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Abstract: A major challenge in hydrologic modeling remains the mapping of vegetation dynamics
in an urban landscape. The impact of vegetation on interception storage varies over time and
needs to be quantified in order to enable proper management of water resources in urban areas.
However, the heterogeneity and complexity of the urban landscape makes it challenging to monitor
urban vegetation. A more detailed spatial and temporal scale is needed. To characterize surface cover
at a high spatial resolution, a hyperspectral APEX image (2 m) is used, while a time series of Proba-V
images (daily, 100 m) allows a detailed characterization of the seasonal variation of urban greenness.
For this study, we use and validate the leaf area index (LAI) maps derived from APEX and Proba-V
data for a selected pixel in the Watermaelbeek catchment in Brussels (Belgium). The ground-truthing
of the Proba-V pixels includes a detailed mapping of land cover characteristics and more specifically
vegetation cover throughout the seasons. LAI values calculated based on the APEX image agree with
the LAI values measured from the ground (n = 106, R2 = 0.68). Further, the aggregated APEX pixels
correlate with the Proba-V pixels (R2 = 0.79), and the Proba-V data can be used to monitor vegetation
dynamics. As the seasonal LAI measurements correspond with the Proba-V dynamics, we conclude
that Proba-V images allow the characterization of vegetation dynamics at a high spatial resolution in
heterogeneous areas. We create a time series of LAI maps at a high resolution (2 m), which allows a
location- and time-specific simulation of interception storage and thus contributes to managing water
resources in urban areas.
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1. Introduction

The development of urban areas leads to a rapid transformation of land cover (e.g., vegetation,
bare soil, water and man-made surfaces) and land surface properties (e.g., heat capacity, soil moisture,
vegetation density and diversity, surface roughness) and therefore highly affects the energy and
water cycles of these areas [1,2]. The reduction of vegetation cover, the sealing of surfaces and
the construction of buildings and roads reduce the rainfall losses by interception, infiltration and
evapotranspiration and thus increase the net rainfall amount available for storm runoff in urban
catchments. Urbanized catchments are also a main cause for the pollution of water resources due to
storm water runoff, combined sewer overflows and wastewater treatment plants [3]. As hydrologists
start to consider not only the major rainfall events, but raise their interest for more common events,
interception becomes important. It is crucial to determine new management strategies for urban
vegetation in order to mitigate urbanization effects [3]. Thus, there is an increased need to simulate
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the water fluxes in urban areas and quantify the impact of vegetation on the water fluxes [4]. As
a consequence, monitoring the seasonal variations of urban vegetation and its impact on interception
storage to quantify the influence on the urban water balance are crucial for sustainable city planning.
The heterogeneous distribution of vegetation in urban catchments makes the characterization of
vegetation and its potential benefits challenging. Therefore, we need hydrological models with a high
spatial and temporal resolution to account for the high heterogeneity and fast dynamics of hydrological
processes in urban areas [5]. This paper sets up such a model to simulate the impacts of vegetation on
the interception storage of the Watermaelbeek catchment in Brussels, Belgium.

Urban hydrological models usually use land cover information based on GIS technologies, and
only a few modelers take advantage of the spatial and temporal coverage of remote sensing (RS)
techniques [6–8]. Remote sensing provides the possibility to classify surfaces objectively into land
cover classes and to monitor seasonal dynamics, as well as the land use changes over a period of
years. The potential of satellite data for field and regional planning is however limited by the challenge
of translating its images into usable parameters [9]. The normalized difference vegetation index
(NDVI) of multispectral imagery can be used to characterize vegetation in urban areas. As a physically
meaningful parameter for hydrological modeling, the remotely-sensed leaf area index (LAI) improves
simulation results [10,11]. The NDVI and LAI deduced from frequent satellite imagery are valuable as
the seasonal variation of vegetation can be considered. However, the heterogeneous character of urban
areas makes the use of satellite data challenging.

The potential of satellite imagery to describe the heterogeneity of urban catchments is limited due
to its relatively coarse resolution [9,12,13]. Moreover, the derivation of the structural characteristics of
the tree canopy remains difficult as optical imagery is limited to two dimensions. Finally, shadowing
effects may increase the complexity of the classification [14]. The potential of light detection and
ranging (LiDAR) methods in combination with multi-spectral remote sensing has been explored to
improve classification results [14,15]. However, an accurate estimation of urban tree cover remains
complex with LiDAR data [15]. Therefore, Launeau et al. [16] suggest using airborne hyperspectral
and high resolution imagery to characterize trees in an urban environment. Several studies indicate
improvements in describing functional vegetation properties [16–19]. In this study, we try to combine
the high spatial resolution of the hyperspectral APEX (Airborne Prism EXperiment) image (2 m) with
the high temporal resolution of the multispectral Proba-V (Project for OnBoard Autonomy-Vegetation)
images (daily) to improve the parameterization of urban hydrological models.

