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Abstract: Thematic accuracy assessment of a map is a necessary condition for the comparison of
research results and the appropriate use of geographic data analysis. Good practices of accuracy
assessment already exist, but Geographic Object-Based Image Analysis (GEOBIA) is based on
a partition of the spatial area of interest into polygons, which leads to specific issues. In this study,
additional guidelines for the validation of object-based maps are provided. These guidelines include
recommendations about sampling design, response design and analysis, as well as the evaluation of
structural and positional quality. Different types of GEOBIA applications are considered with their
specific issues. In particular, accuracy assessment could either focus on the count of spatial entities
or on the area of the map that is correctly classified. Two practical examples are given at the end of
the manuscript.

Keywords: GEOBIA; response design; sampling design; sampling unit; overall accuracy; quality
assessment; legend; polygons; spatial regions; spatial entities.

1. Introduction

Accuracy assessment is an acknowledged requirement in the process of creating and distributing
thematic maps [1]. It is a necessary condition for the comparison of research results and the appropriate
use of map products. However, despite the fact that the need to carry out (and document) accuracy
assessment is recognized by the scientific community, further attention to rigorous assessment is
still needed [2]. A general framework of good practices for accuracy assessment has been described
in [3,4] in order to guide the validation effort. However, as mentioned in [5], Geographic Object-Based
Image Analysis (GEOBIA) validation has its own characteristics. It is, therefore, necessary to adjust
some of the good practices of the general framework for the specific quality assessment of GEOBIA
results. These practices depend on the type of geospatial database that is going to be extracted from
the image analysis.

There are at least three important stages in the assessment process leading to the design of
a geographic database: (i) observation, (ii) relating the observation to a conceptual model and
(iii) representing the data in formal terms [6]. In the first stage, the surveyor must decide whether the
observation is a clearly defined or definable entity, or if it is a continuum, i.e., a smoothly-varying
surface. The first situation refers to an exact entity, called the discrete entity in Burrough [6] or the
spatial object in Bian [7]. In this study, they will be named spatial entities. The second situation refers
to a (continuous) field, and it is not well represented by GEOBIA [7]. However, viewing the world as
either a continuum or as a set of discrete entities is always a matter of appreciation. At the level of
the empirical, one-to-one scale geographic world, it is indeed not possible to decide if the world is
made up of discrete, indivisible elementary entities, or if it is a continuum with different properties
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at different locations. On one side, houses, trees and humans are the non-subdivisible smallest units
for most purposes of geographic-scale modeling and study; on the other side, extensive entities such
as oceans, prairies, forest and geological formations may be subdivided within very wide limits and
still maintain their identity [8]. A third category has therefore been added, which is called spatial
region [7] or the object with an indeterminate boundary [6]. The term spatial region used in this paper
represents a mass of individuals that can be conceptualized both as a continuous field and as discrete
entity, which is often the case for land cover. This duality is also found for their coding in a database:
they can be discretized as vector polygons with boundaries based on a general agreement (which are
represented as adimensional lines, but which are fuzzy in reality), or they can be represented as an
arbitrary grid specifying the proportion of each individual entity at each pixel (without boundaries) [7].
The three conceptual models (spatial entities, spatial regions and continuous field) are illustrated in
Figure 1. The third model (continuous field) will not be discussed further in this paper.

Figure 1. Illustration of the conceptual models for a Mediterranean forest in the South of France. In this
landscape covered by an Ikonos image, trees are spatial entities that can be individually detected (stars
on the left image). In the center, automated image segmentation creates spatial regions that correspond
to the old firebreak and the undisturbed forest composed of trees, shrub and herbaceous vegetation.
On the right, a continuous field representation highlights the lower (darker gray) vegetation density in
the old firebreak.

