coverage) has fewer PM2.5 monitors than 
the southern area (mainly CT, eastern MA, and RI, with some large cities and most urban areas). 

The meteorological data were derived from two assimilated datasets. The wind speed (WS,m/s) 
data was obtained from the Phase 2 North America Land Data Assimilation System (NLDAS-2) [36] 
with a high spatial resolution (1/8th degree, or ~13 km). Since NLDAS-2 does not provide the 
planetary boundary layer height (PBLH,m) data, our PBLH data was obtained from the North 
American Regional Reanalysis (NARR) (http://www.emc.ncep.noaa.gov/mmb/rreanl/) dataset, 
which has a spatial resolution of ~32 km. To be consistent with the satellite overpass time (10:30 a.m. 
local time for Terra, and 1:30 p.m. local time for Aqua), the mean values of the two variables were 
calculated for the daily time period from 9 a.m. to 3 p.m. local time. 

2.2.2. Satellite Observations 

The 2013 MODIS AOD Level 2 product (Collection 5.1) within the study domain was 
downloaded from a NASA Archive and Distribution System [37]. The AOD data consists of both 
retrievals from the two satellites, Terra and Aqua. The relatively fine spatial (10 km at nadir) and 
temporal (1–2 days) resolution of these measurements makes them suitable for characterizing daily 

Figure 1. Map of the study area (The islands of Martha’s Vineyard, MA and town of Nantucket, MA are
not shown here). The grid cell shown in the map is of 10 km × 10 km resolution.

2.2. Data

2.2.1. Ground Measurements

The ground-level PM2.5 measurements over New England from 1 January 2013 to 31 December
2013 were acquired from the US Environmental Protection Agency (EPA)’s Air Quality System [35].
According to Hu, Waller, Al-Hamdan, Crosson, Estes Jr, Estes, Quattrochi, Sarnatand, and Liu [20],
PM2.5 values that fall below the detection limit were removed (<2 µg/m3). As a result, 55 monitoring
sites were counted for the analysis (Figure 1). Please note that the northern area (mainly ME, NH, and
VT, with very low population density and high forest coverage) has fewer PM2.5 monitors than the
southern area (mainly CT, eastern MA, and RI, with some large cities and most urban areas).

The meteorological data were derived from two assimilated datasets. The wind speed (WS, m/s)
data was obtained from the Phase 2 North America Land Data Assimilation System (NLDAS-2) [36]
with a high spatial resolution (1/8th degree, or ~13 km). Since NLDAS-2 does not provide the planetary
boundary layer height (PBLH, m) data, our PBLH data was obtained from the North American
Regional Reanalysis (NARR) (http://www.emc.ncep.noaa.gov/mmb/rreanl/) dataset, which has a
spatial resolution of ~32 km. To be consistent with the satellite overpass time (10:30 a.m. local time for
Terra, and 1:30 p.m. local time for Aqua), the mean values of the two variables were calculated for the
daily time period from 9 a.m. to 3 p.m. local time.

2.2.2. Satellite Observations

The 2013 MODIS AOD Level 2 product (Collection 5.1) within the study domain was downloaded
from a NASA Archive and Distribution System [37]. The AOD data consists of both retrievals from
the two satellites, Terra and Aqua. The relatively fine spatial (10 km at nadir) and temporal (1–2 days)
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resolution of these measurements makes them suitable for characterizing daily PM2.5 concentration at a
regional scale. High quality retrievals with Quality Assurance labels 3 were used to avoid introducing
potential errors [38].

The annual cloud-free composited NTL data was obtained from a Version 4 F18 sensor (2010–2013)
for the year 2013 [39]. This stable light product is the result of discarding visible band values with
ephemeral events and replacing background noise with the value of 0. Consequently, the data, recorded
as a digital number (DN), ranges from 1 to 63. With a scanning swath of 3000 km, the current stable
light product can provide global imagery from 1992 to 2013, with a spatial resolution of 30 arc-seconds
(~1 km).

The 2013 MODIS normalized difference vegetation index (NDVI) Level 3 product was acquired
from National Aeronautics and Space Administration (NASA)’s Earth Observations (NEO) [40].
Specifically, the Terra satellite observations (MOD13A2), with a spatial resolution of 1 km and a revisit
period of 16 days, were used. A detailed description of the MODIS NDVI products can be found
elsewhere [41].