The main objective is to create an LAI map time series at a high resolution, based on the combined
RS data, for location- and time-specific estimation of interception storage. We compare hydrological
simulations including the LAI map time series with simulations not using the LAI map time series to
model interception storage.

2. Materials and Methods

2.1. Study Site

The study site is the Watermaelbeek (WMB) catchment, which represents the most urbanized part
of the upper Woluwe catchment (see Figure 1), a tributary of the Senne River in Brussels, Belgium. The
WMB catchment has an area of 7.2 km2. The elevation gradually decreases from the southwest to the
northeast and ranges from 121 m to 54 m a.s.l. For the Watermaelbeek, the predominant soil type is
well-drained loamy soil. The APEX coverage is illustrated in Figure 1 (left). Brussels has a temperate
climate with moderate temperatures and an average rainfall of 853 mm/year [20]. Thus, cloud cover is
an issue in this study area. The land cover is predominantly urban (residential), but the southeast of
Brussels, where the upper Woluwe catchment is situated, still has a dense vegetation cover.

The meteorological inputs are based on hourly data for 2015 from the Royal Meteorological
Institute of Belgium (RMI) for the Uccle station in the Brussels region. The RMI measures temperature,
relative humidity, precipitation, wind direction and speed, as well as global and infrared radiation data.
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The precipitation data are compared to pluviometer measurements at the depot communal under the
supervision of Flowbru, a water monitoring network for the Brussels Capital Region [21], to investigate
for outliers. The potential evapotranspiration is calculated using the Penman–Monteith equation [22].

Figure 1. The Brussels region (a) with the study site (yellow), the APEX flight lines (red) and the upper
Woluwe catchment (purple). The land cover of the WMB catchment is illustrated in the right panel (b).
The urban fraction covers 39%, trees cover 36%, grass 17.3%, bare soil 6.5% and water 1.2% of the
WMB catchment.

2.2. Field Data

For assessing the LAI from 106 individual trees in the urban catchment (see Section 2.1), the
SunScan system (Type SS1-COM-R4) was used. The SunScan measures incident and transmitted
photo-synthetically-active radiation (PAR). The trees were selected according to the position
(isolated and within the APEX flight lines) and the species. The focus was on the 4 most common urban
tree types in Brussels: maple (Acer platanoides and pseudoplatanus), birch (Betula pendula), chestnut
(Aesculus hippocastanum) and linden (Tilia). As the height and structure of the trees are variable
(see Table 1), the measurements were taken 1 m below the canopy in 8 compass directions of each
studied tree. For each compass direction, the SunScan was positioned at a 1-m distance from the stem.

Table 1. Trees inventory (n = 106).

Statistics Maple Birch Chestnut Linden

sample number 36 9 28 33
mean height (standard deviation) 15 m (5 m) 16 m (1 m) 16 m (6 m) 14 m (5 m)
mean DBH (standard deviation) 0.45 m (0.35 m) 0.40 m (0.05 m) 0.59 m (0.33 m) 0.38 m (0.21 m)
mean crown diameter (standard deviation) 10 m (6 m) 11 m (5 m) 10 m (4 m) 10 m (4 m)

Based on the Beer–Lambert Law and Norman and Jarvis [23] and Goudrian [24], we calculated
LAI according to the following equation:

LAI =
((1− 1

2k ) fb − 1)× ln T
A× (1− 0.47× fb)

(1)
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where T is the fraction of transmitted photo-synthetically-active radiation (PAR) defined by
PARbelowcanopy/PARabovecanopy, and fb is the beam fraction defined by PARdi f f use/PARdirect.
The extinction coefficient k is modeled as:

k =

√
x2 + tan θ2

x + 1.744× (x + 1.182)−0.733 (2)

and θ is the solar zenith angle in degrees. The leaf angle distribution is assumed to be spherical
(x = 1). John Norman [25] set up the equation A = 0.283 + 0.785a − 0.159a2 where a = 0.85 is the
SunScan leaf absorptivity.