GEOBIA is often considered as a new image classification paradigm in remote sensing [9].
It encompasses a large set of tools that incorporate the knowledge of a set of (usually) adjacent
pixels to derive object-based information. GEOBIA is primarily applied to Very High Resolution (VHR)
images, where spatial entities/regions are visually composed of many pixels and where it is possible to
visually validate them [9]. Most of the time, these groups of pixels (called image-segments in Hay and
Castilla [10]) are derived from automated image segmentation (e.g., [11]) or superpixel algorithms [12]
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before the classification stage. In addition to the frequently-used segmentation/classification workflow,
some machine learning algorithms have been developed that recognize groups of pixels as a whole [13],
and polygons are sometimes taken from ancillary data (e.g., [14,15]). In any case, GEOBIA relates to
the conceptual model of geo-objects, defined as a bounded geographic region that can be identified
for a period of time as the referent of a geographic term [16]. Geo-objects, which encompass spatial
entities or spatial regions, are represented (and analyzed) as points, lines or (most of the time) polygons.
GEOBIA then assigns a single set of attributes to each polygon as a whole, in contrast to pixel-based
classification, where each individual pixel is classified. The polygons used in GEOBIA are thus
intrinsically considered as homogeneous in terms of the label [10,17,18], even when those labels
are fuzzy [19].

According to Bian [7], polygons are a good representation for spatial entities and a reasonable
one for spatial regions, which might have indeterminate boundaries. Although many geographic-scale
and anthropogenic entities have boundaries, the most precise boundaries existing in the geographic
world are immaterial: these are administrative and property boundaries [8]. At the other extreme are
the self-defining boundaries of social, cultural and biological territories. Extracting the boundaries is
often part of the GEOBIA process, which then contributes to the discretization process. The quality of
the boundaries should therefore most of the time be considered in addition to the thematic accuracy.

There is a wide range of applications of GEOBIA, and good validation practices depend on the
selected application. In this study, we will focus on thematic (categorical) geographic database using
the polygon representation of spatial entities or regions, as opposed to the pixel-based approach
where the support of the analysis is the (sub)pixel captured by a sensor. With those thematic products,
where a single category is assigned to each polygon (i.e., thematic maps), the accuracy of the labels
assigned to the geo-objects is of primary concern. However, in addition to the thematic accuracy
assessment, spatial quality should also be taken into account for GEOBIA [20]. The structural and
positional quality of the polygons are therefore addressed, as suggested by [5]. The comparison of
segmentation algorithms before the classification stage is, however, out of the scope of this paper, as
this study will consider the quality of the final results, notwithstanding the specific numerical methods
that were involved for their production. The proposed framework assesses thematic and geometric
errors using distinct indices in order to identify the different sources of uncertainty for the derived
product. Synthetic indices mixing the two types of errors (e.g., [21,22]) are therefore not discussed.

2. General Accuracy Assessment Framework

The general accuracy assessment framework defined in [3,4] is still applicable to most GEOBIA
results. The standard practice consists of reporting the map accuracy as an error matrix when the
map and reference classifications are based on categories [23]. Recommendations about the quality
assessment are commonly divided in three components that have the same importance to draw
rigorous conclusions and that should be reported to end users, namely the analysis, the response
design and the sampling design.

Analysis includes the quality indices to be used to address the objectives of the mapping project,
along with the method to estimate those indices [4]. Quality indices that are directly interpretable as
probabilities of encountering certain types of misclassification errors or correct classifications should
be selected in preference to quality indices not interpretable as such [24]. In order to derive unbiased
estimation of these indices, the probability to select each sampling unit should be considered.

Response design is the protocol for determining the ground condition (reference) classification of
a sampled spatial unit (pixel, block or polygon) [25]. The fundamental basis of an accuracy assessment
is a location-specific comparison between the map classification and the “reference” classification [1].
The response design includes the choice of a type of sampling unit and the rules that allow the operator
to decide if a sampling unit was correctly labeled (or not).