2.3. Methods

The predictions of PM2.5 concentration over New England were carried out by incorporating the
ground-based PM2.5 measurement dataset and several satellite observation datasets (MODIS, VANUI,
and meteorological data) into three specific GWR models with different predictor sets. The results
from the proven optimal GWR model were used as the final PM2.5 prediction. The detailed processing
steps are illustrated in Figure 2.
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Figure 2. Flowchart outlining the PM2.5 estimation procedures in this study. The highlighted box
indicates the three different scenarios for constructing the prediction model with geographically
weighted regression (GWR). With other variables (e.g., aerosol optical depth (AOD) and meteorological
parameters) being the same, the main difference of the three specific GWR models lies in the
incorporation of land use information: (1) GWR model without normalized difference vegetation
index (NDVI) and nighttime light (NTL) data (termed as GWR-basic), (2) GWR model with NDVI
data (GWR-NDVI), and (3) GWR model with vegetation adjusted NTL urban index (VANUI) data
(including NDVI and NTL) (GWR-VANUI).
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2.3.1. Data Pre-Processing and Integration

Before inputting the data of the dependent and independent variables into a GWR model, a
uniform data resolution and map projection should be considered. A reprojection was performed
to all of the datasets. Then, grid cells with 10 km resolution were built across the New England
region. The data of dependent and independent variables were assigned to the nearest grid cells.
The distribution of PM2.5 monitoring sites is uneven across the study domain, with more sites clustering
in major cities like Boston. For grid cells that contain more than one PM2.5 monitoring site, the mean
values of these sites were calculated. Similarly, the averaged AOD values were used for grid cells
that contain more than one AOD observation. However, for those grid cells that have only one AOD
observation available, an adjustment ratio was applied [42]. The final datasets used in this study are
the products derived by spatially matching all the original data to the grid cells.

2.3.2. Model Construction

The relationships between PM2.5 and the predictors vary over space. Such spatial variations have
been observed in previous studies [16,43–45]. Since the predictors used in our study differ from those
previous studies, a comparison between the traditional multiple linear regression (MLR) (using the
ordinary least squares estimator) and GWR was first conducted. The comparison showed that GWR
outperformed the MLR with an improved mean accuracy of 0.15 in adjusted R2, which means that
GWR could explain more variance in PM2.5. Therefore, using global estimation models to describe the
relationships will produce less accurate results. The GWR method can estimate the spatial variation
and non-stationarity of a continuous spatial variable [33], such as the PM2.5 concentration, at a regional
scale. In other words, the regression coefficients in GWR modeling are location-specific instead of
being constant globally. More applications of GWR can be found in recent publications [46,47]. In this
study, a specific GWR model was designed for PM2.5 prediction. Four main impact factors, AOD,
PBLH, WS, and VANUI, were used as explanatory variables to predict PM2.5 concentration in the GWR
analysis (Table 1). The adaptive bandwidth was selected to account for the unbalanced distribution
of the surface monitors. The specific GWR model for PM2.5 estimation with the four explanatory
variables is expressed as

PM2.5 ∼ AOD + PBLH + WS + VANUI (1)

where PM2.5 is the daily ground-level PM2.5 measurement (µg/m3); AOD is the mean AOD averaged
from MODIS AOD products onboard the Terra and Aqua satellites (unitless); PBLH (m) and WS (m/s)
are meteorological parameters (definitions in Section 2.2.1); and VANUI is the Vegetation Adjusted
NTL Urban Index (unitless).

Table 1. Description of the three specific GWR models for estimating the daily PM2.5 concentration.

GWR Model Model Predictors *

GWR-basic AOD, PBLH, WS
GWR-NDVI AOD, PBLH, WS, NDVI

GWR-VANUI AOD, PBLH, WS, VANUI

* AOD: aerosol optical depth. PBLH: planetary boundary layer height (m). WS: wind speed (m/s). NDVI:
normalized difference vegetation index. VANUI: vegetation adjusted NTL urban index, which integrates NTL
and NDVI.

The spectral index VANUI is based on Zhang et al. [48]. It has proven to be effective in reducing
the NTL saturation [49] by the combined use of NTL and vegetation information, as expressed below by

VANUI = (1 − NDVI)× NTL (2)

where NDVI is the MODIS Level 3 16-day NDVI value (unitless), and NTL is the normalized
DMSP/OLS NTL value (unitless). The NDVI values are confined to (0, 1.0) to mask water bodies,
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while the normalized NTL values are accomplished by dividing the original NTL values by 63. Thus,
VANUI has a value range of 0–1. VANUI values near 1 indicate core urban areas with little vegetation,
whereas VANUI values close to 0 imply areas with dense vegetation cover [48].