The ground-truthing of RS data included a detailed mapping of land cover characteristics
and more specifically vegetation cover throughout the seasons. To measure the PARabovecanopy, a
sunshine sensor (Type BF5) was used, and the total and diffuse incoming radiation were measured
simultaneously outside and below the canopy. The LAI of 106 trees throughout the APEX flight lines
was measured within 1 month of the flight, and the seasonal dynamics of 18 trees within one Proba-V
pixel were monitored on the Vrije Universiteit Brussel (VUB) campus in Brussels, Belgium, from April
to October 2015 (Figure 2). The VUB campus is situated adjacent to the northern part of the WMB
catchment. The trees represent 28% of the pixel, whereas grass covers 39%, bare soil 3%, and another
30% of the pixels is impervious.

Figure 2. Selected Proba-V pixel with 18 monitored trees (yellow dots). The Proba-V pixel is delineated
by the black lines (110 × 70 m), whereas the APEX pixels are delineated with blue lines (2 × 2 m).

2.3. Remote Sensing Data

The airborne hyperspectral APEX image (Airborne Prism Experiment) with a 2 m resolution was
taken on 30 June 2015 within the framework of the Belair 2015 campaign (http://belair.vgt.vito.be/
content/belair-2015). The 5-day Proba-V products for Belgium (PV_S5_TOC_100M) were downloaded
for April to October 2015. Proba-V provides 5-day products, summarized from daily products, to
provide more cloud-free images at the 100m spatial resolution. For that period only 10 cloud-free
images are covering the study area (11 April 2015, 16 April 2015, 21 April 2015, 26 April 2015,
1 June 2015, 11 June 2015, 11 July 2015, 1 August 2015, 26 August 2015, 1 October 2015). To compare

http://belair.vgt.vito.be/content/belair-2015
http://belair.vgt.vito.be/content/belair-2015
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the Proba-V with aggregated APEX pixels, the image from 1 July 2015 was selected. The image of 1
July was selected as it is closest to the APEX flight-time and the clouds on the image do not directly
overlap the flight-lines. However, as we can not exclude all cloud effects, the image was not used
for creating an LAI timeseries. The Proba-V images were reprojected from GCS-WGS-84 to Belgian
Lambert 72 coordinates, which implied a transformation of the originally squared pixels to rectangular
pixels (from 100 × 100 m to 70 × 110 m).

The generation of the urban land cover map was based on an airborne hyperspectral APEX image
with a 2-m resolution. Based on 200 known pixels per class, so-called training pixels, a supervised
classifier, the support vector machine (SVM) classifier, was applied to the APEX image. Thirty one
subclasses such as impervious roofing and pavements (tiles, asphalt, concrete) or pervious vegetated
(trees, shrubs, grasses) and non-vegetated surfaces (water, bare soil) were used to generate the
high-resolution land cover map of the Watermaelbeek catchment. The classification results are further
elaborated in [14] presenting an overall kappa value of 0.87 in sunlit and 0.69 in shaded areas. The
kappa coefficient was used as a measure of agreement between the classification results and a set of
shaded and sunlit validation polygons. Figure 1 (right) illustrates a simplified land cover map of the
Watermaelbeek catchment. The impervious fraction covers 39% (roofing materials 22% and pavements
17%) of the WMB catchment, whereas trees cover 36%, grass 17.3%, bare soil 6.5% and water 1.2%.

To monitor the seasonal variation of the vegetation within the WMB, the 5-day Proba-V products
were taken and disaggregated from the seasonal LAI to the spatial resolution of the APEX image
(Figure 3). To create LAI maps based on APEX and Proba-V data, the normalized difference vegetation
index (NDVI) (Equation (3)) is calculated according to Tucker [26].

NDVI =
NIR− RED
NIR + RED

. (3)

Proba-V defines for the red (RED) and near-infrared (NIR) bands the following wavelength:
RED = 655 nm and 79 nm width and NIR = 845 nm and 144 nm width. Therefore, the following APEX
bands for the calculation of NDVI: Bands 30 to 56 (656.5 nm and 81 nm width) for RED and Bands 76
to 100 (847.5 nm and 145 nm width) for NIR. Based on the findings of [27], the LAI (Equation (4)) is
calculated based on the NDVI maps and using the method of Su [28].