The sampling design is the way a representative subset of the geospatial database is selected to
perform the accuracy assessment. In practice, it is indeed impossible to have precise (low uncertainty)
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and exact (unbiased) information that exhaustively covers the study area [4,25], except when using
synthetic data. A subset of the geo-objects is, therefore, selected in order to estimate the accuracy of
the map. The subset should be drawn with a probabilistic method, in order to be representative of
the whole study area [23]. The sample can be stratified (i) to increase the proportion of samples in
error-prone areas in order to reduce the variance of the estimator [26,27] and/or (ii) to balance the
number of sampling units for each category in order to avoid large variances of estimation for low
frequency classes [4].

As discussed above, GEOBIA can be oriented towards objectives, related with two different
conceptual models: spatial regions or spatial entities. Furthermore, GEOBIA can have different goals.
In an attempt to provide pragmatic guidelines, four types of GEOBIA applications are considered in
this paper:

• Wall-to-wall mapping: This is the most common application, which results in thematic maps
proposing a complete partition of the study area into classified polygons, such as for land cover
or land use maps.

• Entity detection: GEOBIA is used to inventory well-defined geo-objects (such as cars [28],
buildings [29], single trees [30] or animals [31]). These entities can be sparsely distributed on
a background (e.g., cars on a road) or agglutinated (e.g., trees in a dense forest).

• Entity delineation: The goal is the delineation of selected spatial entities (e.g., buildings [32],
vine parcels [33], crop fields [34]) with a focus on the precision of their boundaries.

• Enhanced pixel classification: GEOBIA is used to improve image classification at the pixel level by
reducing the within-class variability (speckle removal) or by computing additional characteristics
(texture, structure, context) [35–37].

In the following sections, specific GEOBIA issues will be addressed with respect to these four
types of applications, when relevant. Section 3 lays focus on the way to analyze the confusion matrix
to estimate relevant quality indices. Section 4 is related to the response design and addresses the choice
of the sampling unit (pixel or polygon). The methods to create a subset of polygonal sampling units
are then described in Section 5. Finally, Section 6 addresses further issues related to the scale of the
GEOBIA application, as well as specific geometric errors linked to the segmentation process.

3. Analysis of Quality Indices

For a pixel-based validation, the proportion of correctly classified pixels (count-based classification
accuracy) is equal to the proportion of the area that is correctly classified (area-based map accuracy).
In other words, if one knows how many pixels are misclassified, one also knows the area of the map
that is misclassified. Indeed, standard validation procedures usually assume that pixels have all the
same area (assuming pixels of equal area makes sense at small scale factor, but a rigorous pixel-based
quality assessment over large areas should take into account that some coordinate systems do not
preserve equal areas). Polygons, however, do not necessarily have the same areas, and their differences
in size can be very large in some landscapes (e.g., a landscape including anthropogenic buildings and
forests at the same time). In terms of the proportion of the area of the map that is incorrectly classified,
an error for a large polygon has obviously more impact than an error for a smaller one. This variable
area must be taken into account for an unbiased estimate of some accuracy indices.

Figure 2 illustrates the differences between count-based and area-based accuracy on simplified
examples, and it emphasizes the need of selecting indices that are meaningful for the purpose of
the study. On one side, count-based accuracy (Section 3.1) should be used for the assessment of
spatial entity detection, and on the other side, area-based accuracy (Section 3.2) should be used for
spatial region mapping and for the classification of pixels. In the case of spatial entity delineation,
the geometric precision is usually more important than the thematic accuracy. Nevertheless,
the automated delineation could sometimes misclassify some of the spatial entities. Count-based
indices can then be useful to estimate the probability of missing entities.
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Area-based accuracy: 66%
Count-based accuracy: 100%

Area-based accuracy: 66%
Count-based accuracy: 50%

Area-based accuracy: 66%
Count-based accuracy: 66%

Figure 2. Illustration of the differences between area- and count-based accuracies for geo-objects,
where correctly classified cells are in green and incorrect ones are in red (connected cells are part of
a single spatial entity). The three synthetic examples have the same area-based accuracy (33% of the
surface is misclassified), but different count-based accuracies. On the left, the three geo-objects have
the same area, therefore area-based and count-based accuracies are identical. In the center, there is one
large and one small geo-object: the size of the misclassified geo-object has an impact on the area-based
accuracy, but not on the count-based accuracy. On the right, each geo-object is correctly detected
(based on a majority rule), but there are segmentation errors. The area-based accuracy is then smaller
than the count-based accuracy.