2.3.3. Model Validation

To assess the role of VANUI in PM2.5 prediction, a GWR model without using VANUI (termed
as GWR-basic, see Table 1) was constructed. Additionally, a GWR model with only NDVI data
instead of VANUI (denoted as GWR-NDVI, see Table 1) was also constructed to specifically explore
the contribution of DMSP/OLS NTL to PM2.5 prediction. For the convenience of description, the
recommended GWR model with VANUI data, as given in Equation (1), is referred as GWR-VANUI.

To test the performance of the three specific models, a 10-fold cross validation was conducted.
That is, the matched dataset in all sites was first randomly divided into 10 folds. Nine folds were
used for model training, while the remaining one fold served for model testing [20]. This process
was iterated 10 times until every site was tested. During the procedure, the root mean squared error
(RMSE), the mean absolute error (MAE), the relative root mean squared error (RRMSE), and the relative
mean absolute error (RMAE) were employed to evaluate the reliability of the GWR model predictions.

3. Results

3.1. Descriptive Statistics

Figure 3 shows the histograms of all related variables, expressed in frequency distribution.
The descriptive statistics (e.g., mean, standard deviation (SD), maximum, minimum, and median) for
the variables are summarized in Table 2. The annual average PM2.5 value in 2013 is 8.49 µg/m3, with a
SD of 4.36 µg/m3. PM2.5 concentration shows a typical lognormal distribution. AOD has an overall
mean value of 0.13, with a SD of 0.12. As expected, the frequency distribution of AOD is more similar
to that of the PM2.5 concentration than to those of other variables. The correlation analysis verifies this
point, with AOD having the highest Pearson’s coefficient of 0.51 with PM2.5. VANUI (0.52 ± 0.18) is
close to a normal distribution, and similarly NDVI (0.45 ± 0.17) in the study region happens to exhibit
a distribution similar to a normal distribution function. PBLH shows a lognormal distribution and has
a broad value range, which is from 71 m to 1998 m. Surface wind speed (3.23 ± 1.64 m/s) tends to be a
skewed normal distribution.
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Table 2. Descriptive statistics for all related variables.

Mean Std. Dev. Min Max Median

PM2.5 (µg/m3) 8.49 4.36 2.1 29.79 7.36
Aerosol optical depth 0.13 0.12 0.001 0.67 0.09

Vegetation adjusted NTL urban index 0.52 0.18 0.14 0.98 0.50
Normalized difference vegetation index 0.45 0.17 0.01 0.83 0.45

Planetary boundary layer height (m) 420.17 357.01 71.12 1997.97 270.32
Wind speed (m/s) 3.23 1.64 0.018 10.53 3.00

The seasonal changes for these variables is also analyzed and presented in Table 3. The mean
PM2.5 concentrations during the winter (9.59 ± 5.62 µg/m3) and the summer (10.12 ± 5.05 µg/m3) are
about 30% higher than those during the spring (7.56 ± 3.48 µg/m3) and the fall (7.75 ± 3.80 µg/m3).
The mean AOD values are much higher in the spring (0.13 ± 0.10) and the summer (0.18 ± 0.14)
than in the fall (0.07 ± 0.05) and the winter (0.07 ± 0.04). The highest mean value of VANUI is in
the wintertime (0.68 ± 0.15) while the lowest mean VANUI value is in the summertime (0.44 ± 0.16).
This may be partly due to the reduced vegetation cover as shown by NDVI (its mean value in winter
decreases about 50% compared with that in summer), which results in relatively high values of VANUI
according to Equation (2). The highest mean value of PBLH with the largest SD is observed in the
summer (694.85 ± 525.03 m), which can be explained by strong solar radiation in the summer. On the
contrary, the highest mean wind speed value is found in winter (4.94 ± 2.28 m/s).

Table 3. Seasonal summary statistics for all related variables.

