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Abstract: Surface NO2 volume mixing ratio (VMR) at a specific time (13:45 Local time) (NO2 VMRST)
and monthly mean surface NO2 VMR (NO2 VMRM) are estimated for the first time using three
regression models with Ozone Monitoring Instrument (OMI) data in four metropolitan cities in
South Korea: Seoul, Gyeonggi, Daejeon, and Gwangju. Relationships between the surface NO2 VMR
obtained from in situ measurements (NO2 VMRIn-situ) and tropospheric NO2 vertical column density
obtained from OMI from 2007 to 2013 were developed using regression models that also include
boundary layer height (BLH) from Atmospheric Infrared Sounder (AIRS) and surface pressure,
temperature, dew point, and wind speed and direction. The performance of the regression models is
evaluated via comparison with the NO2 VMRIn-situ for two validation years (2006 and 2014). Of the
three regression models, a multiple regression model shows the best performance in estimating
NO2 VMRST and NO2 VMRM. In the validation period, the average correlation coefficient (R), slope,
mean bias (MB), mean absolute error (MAE), root mean square error (RMSE), and percent difference
between NO2 VMRIn-situ and NO2 VMRST estimated by the multiple regression model are 0.66, 0.41,
−1.36 ppbv, 6.89 ppbv, 8.98 ppbv, and 31.50%, respectively, while the average corresponding values
for the other two models are 0.75, 0.41, −1.40 ppbv, 3.59 ppbv, 4.72 ppbv, and 16.59%, respectively.
All three models have similar performance for NO2 VMRM, with average R, slope, MB, MAE, RMSE,
and percent difference between NO2 VMRIn-situ and NO2 VMRM of 0.74, 0.49, −1.90 ppbv, 3.93 ppbv,
5.05 ppbv, and 18.76%, respectively.

Keywords: surface NO2 volume mixing ratio; NO2; OMI; multiple regression

1. Introduction

The main anthropogenic source of nitrogen dioxide (NO2) is fossil fuel combustion, while natural
sources of NO2 include lightning, forest fires, and soil emissions [1,2]. In particular, since NO2 is
emitted in large quantities in automobile exhaust gas, NO2 is often used as an indicator of traffic-related
air pollution in urban areas [3]. In terms of its effect on human health, long-term NO2 exposure can lead
to respiratory depression and respiratory illness [4–8]. In addition, it is a precursor of aerosol nitrate,
tropospheric ozone, and the hydroxyl radical (OH), the main atmospheric oxidant [9]. It is therefore
important to measure NO2 and various methods are used, with chemiluminescence, a well-known
technique for measuring surface NO2 volume mixing ratio (VMR) [10]. In situ measurements such as
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the chemiluminescence method are, in general, more accurate than remote sensing techniques, but
require a large number of in situ instruments to provide the spatial distribution of the NO2 VMR at high
resolution [11]. In recent years, NO2 vertical column density (VCD) has been measured from satellites
that can monitor NO2 at global scale over a short time scale. Space-borne sensors that have observed
global distributions of NO2 are the Global Ozone Monitoring Experiment (GOME) aboard European
Remote Sensing-2 (ERS-2) (1995–2003), Scanning Imaging Absorption Spectrometer for Atmospheric
Chartography/Chemistry (SCIAMACHY) aboard Environmental Satellite (Envisat) (2002–2012), the
Ozone Monitoring Instrument (OMI) aboard EOS-AURA (2004–present), and GOME-2 aboard the
Meteorological Operational satellite (MetOp)-A (2007–present) and MetOp-B (2012–present) [12–17].
In many countries, air quality regulation requires surface NO2 VMR so the NO2 VCD obtained
from satellites cannot be used directly. In recent years, studies have been conducted to investigate
the feasibility of estimating the surface NO2 VMR using the NO2 VCD obtained from satellite
measurements and, in particular, the correlation between the NO2 VCD obtained from satellite
measurements and the surface NO2 VMR.

Ordónez et al. [18] reported the correlation between tropospheric NO2 VCD and the NO2 VCD
measured by GOME and ground based in situ devices in Milan. Kharol et al. [3] estimated the
annual average ground-level NO2 concentrations in North America using chemical transport model
(GEOS-Chem) data and OMI NO2 columns and also reported the annual trend of the estimated
ground-level NO2 concentrations. However, no studies have attempted to estimate the surface NO2

VMR at higher temporal resolutions such as hourly and monthly using the NO2 VCD measured
by satellites.