3.1. Accuracy of Spatial Entity Detection

In the case of entity detection, the validation process focuses on correct detection rates. In a binary
classification, the response design identifies four possible cases: (i) the True Positives (TP) are the
entities that are correctly detected by the method; (ii) the False Positives (FP) are the polygons that
are incorrectly detected as entities; (iii) the False Negatives (FN) are entities that are not detected by
the method; and (iv) the True Negatives (TN) are the correctly undetected polygons. Indices based
on true and false detections are widely used in computer science and related thematic disciplines.
However, GEOBIA detection does not solely rely on the classification of entities. Indeed, for polygons
that have been classified as a spatial entity, over-segmentation (more than one image-segment for
one spatial entity) and under-segmentation (more than one spatial entity encapsulated inside one
image-segment) contribute to the false positives and the false negatives, respectively. As a consequence,
the number of subparts minus one should, therefore, be counted as false positive, and the number of
encapsulated geo-objects minus one should add to the false negative in these situations.

In the binary case, e.g., detection of dead trees in a dense population of trees, Powers [38] suggests
three indices to summarize the information of the contingency table that is relevant for the comparison
between methods, namely the informedness (Equation (1)), the markedness (Equation (2)) and the
Matthews’ correlation coefficient (Equation (3)), with:

In f ormedness =
TP

TP + FN
+

TN
TN + FP

− 1 (1)

Markedness =
TP

TP + FP
+

TN
TN + FN

− 1 (2)

Matthews′correlation =
TP× TN − FP× FN√

(TP + FN)× (TN + FP)× (TP + FP)× (TN + FN)
(3)

However, in most spatial entities’ detection context, TN is indeterminate because it would
correspond to the background, which is not of the same nature as the spatial entities and is usually not
countable (e.g., cows (spatial entities) in a pasture (spatial region)). In those cases, the count-based
user accuracy (also called positive predicted value, Equation (4)) and the count-based producer
accuracy (also called sensitivity, Equation (5)) provide a better summary of the truncated confusion
matrix, where:
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User accuracy = TP/(TP + FN) (4)

Producer accuracy = TP/(TP + FP) (5)

It is furthermore easy to show that the users’ and producers’ accuracies for the various classes are
equal to the corresponding markedness and informedness for these classes when TN tends to infinity
(i.e., if all pixels of the background were considered as TN).

In addition, Count Accuracy (CA) has been widely used in remote sensing applications, such as
tree counting [39] or animal counting. It consists of dividing the number of detections (TP and FN) by
the number of geo-objects in the reference, with:

CA =
TP + FN
FP + TP

(6)

While this index provides meaningful information at the plot level for documenting, e.g., the density
of trees in a parcel or the total number of animals in a landscape, it does not provide location-specific
information due to commission and omission errors that are canceled by the aggregation [40].
We therefore recommend to compute CA on a set of randomly selected regions of equal areas, in order
to provide an estimate of its variance in addition to its mean value.

3.2. Accuracy of a Wall-To-Wall Map

For wall-to-wall maps, the area of the map that is correctly classified is the main concern.
The primary map accuracy indices suggested by the comparative study of Liu et al. [41], namely overall
accuracy, producers’ accuracies and users’ accuracies are recommended. Pixel-based accuracy
estimators and their variance can be found in the general good practices from Olofsson et al. [4].
For GEOBIA results, the same indices should be used. However, with polygon sampling units,
the estimators of the primary accuracy indices should take the variable size of polygons into account
in order to avoid bias and to reduce the variance of the predictors.