LAI =
√

NDVI × 1 + NDVI
1− NDVI

(4)

Bindhu and Narasimhan [29] developed a disaggregation method (DisNDVI) for generating a
time series of NDVI images aiming at a spatial resolution of 60 m. For this study, we created LAI maps
with a spatial resolution of 2 m (Figure 3). At this resolution, we have 1 APEX image available for the
study area. We aggregated the APEX pixels to the Proba-V resolution and created land cover fractions
within the 100-m resolution Proba-V pixels. Dynamic land cover types were identified by generating
seasonal NDVI and LAI profiles of homogeneous Proba-V pixels. Homogeneous Proba-V pixels were
defined for trees and impervious surfaces if >90% of the Proba-V pixel is covered by one of these land
cover types. For grass, not enough pixels with >90% coverage are present in our study area. To obtain
a similar number of homogeneous Proba-V pixels a threshold of >50% was selected. Stable versus
dynamic land covers were defined by comparing the seasonal trend per land cover type. Land cover
types without a clear seasonal trend were considered stable land cover types. To create LAI maps
at 2-m resolution, the stable land cover fractions use the constant LAI values (averaged throughout
the year based on homogeneous Proba-V pixels), whereas the dynamic land cover types use the LAI
values of the Proba-V images throughout the season. To disaggregate the LAI values of the Proba-V
image to the APEX resolution, the weighted LAI for the given Land Cover 1 (LC1) was derived as
occupying the fraction (fracLC1) of the Proba-V pixel by subtracting the sum of the weighted LAI’s
from the other land cover types (e.g., LC2, LC3) from the LAI of the Proba-V pixel (LAIProba−V), as
shown in Equation (5).
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LAILC1 = LAIProba−V − ( f racLC2 × LAILC2 − f racLC3 × LAILC3)/ f racLC1 (5)

Figure 3. Monitoring urban vegetation dynamics based on RS products and ground-truth validation.

2.4. The Water Balance Model: WetSpa

The Water and Energy Transfer between Soil Plants and Atmosphere simulator (WetSpa) [30,31]
allows a detailed modeling of the land surface processes. For this study, the focus is on WetSpa’s
capacity for simulating the interception storage at the surface in a continuous and distributed manner.
A more recent version of WetSpa was developed in view of the application in urban areas [32] (Table S1).
This version increases the flexibility of the different model components in that every physically-based
process is coded in a separate module, and every component can have a different spatial and temporal
resolution. This allows one to account for the heterogeneous distribution of urban greenness and the
seasonal effects of the vegetation. The interception module is an important first step in the modeling
process, as it determines the amount of net rainfall that is actually available for the calculation of the
remaining components of the water balance. It calculates net rainfall by reducing the rainfall amount
until the interception storage capacity is filled. The classical approach to simulate the interception
storage with WetSpa uses a sine curve to interpolate between minimum and maximum interception
storage capacity values retrieved from the literature. With the approach used here, LAI maps were
integrated into the WetSpa model for the estimation of interception storage capacity. A 2-m resolution
and hourly time step were selected for one growing season (April to October 2015) and for the
Watermaelbeek catchment. The spatially-distributed and seasonal LAI maps were created for each
simulation time step within the WetSpa model using linear interpolation between the selected Proba-V
images. To create a yearly water balance, 2 additional Proba-V images were selected: one to define
minimum conditions before the growing season starts (6 March 2015) and the other to define minimum
conditions after the growing season ends (21 November 2015). The interception storage capacity
for trees is calculated using the formula for broad leaf forest trees (Equation (6)), whereas a specific
formula is used for the interception of grass and shrubs (Equation (7)) [33]. It is known that those
equations are empirical and might not be fully applicable to our case. There is a lack of validated
equations for our study area, and research is ongoing to fill this gap.
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Imax = 1.184 + 0.490× LAI (n = 5, R2 = 0.76) (6)

Imax = 0.3063× LAI + 0.5753 (n = 6, R2 = 0.82) (7)

where Imax is the interception storage capacity, and n represents the sample number to set up the
equation. WetSpaClassic refers to the classical approach of the WetSpa model, whereas WetSpaLAI
refers to the new approach including dynamic LAI maps.

3. Results

3.1. The Ground-Truthing of the High Resolution LAI Map Based on the APEX Image

Figure 4 shows that the LAI calculated based on the APEX image corresponds to the LAI measured
on the ground with a correlation of 0.68 and a root mean squared error of 0.2 (n = 106). The mean
of ground-truth and APEX LAI is 3.0. The median is 2.9 for the ground-truth and 3.0 for the APEX
LAI. For the minimum LAI, the values from the APEX image are almost double the ground-truth LAI
values (Figure 4). The differences between the two datasets are explained as follows: The APEX image
taken from the sky includes the land cover below the trees and is incorporated into the LAI calculation.
For trees with sparse canopies the position of the tree (on grass, asphalt, concrete) impacts the spectral
reflectance, and thus, a tree with a similar canopy can have higher LAI values if situated on grass.
Further considering the maximum, ground-truth LAI is higher than APEX LAI. The ground-truth
measurements are influenced by shadow in the urban environment, the weather conditions of the
day and a shift in time (time of flight ± 1 month). For the trees where the SunScan indicates an LAI
that is almost double the APEX LAI, we observed flowering, pruning and rust on leaves during the
ground-truth measurements.