In this present study, we estimate for the first time the surface NO2 VMR at a specific time
(13:45 Local time (LT)) (NO2 VMRST) and the monthly mean surface NO2 VMR (NO2 VMRM) using
two linear regression models and a multiple regression model with the tropospheric NO2 VCD
obtained from OMI (Trop NO2 VCDOMI) in five metropolitan cities. In addition, the performance
of each regression method is evaluated by comparing the estimated surface NO2 VMRs with those
obtained from in situ measurement (NO2 VMRIn-situ).

2. Study Area and Period

A large amount of anthropogenic NOX is emitted in Northeast Asia including China, Korea
and Japan [19]. Especially, the annual mean NO2 tended to increase in Seoul from 1995 to 2009 [20].
The study areas were selected where the surface NO2 VMR is continuously measured in Korean
metropolitan cities (Figure 1). Metropolitan cities such as Busan and Incheon where the OMI pixel
covers both sea and land are excluded since there are no surface NO2 data available over the sea.
Therefore, the selected areas are Seoul, Gyeonggi, Daejeon, and Gwangju. Seoul is covered by four
OMI pixels and is divided into eastern and western areas (West Seoul and East Seoul). The study
period is the nine years from 2006 to 2014. This is split into a seven-year training period (2007–2013)
to determine the coefficients of the regression models used in this study, and two years of validation
(2006 and 2014) when the surface NO2 VMRs estimated from the resulting three regression models
are evaluated by comparison with the in situ data. The three regression models used in this study are
described in detail in Section 3.
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2.1. Data

The data used in this study are Trop NO2 VCDOMI and Atmospheric Infrared Sounder (AIRS)
boundary layer height (BLHAIRS), atmospheric temperature (TempAIRS) and pressure (PressAIRS),
together with in situ measurements of NO2 VMRIn-situ, surface temperature (TempIn-situ), surface
pressure (PressIn-situ), surface dew point (DewpointIn-situ), surface wind speed (WSIn-situ), and surface
wind direction (WDIn-situ) (see Table 1).

Table 1. Satellite and in situ data used in this study.

Data Time (LT)

Satellite
Trop NO2 VCD OMI Level3 NO2 Daily data

(OMNO2d) 13:45

BLH, Temperature, Pressure AIRS/Aqua L3 Daily Support Product
(AIRS + AMSU) V006 (AIRX3SPD) 13:30

In situ
Surface NO2 VMR Air Korea

13:00 and 14:00Surface Temperature, Surface Pressure, Surface Dew
point, Surface Wind Speed, Surface Wind Data AWS (Automatic Weather System)

2.1.1. Ozone Monitoring Instrument (OMI) Data

The Trop NO2 VCDOMI data were obtained from OMI Level3 NO2 Daily Data (OMNO2d)
provided by the NASA Goddard Earth Sciences Data and Information Services Center (http://disc.sci.
gsfc.nasa.gov/Aura/data-holdings/OMI) [17,21,22]. OMI is a nadir-viewing UV–visible (270–500 nm)
spectrometer aboard the Aura platform launched in July 2004 [23]. Aura is a polar orbiting satellite
with an overpass time of 13:45 LT. The spectral resolution of the OMI is about 0.5 nm and the spatial
resolution is 13 × 24 km at nadir. Cloud-screened NO2 data (Level-3 OMI NO2 Cloud-Screened Total
and Tropospheric Column NO2 (V003)) are used in the present study (Cloud Fraction <30%).

2.1.2. Atmospheric Infrared Sounder (AIRS) Data

The BLHAIRS, TempAIRS, and PressAIRS used in this study were obtained from the AIRS/Aqua L3
Daily Support Product (AIRS + AMSU) 1 degree × 1 degree V006 (AIRX3SPD.00) from NASA Goddard
Earth Sciences Data and Information Services Center (http://disc.sci.gsfc.nasa.gov/uui/datasets/
AIRX3SPD_V006/summary?keywords=%22AIRS%22) [24–26]. The AIRS/Advanced Microwave
Sounding Unit (AMSU) is a sounding suite launched in May 2002 aboard Aqua [26,27]. Aqua is a
polar orbiting satellite with an overpass time of 13:30 LT and a horizontal spatial resolution of 40 km
at nadir.