Spring (N = 543) Mean Std. Dev. Min Max Median

PM2.5 (µg/m3) 7.56 3.48 2.15 24.96 6.70
Aerosol optical depth 0.13 0.10 0.001 0.57 0.09

Vegetation adjusted NTL urban index 0.55 0.17 0.15 0.88 0.55
Normalized difference vegetation index 0.42 0.15 0.11 0.76 0.41

Planetary boundary layer height (m) 469.13 424.40 72.13 1997.97 285.18
Wind speed (m/s) 3.17 1.86 0.018 10.53 2.89

Summer (N = 467) Mean Std. Dev. Min Max Median

PM2.5 (µg/m3) 10.12 5.05 2.5 29.79 9.25
Aerosol optical depth 0.18 0.14 0.001 0.67 0.15

Vegetation adjusted NTL urban index 0.44 0.16 0.14 0.96 0.41
Normalized difference vegetation index 0.54 0.16 0.03 0.83 0.54

Planetary boundary layer height (m) 694.85 525.03 105.47 1417.28 727.27
Wind speed (m/s) 2.89 1.05 0.40 6.68 2.83

Fall (N = 427) Mean Std. Dev. Min Max Median

PM2.5 (µg/m3) 7.75 3.80 2.1 25.10 7.04
Aerosol optical depth 0.07 0.05 0.001 0.36 0.06

Vegetation adjusted NTL urban index 0.55 0.19 0.14 0.98 0.54
Normalized difference vegetation index 0.41 0.17 0.01 0.74 0.38

Planetary boundary layer height (m) 465.74 373.10 71.12 1583.02 273.92
Wind speed (m/s) 3.61 1.73 0.18 10.14 3.24

Winter (N = 180) Mean Std. Dev. Min Max Median

PM2.5 (µg/m3) 9.59 5.62 3.21 20.20 6.75
Aerosol optical depth 0.07 0.04 0.023 0.20 0.08

Vegetation adjusted NTL urban index 0.68 0.15 0.46 0.98 0.70
Normalized difference vegetation index 0.27 0.13 0.01 0.50 0.26

Planetary boundary layer height (m) 310.99 173.94 72.51 1016.89 256.89
Wind speed (m/s) 4.94 2.28 2.19 8.53 3.74
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Due to the shortage of the matched data records in the winter, the data was analyzed for two
seasonal periods, a warm season (15 April–14 October) and a cold season (15 October–14 April), similar
to that done in Lee, Liu, Coull, Schwartz, and Koutrakis [42]. The mean values of PM2.5 for the two
seasonal analysis groups are close (8.73 ± 4.48 µg/m3 for the warm season, and 7.73 ± 3.89 µg/m3 for
the cold season). By contrast, the mean value of AOD is much lower in the cold season (0.08 ± 0.06)
than in the warm season (0.14 ± 0.12). Regional changes in rainfall and other weather parameters
which increase or decrease the PM2.5 levels might be negatively affected by this choice but in the
absence of more extensive valid winter data it was the best available option.

To avoid the potential problem of strong multicollinearity among the predictor variables,
Pearson’s correlation coefficients were examined. The results show that the linear correlation
coefficients between the predictors in individual GWR models are relatively low (Table 4). Thus, these
predictors are suitable to be used together in GWR analysis. In fact, Fotheringham and Oshan [50]
recently tested the sensitivity of GWR to multicollinearity and they found that GWR is very robust to
the effects of multicollinearity.

Table 4. Pearson’s correlation coefficient calculated among predictor variables.

VANUI NDVI HPBL WS

AOD 0.025 0.034 −0.197 −0.135
VANUI −0.879 * 0.105 0.074
NDVI −0.180 −0.117
HPBL 0.295

* Note that VANUI and NDVI are strongly negatively correlated, but they were not used in the same GWR model.

3.2. Model Validation

Table 5 shows the results of cross validation for the GWR-basic, GWR-NDVI, and GWR-VANUI.
According to the error data (represented by RMSE, MAE, RRMSE, and RMAE), GWR-basic performed
the worst. In addition, the models performed relatively better for the warm season than for the cold
season, which is consistent with the previous study of Kloog et al. [51]. Here, the GWR-basic is
considered as the benchmark to evaluate the predictive capabilities of GWR-NDVI and GWR-VANUI.

By adding NDVI as a predictor to the GWR-basic model, the prediction performance of the
GWR-NDVI was improved by 10.5%, 3.9%, 10.08% and 3.26% in terms of RMSE, MAE, RRMSE, and
RMAE, respectively, for the warm season; and by 1.8%, 1.18%, 2.26% and 0.98% for the cold season,
respectively. The results are in line with other recent studies [52–54], which all indicated that land use
information such as NDVI can help to predict the PM2.5 concentration.