Figure 4. Scatter plot of measured LAI (x-axis) vs. APEX LAI (y-axis) for 106 trees. Linear regression as
the dotted and 1:1 as the dashed line.

3.2. The Aggregation of APEX NDVI/LAI to Proba-V Resolution and Ground-Truthing of Proba-V Products

In order to select homogeneous pixels within the seasonal Proba-V data, we aggregate the APEX
image to the Proba-V resolution (100 m). We then define the fractions occupied by different land
cover types within each Proba-V pixel. Homogeneous Proba-V pixels are selected to analyze the
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seasonal dynamics of different land cover types. To validate the aggregation process, we compare the
NDVI values of the Proba-V pixels with the aggregated APEX NDVI pixels. Figure 5a shows that we
find a good correlation between the NDVI of Proba-V and the NDVI of the aggregated APEX map
(R2 = 0.79). Data are attributed to the differences in the spectral band width and differences in image
processing between Proba-V and APEX images. Further, more clear sky was present on the acquisition
date of APEX (30 June 2015) than on the date of the chosen Proba-V image (1 July 2015). Figure 5b
illustrates that the dominant land cover classes are grouped according to the expected NDVI values:
low for the selected homogeneous Proba-V pixels with >90% impervious cover (n = 35), moderate
with >50% grass cover (n = 18) and high with >90% tree cover (n = 24). As the grass pixels are not
as homogeneous as the impervious and tree pixels, we observe a bigger spread of the NDVI values.
However, we obtain an average NDVI of 0.7 for grass, which corresponds to the NDVI values for
urban grass found in the literature [34]. As within the impervious pixels, 10% are not covered by urban
materials, the NDVI is not zero, but averages to 0.2.

(a) all pixels

(b) homogeneous pixels

Figure 5. Proba-V vs. aggregated APEX NDVI values for the Watermaelbeek catchment for (a) all
pixels and (b) homogeneous pixels.

In the next step, the seasonal dynamics of the selected homogeneous pixel classes were analyzed
using one Proba-V image per month from April to October 2015. An average value over all
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homogeneous pixels from a dominant land cover type was taken. Figure 6 illustrates that the Proba-V
pixels with >90% of tree coverage show seasonal dynamics (polynomial fit, R2 = 0.67), whereas
neither the impervious (polynomial fit, R2 = 0.92), nor the grass pixels (polynomial fit, R2 = 0.35)
show this seasonality. The grass and impervious pixels show a trend similar to the trees pixels, but
less pronounced, as a percentage within the homogeneous Proba-V pixels can be covered with trees
(maximum 49% in grass pixels and 9% in impervious pixels). The grass pixels are deviating more from
the curve than the impervious pixels because of management (growing/mowing). For the following
steps, we assume all land cover fractions without trees to have a constant yearly mean (grass = 0.7,
R2 = 0.59 and impervious = 0.2, R2 = 0.86). The LAI variation within the Proba-V pixel is only
influenced by the dynamics of the tree canopies within that pixel.

Figure 6. Seasonal dynamics of homogeneous Proba-V pixels from April to November 2015.

Finally, the seasonal dynamics of a Proba-V pixel are compared to the measured dynamics of
18 trees within that specific pixel (Figure 2). Figure 7a illustrates the LAI value for the given Proba-V
pixel throughout the season as compared to the measured LAI values scaled to the Proba-V pixel
resolution, including all land cover types within the pixel. As only 28% of the pixel is covered by trees,
the LAI values are low, and the seasonal dynamics are unclear. Focusing only on the tree fraction
within the pixel, the scaling approach described by Equation (5) is applied. Based on Proba-V, the
LAI values vary from 2.5 to 4.5, whereas the field measurements result in LAI values from 0.6 to 4.2
from minimum (April and October) to maximum (May, June, July, August) conditions (Figure 7b).
The difference of LAI for minimum conditions is due to the increasing influence of grass growing
underneath on the LAI value of the Proba-V image as trees lose their leaves. The field measurements
on the other hand are independent of undergrowth, but strongly influenced by the weather conditions
during the day of measurements. The small drops in the curve (29 July 2015, 9 October 2015) are
related to poorer weather conditions during measurements.