http://disc.sci.gsfc.nasa.gov/Aura/data-holdings/OMI
http://disc.sci.gsfc.nasa.gov/Aura/data-holdings/OMI
http://disc.sci.gsfc.nasa.gov/uui/datasets/AIRX3SPD_V006/summary?keywords=%22AIRS%22
http://disc.sci.gsfc.nasa.gov/uui/datasets/AIRX3SPD_V006/summary?keywords=%22AIRS%22
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2.1.3. In Situ NO2 Data

The NO2 VMRIn-situ data were obtained from Air Korea (http://www.airkorea.or.kr/last_amb_
hour_data). Since NO2 VMRIn-situ is available hourly, the average of the values at 13:00 and 14:00
LT is used to be closer to the OMI overpass time. In a previous study [18], the in situ measurements
were grouped into five different NO2 levels: clean, slightly polluted, averagely polluted, polluted, and
heavily polluted. Many stations are located close to roads and are exposed to emissions. In addition,
the in situ NO2 data from stations within GOME pixels (320 × 40 km) were averaged, since in situ
measurements are only representative of a small fraction of the satellite ground scene. In the present
study, the NO2 VMRIn-situ obtained from in situ measurements located close to streets were excluded
in this study. We used the average of three or more NO2 VMRIn-situ from stations located at least 2 km
from each other.

2.1.4. In Situ Meteorological Data

The TempIn-situ, PressIn-situ, DewpointIn-situ, WSIn-situ, and WDIn-situ used in this study are
Automatic Weather System (AWS) data provided by the Korea Meteorological Administration (http:
//sts.kma.go.kr/jsp/home/contents/statistics/newStatisticsSearch.do?menu=SFC&MNU=MNU).
Since meteorological data are available hourly, the average of the data at 13:00 LT and 14:00 LT
is used. The surface wind data, especially wind direction can be impacted by local topography
and interferences.

3. Methodology

In this study, NO2 VMRST and NO2 VMRM were estimated using three regression models with
Trop NO2 VCDOMI. Table 2 summarizes the three models.

Table 2. Regression models used for surface NO2 VMR estimation in this study.

Model Equation

M1 13:45 LT and Monthly NO2 VMRin situ = aTrop NO2 VCD (a)
OMI + b

M2 13:45 LT and Monthly NO2 VMRin situ = aBLH NO2 VMR (b)
OMI + b

M3 13:45 LT Section 3, Multiple regression Equation (1)
M4 Monthly

Notes: (a) NO2 tropospheric vertical column density obtained from OMI; and (b) BLH NO2 VMROMI =
Trop NO2 VCDOMI Gas constant R TempAIRS×1013

Avogadro constant NA BLHAIRS PressAIRS
, where the AIRS pressure and temperature are boundary layer mean

values, Gas constant R = 8.314472 m3 pa K−1 mol−1 and Avogadro constant NA = 6.022 × 1023 mol−1.

3.1. M1

M1 is the linear regression equation where Trop NO2 VCDOMI is used as the independent variable.
Figure 2 shows the linear regression between Trop NO2 VCDOMI and NO2 VMRIn-situ at 13:45 LT
during the training period, with R2 (coefficient of determination), slope, and intercept of 0.47, 0.80 and
11.47, respectively. Figure 3 shows the linear regression between monthly mean Trop NO2 VCDOMI

and monthly mean NO2 VMRIn-situ during the training period, with R2, slope, and intercept of 0.62,
0.77, and 10.95, respectively. The final form of the M1 equation for estimating NO2 VMRST is shown in
Table 3, and that for estimating NO2 VMRM in Table 4.

Tables 3 and 4 show the equations M1, M2, M3, and M4 with the regression coefficients determined
from the training period.

http://www.airkorea.or.kr/last_amb_hour_data
http://www.airkorea.or.kr/last_amb_hour_data
http://sts.kma.go.kr/jsp/home/contents/statistics/newStatisticsSearch.do?menu=SFC&MNU=MNU
http://sts.kma.go.kr/jsp/home/contents/statistics/newStatisticsSearch.do?menu=SFC&MNU=MNU
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Table 3. Final form of the regression models used for estimating surface NO2 VMR at a specific time
and R2 obtained from the regression between NO2 VMRIn-situ and the corresponding independent
variable for the training period.