The VANUI, a combination of NDVI and NTL, was incorporated into the GWR-basic model to
examine whether or not NTL can further improve the prediction accuracy of the PM2.5 concentration.
Based on the cross-validation results, GWR-VANUI shows significant improvement over GWR-basic in
performance for the warm season, with 17%, 8.44%, 17.65% and 8.7% decreases in RMSE, MAE, RRMSE,
and RMAE, respectively; and GWR-VANUI also makes obvious improvement over GWR-NDVI in
performance for the warm season, with decreases of the following percentages in RMSE: 7.26%, MAE:
4.73%, RRMSE: 8.41%, and RMAE: 5.62%. A similar trend is found in the cross-validation results for
the cold season. Overall, the prediction accuracy of GWR-VANUI is much higher than those of the
other two models (17% higher over GWR-basic and 7.26% higher over GWR-NDVI in terms of RMSE)
for the warm season, while it is still higher than the latter (3.6% higher over GWR-basic and 1.83%
higher over GWR-NDVI in terms of RMSE) for the cold season. In general, GWR-VANUI performs
better than GWR-NDVI and GWR-basic. The better prediction performance of GWR-VANUI indicates
that the NTL data is helpful for more accurately predicting the PM2.5 concentration.
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Table 5. Ten-fold cross validation results for GWR-basic, GWR-NDVI, and GWR-VANUI.

Season Error Index
GWR-Basic GWR-NDVI GWR-VANUI

Value Value Improvement (%)
over GWR-Basic Value Improvement (%)

over GWR-Basic
Improvement (%)
over GWR-NDVI

Warm
season

RMSE 2 1.79 10.5 1.66 17 7.26
MAE 1.54 1.48 3.9 1.41 8.44 4.73

RRMSE (%) 11.9 10.7 10.08 9.8 17.65 8.41
RMAE (%) 9.2 8.9 3.26 8.4 8.7 5.62

Cold
season

RMSE 2.22 2.18 1.8 2.14 3.6 1.83
MAE 1.7 1.68 1.18 1.65 2.94 1.79

RRMSE (%) 13.3 13 2.26 12.8 3.76 1.54
RMAE (%) 10.2 10.1 0.98 9.8 3.92 2.97

3.3. Spatiotemporal Estimation of the PM2.5 Concentration

Figure 4 shows the spatial variability of PM2.5 in the warm season and cold season of 2013,
estimated using the GWR-VANUI model. The predicted mean values of PM2.5 for the warm season
range from 5.11 to 12.8 µg/m3, while the predicted mean values of PM2.5 for the cold season range
from 3.69 to 8.85 µg/m3, much lower than that for the warm season. From the two maps, it can be
seen that the high predicted mean values of PM2.5 concentration are distributed in the whole south
part of New England, including CT, RI, and MA, in the warm season; however, high predicted mean
values only appear in isolation in the areas of medium to large cities, such as Boston, Springfield,
and Hartford, in the cold season. One possible explanation for the high level of PM2.5 in the warm
season might be that the intense solar radiation, high temperature, and ample water vapor during
summertime accelerate the formation of secondary particles [55].
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The predicted annual mean values of PM2.5 in 2013 are shown in Figure 5a. The predicted values
generally range from 4.7 µg/m3 near the ME border to 10 µg/m3 in New Haven, CT. By analyzing
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the change trend of the annual mean values of PM2.5 derived from all monitoring stations across
New England during the period from 2000 to 2014, we find that the annual mean value decrease
of PM2.5 during 2013–2014 (10.83%) is much larger than that during 2012–2013 (5.65%), and the
general decreasing trend is relatively obvious during the entire period. This might be related to the
tightening of emission controls in PM2.5. According to the newly revised National Ambient Air Quality
Standards (NAAQS) issued in earlier 2013, the standard for annual PM2.5 was set to 12 µg/m3 instead
of 15 µg/m3 [56].