The agreement in the ground-truthing results of APEX and Proba-V LAI allows us to construct
dynamic LAI maps based on the seasonal Proba-V data and with the spatial resolution of the APEX
image (2 m). The scaling approach is used to attribute to each APEX pixel with a specific land cover
the seasonal LAI value based on Proba-V. Based on the high resolution land cover map (Figure 1),
urban materials, grass, bare soil and water pixels remain constant, whereas tree pixels vary throughout
the season. Figure 8 illustrates an LAI map for minimum conditions (January 2015) (Figure 8a)
and maximum conditions (July 2015) (Figure 8b). The maps illustrate that the LAI values change
throughout the season not only in the forested park area (southwest), but also in the residential areas.



Remote Sens. 2017, 9, 645 10 of 18

(a) Proba-V pixel

(b) Tree fraction within the Proba-V pixel (28%)

Figure 7. LAI dynamics of (a) the selected Proba-V pixel and (b) the tree fraction within the Proba-V
pixel (28%) at the Vrije Universiteit Brussel (VUB) campus, Brussels, Belgium.

3.3. The Calibration and Validation of the WetSpa Model

The WetSpa model was calibrated for the Watermaelbeek catchment at a 2-m resolution for a
six-month period (January, March, May, July, September, November 2015). The WetSpa simulations do
not consider the influence of the sewer system, and thus, simulated low flows are not comparable to
observed discharge data. Therefore, we use an adapted version of the Nash–Sutcliffe efficiency (NSE)
to evaluate our model simulations (Equation (8)); with Qs and Qo being the simulated and observed
runoff data per time step i [31].

NSE = 1−

N

∑
i=1

(Qoi + Qo)(Qsi −Qoi)
2

N

∑
i=1

(Qoi + Qo)(Qoi −Qo)2

(8)

The base flow is approximated by fitting a trend-line throughout the discharge data. In addition
to the sewer infrastructure, the presence of a reservoir at the Watermaelbeek outlet affects the discharge
time series at high intensity rainfall events. As rainfall flows into the reservoir, observed peak flows are
lower than the simulations where the reservoir infrastructure is not accounted for. The behavior of the
reservoir could not be simulated with WetSpa, and therefore, we remove 16 major events (event dates:
3 January, 8 January, 10 January, 15 January, 28 January, 29 March, 3 May, 4 May, 29 May, 5 June,
13 August, 15 August, 1 September, 13 September, 14 September, 19 November 2015). As the water
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release from the reservoir is manually controlled, it is difficult to detect and account for the effect of
water release on the observed discharge time series. This effect is not taken into account and will be
reflected in the NSE values. We used an automated parameter estimation (PEST) [35], as well as a
manual fine-tuning to calibrate the global parameters. The high spatial resolution (2 m) generates
long computational times (two days/run), and therefore, we are satisfied with good NSE values for
the calibration. The Nash–Sutcliffe efficiency (NSE) for the calibration is 68%. The validation period
covered six months (February, April, June, August, October, December 2015), where we get an NSE
value of 71% for both WetSpaClassic and WetSpaLAI. Regarding the water balance simulation, the
model performs with a volumetric efficiency of 99.9%.

(a) LAI at minimum conditions (November 2015)

(b) LAI at maximum conditions (July 2015)

Figure 8. Seasonal LAI maps at (a) minimum conditions (November 2015) and (b) maximum conditions
(July 2015) for the WMB catchment, Brussels, Belgium.
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3.4. Introducing LAI Maps into the WetSpa Model

The interception capacity and actual interception storage are simulated with WetSpaClassic and
WetSpaLAI for the WMB catchment. Figure 9 illustrates the interception storage capacity values
averaged over all of the pixels within the WMB catchment for each time step. An increase of
interception storage capacity to the peak capacity on 15 June followed by a decrease until the minimum
conditions is the consequence of using a sine function (Figure 9, green curve). By introducing the
LAI maps into the model, the peak interception storage capacity is reached in the beginning of June
and then stays relatively constant until the end of the season where the capacity quickly drops to its
minimum conditions (Figure 9, orange curve). WetSpaLAI allows linking interception storage capacity
to a specific period (season, year) and location (WMB, Brussels), wheres WetSpaClassic only links the
interception storage capacity to standard literature-based land cover conditions. Figure 9 clearly shows
that the start of the vegetation season occurred later and was prolonged later. This is due to moderate
temperatures in autumn and winter (the average temperature in November was 10 ◦C in 2015 vs. 6 ◦C
for the long-term average [20]). Further, the maximum and minimum interception storage capacity
threshold values used within the WetSpaClassic simulator are respectively higher and lower than
the values we calculate based on LAI data. The main differences are that within the LAI approach,
low vegetation (grass and shrubs) are considered having a constant interception storage capacity
throughout the season (LAI = 0.7, Icapacity = 0.79 mm), whereas the classical WetSpa simulator
varies the interception capacity of low vegetation from 0.5 to 2 mm. This lowers the interception
storage capacity in winter months and increases the capacity in summer months. Further, the classical
approach assumes a minimum value of 0.5 mm in minimum conditions for high vegetation (trees),
whereas the LAI approach accounts for the different possible undergrowth (grass vs. impervious) and
different types of trees (coniferous vs deciduous). This explains why the interception storage capacity
is higher in minimum conditions using the new WetSpaLAI simulator.