Equation R2

13:45 LT

M1 NO2 VMRST = 1.71 × Trop NO2 VCDOMI − 0.68 0.47

M2 NO2 VMRST = 4.19 × BLH NO2 VMROMI + 1.57 0.38

M3

NO2 VMRST = 0.000602 × Trop NO2 VCDOMI − 0.000107 × TempIn-situ
−0.000083 × DewpointIn-situ + 0.000061 × PressIn-situ
−0.000002 × BLHAIRS − 0.002435 × WSIn-situ
+0.001190 × WD In-situ − 0.039996

0.47

Table 4. As Table 3 but for monthly mean surface NO2 VMR.

Equation R2

Monthly mean

M1 NO2 VMRM = 1.23 × Trop NO2 VCDOMI + 4.74 0.62

M2 NO2 VMRM = 2.92 × BLH NO2 VMROMI + 6.74 0.59

M4
NO2 VMRM = 0.657241 × Trop NO2 VCDOMI − 0.137334 × DewpointIn-situ

−0.136096 × PressIn-situ − 0.004331 × BLHAIRS − 0.770356 × WSIn-situ
+2.370956 × WD (west)In-situ + 157.361668

0.63
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3.2. M2

There might exist a minor fraction of the tropospheric NO2 column in upper troposphere
particularly because of lightning. However, the NO2 amount in upper troposphere could be considered
negligible in metropolitan cities, where a significant amount of NOX is emitted. Therefore, assuming
Trop NO2 VCDOMI is mostly present within the PBL, the relationship between Trop NO2 VCDOMI and
the surface NO2 VMR may change as the PBL varies. However, a minor fraction of the tropospheric
NO2 column can also be in the upper tropospheric, particularly because of lightning. This NO2 fraction
in upper tropospheric might cause either small or negligible reduction in correlations of the OMI
NO2 VCD between and surface NO2 VMR as the upper part of the troposphere (free troposphere)
contribution is assumed to be negligible [28]. To reflect the BLH in the regression equation, Trop NO2

VCDOMI is first divided by BLHAIRS to calculate the NO2 concentration in the PBL and then converted
to the NO2 mixing ratio in the PBL (BLH NO2 VMROMI) using TempAIRS and PressAIRS [29] as shown
Table 2. Only a single OMI pixel contained completely within an AIRS pixel was used. Figure 4
shows the linear regression between BLH NO2 VMROMI and NO2 VMRIn-situ at 13:45 LT during the
training period. Here R2, slope and intercept are 0.38, 1.58, and 14.30, respectively. Figure 5 shows the
corresponding linear regression for the monthly mean data, with R2, slope and intercept of 0.59, 1.71,
and 12.75, respectively. The final form of equation M2 to estimate NO2 VMRST is shown in Table 3,
and for the monthly values in Table 4.
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3.3. M3 and M4

M3 and M4 are multiple regression equations for estimating NO2 VMRST and NO2 VMRM.
Multiple regression equations consist of a dependent variable, independent variables, and their
regression coefficients. In addition to Trop NO2 VCDOMI and BLHAIRS, meteorological factors (surface
temperature, dew point, atmospheric pressure, wind direction, and wind speed) are used as candidate
independent variables for the multiple regression equation in the present study. In a previous
study [30], these meteorological factors were also used as candidate independent variables to estimate
surface SO2 concentration in Shanghai, China. Temperature, pressure, boundary layer height, wind
speed, and wind direction were selected as the candidates for independent variables since they are
known to either directly or indirectly affect the spatial mixing of NO2 molecules in boundary layer.
Furthermore, temperature and dewpoint were selected as candidates for independent variables as they
affect the boundary layer height [31].

The multiple regression equation can be defined by the following equations:

ŷ = β0 + β1x1 + β2x2 + . . . + βnxn + ε (1)

where ŷ and β0 are the dependent variable (NO2 VMRIn-situ) and regression coefficient, respectively;
x1, x2,..., xn are the candidate independent variables (Trop NO2 VCDOMI, DewpointIn-situ, PressIn-situ,
TempIn-situ, BLHAIRS, WSIn-situ, and WDIn-situ); β1, β2, . . . , βn are the regression coefficients of the
independent variables; and ε is the difference between observations (NO2 VMRIn-situ) and estimated
values (NO2 VMRestimate). The regression coefficients can be estimated by least square fitting:

m

∑
j=1

ε2
j =

m

∑
j=1

(
yj − ŷj

)2 (2)

where yj is the observed value with m data points. By minimizing the sum of ε2, regression coefficients
can be derived. These least square fitting techniques are based on the following assumptions: the linear
relationship, a normal distribution and equal variance in the residuals. The least squares regression
is sensitive to the presence of some points that are excessively large or small values in the training
data [32]. To determine the independent variables (xn) and regression coefficients (βn) included in the
final form of equations M3 and M4, we considered the variation inflation factor (VIF) and p-value to
ensure their statistical significance. First, we examined the VIF that explains the multicollinearity of a
candidate independent variable with regard to other candidate independent variables. The VIF of the
j-th independent variable is expressed as:

VIF
(
xj
)
=

1
1 − R2

j
(3)

where R2
j is the coefficient of determination for the regression of xj against another independent

variable (a regression that does not involve the dependent variable j). The VIF indicates how much
xj is correlated with the other candidate variables. A candidate independent variable with a very
high VIF can be considered redundant and should be removed from the multiple regression equations.
Candidate independent variables that do not satisfy the criterion VIF < 10 [33], were excluded from
the independent variables. The p-value was also used to select independent variables. The highest
still statistically significant p-level was shown by Sellke et al. [34] to be 5%. Among the independent
variables that satisfy the VIF criterion, those that also satisfy p-value <0.05 are selected as final
independent variables in the multiple regression equations. The independent variables selected for
equations M3 and M4 are shown in Table 5. The final form of equation M3 to estimate NO2 VMRST is
shown Table 3, and that for NO2 VMRM in Table 4.
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Table 5. Final independent variables included in multiple regression equations (M3 and M4).

Final Selected Independent Variables p-Value VIF

M3

Trop NO2 VCDOMI 0 1.26
TempIn-situ 0.000032 7.02

DewpointIn-situ 0.000306 7.16
PressIn-situ 0.009981 3.14
BLHAIRS 1.73 × 10−15 1.12
WSIn-situ 3.86 × 10−133 1.33
WDIn-situ 1.7493 × 10−38 1.07

M4

Trop NO2 VCDOMI 2.4832 × 10−89 1.64
DewpointIn-situ 0.000421 6.47

PressIn-situ 0.034582 6.65
BLHAIRS 0.000834 2.32
WSIn-situ 3.86 × 10−133 1.59
WDIn-situ 1.699 × 10−7 1.25

4. Results

4.1. Daily Estimates

Figure 6 shows the day-to-day variations of NO2 VMRIn-situ and NO2 VMRST estimated at 13:45
LT in West Seoul and East Seoul using M1, M2 and M3 in Table 3 for 2006 and 2014. A slightly
larger difference in magnitude is found between NO2 VMRIn-situ and NO2 VMRST obtained with M3
compared to those between NO2 VMRIn-situ and NO2 VMRST obtained with M1 and M2. However,
NO2 obtained from M3 showed moderate agreement with NO2 VMRIn-situ in the form of the day-to-day
variation. Results for Daejeon, Gwangju, and Gyeonggi are included in the Supplementary Materials.

Figure 7 shows the R, slope, mean bias (MB), mean absolute error (MAE), root mean square error
(RMSE) and percent difference between NO2 VMRST and NO2 VMRIn-situ for the validation period
(2006 and 2014). The R obtained with M1 ranges from 0.49 to 0.71, showing better agreement than
that with M2 (0.47 < R < 0.65). M3 showed the best correlation with NO2 VMRIn-situ (0.67 < R < 0.90).
The slopes from both M1 and M2 are close to one in East Seoul, whereas they are lower in the other
cities. The MB from M1, M2, and M3 ranges from −7.74 to 5.80 ppbv. In all study areas, the MAE
(5.79 ppbv < MAE < 8.25 ppbv) of M3 is lower than those (6.58 ppbv < MAE < 11.41 ppbv) of M1
and M2, which means that NO2 VMRST estimated from M3 show moderate agreement with NO2

VMRIn-situ in terms of magnitude. The RMSE from M3 is found to be lower than those from M1 and
M2. The NO2 VMRST from M3 have the lowest RMSE in all study areas (7.21 ppbv < RMSE < 11.37
ppbv). In addition, percent differences estimated from M3 and NO2 VMRIn-situ are lower in all study
areas than from M1 and M2. In estimating NO2 VMRST, M3, which is a multiple regression method
with various independent variables as inputs, generally showed good statistical performance except
for MB.
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East Seoul and West Seoul for: 2006 (a,c); and 2014 (b,d).
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4.2. Monthly Estimates