In the context of polygon-based estimation of the thematic accuracy, correctly classifying large
polygons will contribute more to the map quality than correctly classifying smaller ones. Unbiased
predictors of the primary accuracy indices have, therefore, been suggested in Radoux and Bogaert [42].
Under the hypothesis of binary agreement rules and representative samples, these indices use the
knowledge about the area of the polygons to predict overall accuracy (Equation (7)), user accuracies
(Equation (8)) and producer accuracies (Equation (9)), with:

π̂Ω =
∑n

i=1 Si ∑k
j=1 αijβij + ∑N

i=n+1 p̂bi
Si

∑N
i=1 Si

(7)

π̂u,j =
∑n

i=1 αijβijSi + ∑N
i=n+1 p̂jβijSi

∑N
i=1 βijSi

∀j ∈ Ω (8)

π̂p,j =
∑n

i=1 αijβijSi + ∑N
i=n+1 p̂jβijSi

∑n
i=1 αijSi + ∑N

i=n+1 Ê[αijSi]
(9)

where N is the total number of polygons in the map, n is the number of sampled polygons and Si is
the area of the i-th polygon. αij,βij are binary indicators of the actual and predicted labels j of polygon
i. ∑k

j=1 αijβij is therefore equal to one, if the i-th polygon was correctly classified, and zero, otherwise.
p̂j is an estimate of the probability to belong to class j, and p̂bi

is an estimate of the classification
accuracy (Ω is the set of all possible classes in the map). The main difference with the classification
accuracy estimated with the standard point-based estimators is the inclusion of the size of the polygons
in the first term of the numerators of each equation. Furthermore, the area of the non-sampled polygons
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is also taken into account, so that all information at hand about the polygons is used. Finally, it is
worth noting that the second terms of the numerators of Equations (7)–(9) have more influence when
the number of polygons is large: the above predictors simplify to the standard estimators when N
becomes infinite if the count-based accuracy is not influenced by the size of the polygons.

Relationships between size and classification accuracy have been highlighted in previous
studies [42,43] and could impact the predictors. In theory, these relationships can be plugged into
Equations (7)–(9) by replacing p̂j with a function of the size (Radoux and Bogaert [42]). In practice, it
is not trivial to identify this function and to estimate its parameters. A pragmatic solution consists
of (i) splitting the sample based on quantiles for the areas of the polygons, then (ii) estimating p̂jq
for each size category q and, finally, (iii) multiplying p̂jq by the sum of the polygons’ areas in that
size category q. Another solution consists of estimating the area-based accuracy from the sampled
polygons only, with:

π̂′ =
∑n

i=1 Si ∑k
j=1 αijβij

∑n
i=1 Si

(10)

where n is the number of polygons in the sample. This formula (that can be adapted for both users’
and producers’ accuracy estimates) has a larger variance than Equation (7), but it is unbiased. It is
therefore of appropriate use, when the size of the sample is small and p̂jq is difficult to estimate.

So far, the best approximation of the prediction variance of the overall accuracy estimator given
by Equation (7) is:

Var(π̂ − π) = E[
1
∑

Si

i=1
{ p̂

N

∑
i=n+1

Si −
N

∑
i=n+1

αijβijSi}]2 (11)

which can be used to derive the confidence interval around the predicted overall accuracy index (to the
best of our knowledge, there are no simple formulas for the prediction variance of the polygon-based
users’ and producers’ accuracies). Equations (7)–(9) will be particularly efficient when the number
of polygons in the map is small, and they are at least as efficient as a point-based sampling when the
number of polygons is very large [44].