Figure 9. Comparison between WetSpaClassic and WetSpaLAI for the seasonal dynamics of the
interception storage capacity for the Watermaelbeek in 2015.

In 2015, 709 mm of rainfall were recorded within the WMB catchment, 421 mm in winter (January
to March and October to December) and 288 mm in summer (April to September) (Figure 10). For the
WMB catchment, WetSpaClassic and WetSpaLAI simulate an annual interception storage of around
10% of the rainfall volume. This is comparable to the interception storage estimated for the Upper
Woluwe catchment in 2010 to 2011 [27]. In winter, WetSpaLAI simulates an interception storage of
6% and WetSpaClassic of 5% of the rainfall water. In summer, the interception storage represents 16%
with WetSpaLAI and 18% of the rainfall with WetSpaClassic. Further, WetSpaLAI indicates fewer net
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rainfall events than WetSpaClassic for the WMB catchment in 2015. WetSpaLAI suggests that 80% of
all rainfall events contribute to the 10% of the intercepted rainfall water. WetSpaClassic suggests that
only 74% of the rainfall events contribute to the same amount of intercepted water. The needs and
magnitude of rainfall removal by interception are thus different depending on the method applied and
the seasons considered.

Figure 10. Comparison between WetSpaClassic and WetSpaLAI for the interception storage for the
Watermaelbeek in 2015. In winter, WetSpaLAI shows higher interception storage, and in summer,
WetSpaLAI shows lower interception storage than WetSpaClassic.

In Figure 11, we consider the spatially-distributed differences between WetSpaClassic and
WetSpaLAI. The differences in interception storage for the tree-covered areas are more important
in summer (15 mm difference, lower for WetSpaLAI) than in winter (3 mm difference, higher for
WetSpaLAI). In winter, frequent rainfall events occur over short time periods, and potential
evapotranspiration is low. As a result, there is insufficient time to empty the storage water in the
trees, and the interception storage for the following event is limited. Thus, for many events, the
difference between WetSpaClassic and WetSpaLAI in actual interception storage is minimal. In summer,
as evapotranspiration is more important, the interception storage capacity is emptied more frequently,
enabling multiple and consecutive interception to occur. Therefore, the differences between the two
models become more explicit.
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(a) Winter.

(b) Summer.

Figure 11. Spatially-distributed comparison between WetSpaClassic and WetSpaLAI for interception
storage for the Watermaelbeek in 2015 (low <3 mm, moderate <5 mm, high <15 mm, absolute values).
(a) January to March and October to December represent winter (WetSpaLAI higher). (b) April to
September represent summer (WetSpaLAI lower).

4. Discussion

4.1. The Parameterization of Urban Trees with RS Data to Quantify the Impacts of Vegetation on
Hydrological Processes

Temporally- and spatially-distributed LAI maps were created to obtain a location- and
time-specific parameterization of urban trees. To obtain detailed and more accurate information,
we combined a high spatial resolution land cover map based on an airborne RS image (APEX) with
high temporal resolution satellite data (Proba-V). The drawback of disaggregating the Proba-V signal
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to an APEX resolution is that the same NDVI is assigned to each urban tree fraction within the Proba-V
pixel, and thus, an averaged signal is spread over all APEX pixels within one Proba-V pixel. Further,
using the airborne APEX image is costly and limits the spatial and temporal coverage. Therefore,
other, free alternatives should be considered for this type of analysis. The multispectral Sentinel 2
data could be an alternative as they have a spatial resolution of 20 m and a temporal resolution of
10 days. Further, it has been shown that hyperspectral data allow a higher accuracy for urban land
cover mapping [36], and thus, EnMAP (Environmental Mapping and Analysis Programme) might
be another solution to create very detailed and accurate land cover maps for urban areas. However,
considering the temporal resolution, it is already a challenge to have enough cloud-free images to
cover the growing season with the daily Proba-V images; thus, with Sentinel 2 (10 days coverage) and
EnMAP (four days of coverage), it will remain an even greater challenge.