Figure 8 shows the temporal variation of monthly mean NO2 VMRIn-situ and NO2 VMRM

estimated using M1, M2 and M4 of Table 4 in West Seoul and East Seoul using monthly mean
independent variables during the validation period (see the detailed input data in Section 2.1). Figure 8
shows good agreement in terms of the temporal pattern between the estimated NO2 VMRM and
monthly mean NO2 VMRIn-situ. However, we found a large difference between NO2 VMRIn-situ

and NO2 VMRM in periods when there was a jump in NO2 VMRIn-situ between successive months.
For example, no models calculated NO2 VMRM that were similar to NO2 VMRIn-situ in December
2006, which is very different from that in November 2006. NO2 VMRIn-situ (NO2 VMRM from M1,
M2, and M4) in November and December in 2006 are 19.32 ppbv (15.94, 17.96, and 17.62 ppbv) and
30.30 ppbv (15.94, 17.96, and 17.62 ppbv) in Daejeon, 15.26 ppbv (12.29, 13.87, and 18.09 ppbv) and
32.55 ppbv (12.73, 14.57, and 18.46 ppbv) in Gwangju, 29.31 ppbv (25.86, 25.97, and 22.35 ppbv) and
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40.64 ppbv (29.91, 29.15, and 26.85 ppbv) in Gyeonggi, and 31.25 ppbv (22.80, 24.55, and 23.64 ppbv)
and 45.93 ppbv (28.65, 28.92, and 26.49 ppbv) in West Seoul. Especially in West Seoul, there are several
periods when NO2 VMRIn-situ changes rapidly compared with the previous month. The NO2 VMRM

obtained from the three models at these times are in poor agreement with the pattern of monthly
NO2 VMRIn-situ. As described in Section 2, despite the use of NO2 VMRIn-situ located away from the
streets, the in situ measurement sites in West Seoul are located closer to the streets than the in situ
measurement sites in Daejeon and Gwangju. This may explain why there are more periods when NO2

VMRIn-situ changes rapidly from one month to the next. It is difficult to estimate the rapid change of
NO2 VMR near the NO2 source using regression models that reflect the relationship between the in
situ measurements and the OMI sensor covering both source and non-source areas in a single pixel.
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Figure 8. Time series of NO2 VMRIn-situ and NO2 VMRM estimated by M1, M2, and M4 for 2006
and 2014.

Figure 9 shows the R, slope, MB, MAE, RMSE and percent difference between NO2 VMRM and
monthly mean NO2 VMRIn-situ in 2006 and 2014. In general, NO2 VMRM agreed better with NO2

VMRIn-situ than did the NO2 VMRST. The value of R from M1, M2 and M4 and monthly mean NO2

VMRIn-situ ranged from 0.68 to 0.82 in all areas. MB was close to 0 in most study areas. MAE was less
than 5 ppbv in Daejeon, Gwangju, Gyeonggi, and East Seoul where there is good agreement between
NO2 VMRM from M1, M2, and M4 and monthly mean NO2 VMRIn-situ, whereas MAEs in West Seoul
ranged from 5.66 to 6.79. RMSEs between NO2 VMRIn-situ and NO2 VMRM from M1, M2, and M3 are
found to be lower than 7 ppbv in the study areas except for West Seoul. In addition, the three models
showed percent differences of less than 30% except for the value estimated from M1 in Gwangju.
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5. Discussion

In a previous study [18], tropospheric NO2 VCDs obtained from GOME were compared with
tropospheric NO2 VCDs calculated using NO2 concentrations obtained from both in situ measurements
and the Model of Ozone and Related Tracers 2 (MOZART-2). There are also several previous studies
estimating surface NO2 VMR using satellite data [3,35]. Among them, Kharol et al. [3] estimated the
annual variation of ground-level NO2 concentrations using both GEOS-Chem data and OMI data.
However, in the present study, NO2 VMRST and NO2 VMRM were estimated for the first time at higher
temporal resolution using three regression models with Trop NO2 VCDOMI as input.