Despite the fact that four New England states are ranked among the top ten healthiest states in
the US [57], polluted air is found in southern New England but the pollution is still below the annual
standard. Compared to heavily forested and rural areas in northern New England (e.g., VT and ME),
highly urbanized and populous areas in southern New England, such as Boston, Springfield, Hartford,
New Haven, Bridgeport, Stamford, and Providence appear to have higher levels of PM2.5. In addition,
high PM2.5 values are more likely to appear along highways with heavy traffic and large cities (e.g.,
sections of I-91 and I-95 highways in southern New England), which are essentially high emission
sources. The results match well with the fact that VANUI correlates with population density and
energy consumption, indicating an evident association between the PM2.5 concentration and NTL data.
It is interesting to see that within the urban areas of major cities in southern New England, the annual
mean PM2.5 concentrations are obviously high as compared to their surrounding rural forest areas, but
their spatial variations tend to be low. This might be because of the regional impacts of the transported
PM2.5 pollution on these cities, as reported by a previous study [23].
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4. Discussion

4.1. Comparison with an Available Product

To demonstrate the performance of the GWR-VANUI model, our results were also compared
with one publicly available PM2.5 product, which can be downloaded from the Dalhousie University

http://fizz.phys.dal.ca/~atmos/martin/?page_id=140


Remote Sens. 2017, 9, 620 11 of 16

Atmospheric Composition Analysis Group Web site (http://fizz.phys.dal.ca/~atmos/martin/?page_
id=140). This globally estimated annual mean PM2.5 product was based on the study of van Donkelaar
et al. [58], which was produced by combining satellite-retrieved AOD with a chemical transport model
and then adjusting the estimates to ground-level PM2.5 using GWR. To be identical to the legend
of Figure 5a, the available product for 2013 with a spatial resolution of 0.1◦ × 0.1◦ was resized and
replotted as shown in Figure 5b. In general, the GWR-VANUI estimated PM2.5 concentration map
exhibits a spatial pattern similar to that of the publicly available product, but provides more details,
especially in southern New England. Considering that these specific details may not be very clear on
the map, a Pearson’s correlation analysis was conducted between the estimated values of PM2.5 and the
observed values. The results show that the correlation coefficient r based on the Dalhousie University
product is 0.11 lower than the Pearson’s correlation coefficient for the GWR-VANUI model results.
The similarity in the results combined with the improved correlation and error parameters supports the
hypothesis that the GWR-VANUI model results are reasonable and improve on the currently available
alternative products.

Furthermore, the role of environmental background in estimating PM2.5 concentration was also
examined. The entire New England was divided into two sub-regions: northern New England, which
includes CT, MA and RI; and southern New England, which includes ME, NH and VT. The primary
difference between these two sub-regions is that southern New England is more urbanized with a
high population density and a low forest density, whereas northern New England is less urbanized
with a low population density and a high forest density. With respect to the Pearson’s correlation
gradient from south to north, the r value reduces 20.5% from 0.73 to 0.58 for the predicted data of
the GWR-VANUI model, and in contrast, it drops 25.8% from 0.62 to 0.46 for the available product.
Overall, our study shows that the incorporation of VANUI into GWR as a predictor variable can
generate more promising results, especially for urbanized and populous areas, compared with the
Dalhousie University product. The spatiotemporally resolved annual PM2.5 estimates generated from
the GWR-VANUI model could provide valuable information for epidemiological studies such as
chronic effects of air pollution at regional scales [59]. In addition, health risks of exposure to PM2.5

could also be assessed based on the annual spatial distribution maps of PM2.5 concentrations produced
by our model, which could serve as strong support and rationales for the effective control of PM2.5

emissions as well as for the practical enactment of PM2.5 regulations [60].

4.2. Effect of NTL

In this study, three GWR models were constructed for predicting surface PM2.5 concentration
across New England. The model prediction results indicate that DMSP/OLS NTL data combined
with NDVI data (i.e., the VANUI) can be effective for more accurately estimating PM2.5 concentration,
especially for core urban areas. To further investigate the impact of VANUI on PM2.5 concentration
prediction, a data sequence comparison of annual mean values of PM2.5, VANUI, NTL, and
NDVI at PM2.5 monitoring sites was conducted (Figure 6). Compared with NDVI and NTL data
sequences visually, the general trend of VANUI is more similar to that of the PM2.5 concentration.
In particular, VANUI exhibits high variability in Boston (0.70–0.59–0.67, with Site IDs of 250250002,
250250042, and 250250044, respectively. A detailed description of these monitor IDs can be found
at [61]), matching well with the PM2.5 concentration values (7.96 µg/m3–7.35 µg/m3–7.82 µg/m3)
at the same locations. However, there is not much change in the NDVI values (0.30–0.30–0.30).
Conversely, in some rural areas such as New Hampshire, NDVI (0.74–0.49–0.49, with Site IDs of
330115001, 330131006, and 330150014, respectively) correlates better with the PM2.5 concentration
values (6.25 µg/m3–7.09 µg/m3–7.10 µg/m3) than with the VANUI values (0.03–0.41–0.49). This is
partly due to the fact reported in a previous study that VANUI is better at characterizing core
urban variability, though it may not capture details well for cities where there is little variation
in vegetation [48]. In addition, the use of VANUI successfully reduces the saturation issue confronted
by NTL. For example, in core urban areas such as New Haven (Site IDs: 90090027 and 90091123), Boston