Within this paper, we characterized urban trees with their heterogeneous distribution throughout
a city, as well as the seasonal changes. The difference in interception storage between the classical
approach and the LAI module is not as important on an annual basis for the WMB catchment in 2015.
However, if we look at specific events or seasonal trends, an important difference in interception
storage is seen between the two simulations (Figure 10). Our study shows that the possibility to
parameterize urban vegetation at a high spatial and temporal resolution can make the simulation
of interception storage in urban areas location and period specific. For sustainable city planning,
this method based on RS data can be of high value in order to monitor the impact of vegetation for
reducing water quality and quantity issues, by reducing the net rainfall amount, as well as heat island
effects by increasing local evapotranspiration. Different plant selection strategies can be developed to
adapt the interception storage capacity to location-specific needs [37,38]. The new WetSpa simulator
including LAI maps is location- and time-specific and thus accounts for different cases and scenarios.

4.2. The Potential and Limits of RS Data for Hydrological Modeling in Urban Areas

The WetSpa simulator calculates the water balance for each pixel and simulates hydrological
processes using a cascade approach. The RS-driven approach allows for a spatial and temporal analysis
of various water balance components. Our approach intends to characterize the urban land cover
in great detail and get more physically-based estimates of the hydrological parameters to increase
the credibility of the simulations. So far, we focus on the parameterization of urban vegetation and
interception storage. Further steps within this research are to characterize hydrological parameters
related to urban built-up land cover and to evaluate the effect on all water balance fluxes. Similarly,
Sutanto et al. [39] focused on the water fluxes in the vadose zone to improve ET estimation, and
Tang et al. [40] evaluate the retention capacity of infiltration rain gardens. Further, Liu et al. [41]
assessed the runoff contribution from different land use classes, and Verbeek [42] identified predictive
variables of imperviousness to evaluate water retention services.

However, the validation of the urban water balance simulation based on a more detailed
parameterization remains a challenging task. We believe that a single calibration/validation of the
discharge is not enough to prove good model performance. To validate the different components of the
water balance, intensive field work has to be fulfilled. Additional to the measurements described in [27],
further experiments for the point validation of interception storage, evapotranspiration and infiltration
are running. These experiments will help to validate the simulated water balance components for
specific pixels within the catchment. However, this paper aims at showing the influence of including
LAI maps in the WetSpa simulator and does not focus on validating the different water balance
components. Our approach shows that using multi-resolution RS allows a location- and time-specific
parameterization of a hydrological model. In a further step, this will allow quantifying the storage and
retention capacity of a catchment more specifically and in a spatially-distributed way.
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5. Conclusions

In this study, we monitor the urban vegetation in its heterogeneous and complex landscape to
quantify its impact on hydrological processes and, more specifically, interception storage. We use a
hyperspectral APEX image with a high resolution (2 m) in combination with frequent Proba-V satellite
images at a lower spatial resolution (100 m) to characterize the seasonal variation of urban greenness.
Based on our ground-truthing experiments, the use of remote sensing images for urban greenness
characterization has been validated, and high resolution time series of LAI maps have been created.
The LAI maps have an effect on the simulation of the interception storage capacity and the actual
interception storage. They lead to an increase in simulated interception storage during winter months,
but yield lower interception storage for summer events in the WMB catchment in 2015. The LAI maps
enable a location- and time-specific parameterization of urban vegetation in the hydrological modeling
framework. These remote sensing-based modeling tools provide quantitative information to assess the
impact of policies and planning projects on the resilience of urban ecosystems.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/9/7/645/s1,
Table S1: Calibrated WetSpa parameters; Table S2: User input file for WetSpa; Table S3: List of Proba-V images.
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APEX Airborne Prism EXperiment
EnMAP Environmental Mapping and Analysis Programme
LAI Leaf area index
PAR Photo-synthetically-active radiation
Proba-V Project for OnBoard Autonomy-Vegetation
RMI Royal Meteorological Institute
RS Remote sensing
NDVI Normalized difference vegetation index
NSE Nash–Sutcliffe efficiency
WetSpa Water and Energy Transfer between Soil Plants and Atmosphere
WMB Watermaelbeek
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