5.1. Estimation of Surface NO2 VMRs at a Specific Time (13:45 LT)

• Among the three regression models, the multiple regression model M3 performed best in
estimating NO2 VMRST. The linear regression model (M2), in which BLH is used as an
independent variable in addition to Trop NO2 VCDOMI, has comparable performance to that of
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the model (M1) which uses Trop NO2 VCDOMI as the only independent variable.The BLH varies
with latitude [36], but the latitudinal variation of BLH is not well represented since the spatial
resolution of the AIRS used in this study is coarser than the spatial resolution of OMI. It might
also be associate the BLHAIRS data quality. We expect better results using BLH data obtained
from LIDAR.

• The average difference was found to be 46.04% between NO2 VMRIn-situ and NO2 VMRST obtained
from M1, 44.29% between NO2 VMRIn-situ and NO2 VMRST obtained from M2, and 31.50%
between NO2 VMRIn-situ and NO2 VMRST obtained from M3 in all cities, while there was moderate
agreement in the temporal pattern of NO2 variation between NO2 VMRIn-situ and NO2 VMRST

obtained from M1, M2, and M3 (Figure 6).
• In terms of statistical evaluation with respect to the in situ data, M3 showed the best performance

in general.
• The results produced by M2 are not improved compared to those by M1 which may imply that

surface NO2 VMR is dominantly affected by tropospheric NO2 column while the BLH effect could
be negligible in areas of the present study. It might also be associate the AIRS BLH data quality.

5.2. Estimation of Monthly Mean Surface NO2 VMRs of a Specific Time (13:45 LT)

• We found good agreement in the temporal pattern between the estimated NO2 VMRM and
monthly mean NO2 VMRIn-situ (Figure 8). However, there was a large difference between NO2

VMRIn-situ and NO2 VMRM in the period when there was a clear change in NO2 VMRM between
one month and the next. Despite the use of NO2 VMRIn-situ located away from streets, the in situ
measurement sites in West Seoul are located closer to streets than the in situ measurement sites
in Daejeon and Gwangju. This may explain why there are more periods when NO2 VMRIn-situ

changes rapidly in successive months. It is difficult to estimate the rapid change of NO2 VMR near
NO2 sources with regression models that reflect the relationship between the in situ measurements
and the OMI sensor covering both source and non-source areas in a single pixel.

• In terms of statistical evaluation, the three regression models (M1, M2, and M4) were found to be
similar (Figure 9).

• NO2 VMRM shows better agreement with the NO2 VMRIn-situ than does NO2 VMRST. The reason
for the better performance in the monthly mean estimation could be attributed to reduced errors
in the monthly mean OMI data [37] as well as fewer occasions with sudden monthly changes in
NO2 VMRIn-situ than rapid day-to-day changes in NO2 VMRIn-situ.

This present study provides the results in the condition of 2 km distance between the in situ
NO2 measurement location and NOX point source. For a future study, performances of the models
need to be investigated depending on the distance between the in situ NO2 data and point sources.
We expect that the regression methods used to estimate the surface NO2 VMR using Trop NO2

VCDOMI will be useful in providing information on surface NO2 VMR in metropolitan cites on a
monthly timescale. In future research, the estimation of surface NO2 VMR may be attempted at higher
time resolution with geostationary satellite sensors (e.g., geostationary environmental monitoring
spectrometer (GEMS), tropospheric emissions: monitoring of pollution (TEMPO), and Sentinel-4). In
further work, improvements are needed in the input data or the model formulation before the surface
NO2 can be estimated on a daily basis.

6. Conclusions

In this study, monthly and specific time estimates of NO2 VMR were obtained for the first time
using three regression models in four metropolitan cities for two years, 2006 and 2014. The multiple
regression model (M3) was found to perform best in estimating NO2 VMRST in all cities. For surface
NO2 estimates at the specific time (13:45 LT), M3 generally gives better R, MAE, RMSE, and percent
difference than the other two models (M1 and M2). A comparison between monthly surface NO2
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VMR estimates and those at the specific time showed that agreement with NO2 VMRIn-situ was
better for monthly estimates. In estimating NO2 VMRM, three regression models (M1, M2, and M4)
showed similar performance. In estimating daily and monthly surface NO2 VMR variations, when
the surface NO2 VMR changes rapidly, the difference between surface NO2 VMR estimated from all
models and NO2 VMRIn-situ is found to be large. In future studies, using higher spatial resolution
satellites is expected to improve the relationship with in situ measurements. In addition, the use
of other independent variables that may co-vary with rapid changes of surface NO2 VMR should
be investigated.

Supplementary Materials: The Supplementary Materials are available online at http://www.mdpi.com/2072-
4292/9/6/627/s1.
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