http://fizz.phys.dal.ca/~atmos/martin/?page_id=140
http://fizz.phys.dal.ca/~atmos/martin/?page_id=140
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(Site IDs: 250250002, 250250042, and 250250044), Springfield (Site IDs: 250130016 and 250132009), and
Providence (Site IDs: 440070022), the normalized values of NTL have already been saturated to 1.
However, the VANUI values within these regions show significant variability and the variations within
these intra-urban monitors can be detectable. Pearson’s correlation coefficients between annual PM2.5

concentration and the three independent variables were also calculated to assess the prediction ability
of VANUI. They are 0.70 for PM2.5 and VANUI, −0.59 for PM2.5 and NDVI, and 0.63 for PM2.5 and NTL,
respectively. This further ascertains that DMSP/OLS NTL in combination with NDVI (i.e., the VANUI
index) could be a better alternative to NDVI for more accurately estimating the PM2.5 concentration.
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5. Conclusions

In this paper, a pilot study was undertaken to evaluate the potential of using DMSP/OLS NTL
data for PM2.5 prediction. The case study focuses on the New England region, where both urban and
rural settings are present. VANUI (an integrated index of NTL and NDVI), satellite-derived AOD
measurement, and two meteorological factors were employed as predictor variables in GWR analysis
for the estimation of the PM2.5 concentration at a regional scale. We compared the specific GWR model
with VANUI (i.e., GWR-VANUI) to two other specific GWR models (GWR-basic and GWR-NDVI, both
of which do not use NTL). The comparison results demonstrate that the GWR-VANUI can explain more
information than the two GWR models without using NTL data. We found that including NTL data
can significantly improve the performance of GWR for the warm season (GWR-VANUI performed 17%
better than GWR-basic and 7.26% better than GWR-NDVI in terms of RMSE), while its improvements
are less obvious for the cold season (GWR-VANUI performed 3.6% better than GWR-basic and 1.83%
better than GWR-NDVI in terms of RMSE). This work suggests that using NTL combined with NDVI
is helpful in assessing ground-based PM2.5 concentration.

Likewise, the spatial distribution of the predicted PM2.5 concentration indicates the value of using
DMSP/OLS NTL data for air quality monitoring. Higher concentrations of PM2.5 expectedly occur in
urbanized and populated areas and along interstate highways, while lower levels of PM2.5 appear in



Remote Sens. 2017, 9, 620 13 of 16

less urbanized or densely forested areas. Furthermore, the comparison of data sequences of annual
mean values of PM2.5 and three related variables at monitoring sites shows that the integrated use
of NTL and NDVI data (as the VANUI index) is a better choice for predicting PM2.5 concentration,
especially in core urban areas, where more details can be found in the predicted PM2.5 surface map.
Therefore, it can be concluded that the DMSP/OLS NTL imagery can be used as a valuable dataset
for more accurately predicting regional PM2.5 pollution, and this study provides supportive evidence
useful for its future application in air quality monitoring.

There are still several aspects that need further improvement in future work. One is the relatively
coarse spatial resolution of the satellite-retrieved AOD product used in the study. Another issue is that
the capability of current VANUI is limited by the 6-bit radiometric scale of NTL [48]. With the newly
released Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting
Partnership (S-NPP) spacecraft, which has a spatial resolution of 6 km for aerosol retrievals and a
broader radiometric scale of 14-bit, it is expected for new opportunities to further reduce the prediction
errors of PM2.5 concentration. Moreover, the sparse measurements in winter as well as other additional
factors such as rainfall tend to limit the model prediction. In future research, we will attempt to
incorporate other influential predictors into a mixed-effects model [62], which could generate daily
PM2.5 predictions to minimize the bias.
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