4. Response Design

The response design encompasses all steps of the protocol that lead to a decision regarding
the agreement of the reference and map classifications [4]. Response design with GEOBIA is
an underestimated issue. Indeed, because classification systems involved in GEOBIA are often
complex, not only accuracy issues (e.g., mistaken photo-interpretation), but also precision issues
(e.g., difficulty to estimate the proportion of each class of the legend) could affect the quality of the
reference dataset.

The sampling unit must be defined prior to specifying the sampling design, and it is not necessarily
set by the map representation [25]. In the case of GEOBIA, the use of polygons sampling units is
usually recommended [27,45] because the legend is defined at the scale of the polygons and not at the
scale of the pixels. However, there is no universal agreement on a best sampling unit [1]. In order to
select a type of sampling unit, the conceptual model and the sampling effort must indeed be taken
into account.

For spatial entities, polygon sampling units prevail because distinct individual entities are
extracted. Individual pixels indeed need to be aggregated at different levels to compose a geo-object.
For instance, a high resolution pixel identified as a window could be the windshield of a vehicle
or the skylight of a building roof top. The photo-interpretation of very high resolution images,
therefore, intrinsically takes context into account to identify spatial entities. The response design should,
however, include rules for handling imperfect matches between the reference and the image-segment.
Topological relationship, such as intersection or containment, based on the outlines or the centroids,
define unambiguous binary agreement rules with a tolerance for delineation errors. Alternatively,
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an entity may be considered correctly labeled if the majority of its area, as determined from a reference
classification, corresponds to the map label [1].

For spatial regions, various classes (e.g., urban area, open forest, mixed forest, orchard) are also
defined at the polygon level and would not exist at the scale of a high resolution pixel [46]. Those classes
typically (i) represent complex concepts where the context plays a major role for the interpretation
or (ii) generalize the landscape. The generalization of the landscape offered by GEOBIA may better
represent how land cover interpreters and analysts actually perceive it [36]. The selected legend is then
strongly related to the scale at which a spatial region is observed and linked with minimum mapping
units, which are not necessarily identical for all classes (e.g., [47]). However, when using polygons as
sampling units, one should make sure that the object-based generalization is suitable to represent the
variable of interest. Otherwise, pixel sampling units are more relevant.

When polygon sampling units are selected, the rules that define the agreement are usually
simpler when the reference data are based on the same polygons as those on the map. Nevertheless,
object-based quality assessment could need information about the segmentation quality in addition
to the thematic accuracy assessment. As discussed in Sections 6.1 and 6.2, manually digitized or
already existing polygons of reference may then be needed. The use of manually digitized polygons
for the assessment of the thematic accuracy is however complex because the aggregation rules are then
applied on different supports.

Issues related to the heterogeneity of polygon sampling units are similar to the so-called mixed
pixels problem. It is therefore of paramount importance to clearly define the labeling rules in order to
avoid ambiguous validation results. There is however no universal set of decision rules that fits to all
mapping purposes. As a consequence, the same landscape can be described with different legends
(e.g., Figure 3), which cannot be compared without a fitness to purpose analysis. For the thematic
accuracy assessment, the response design links the observed reality to the type of legend of that has
been selected for the map. Those legends can be categorized into majority-based, rule-based (such as
the Land Cover Classification System (LCCS) [48]) or object-oriented :

• Majority rules assign a label based on the dominant label inside each polygon. The legend includes
the minimum number of classes necessary to represent each of type of geo-object that are identified
with a smaller scale factor. The labeled polygons are usually interpreted as “pure” geo-objects. It
is, therefore, most suited when GEOBIA aims at identifying spatial entities, but is frequently used
with spatial regions, as well. In this case, the polygons are used to generalize the landscape (e.g.,
mapping the forest and not the trees) or to avoid classification artifacts. When there are more than
two classes, it is worth noting that the majority class could have a proportion that is less than 50%.
Majority rules could therefore be source of confusions.

• Rules-based legends (e.g., FAO LCCS rules) are built upon a set of thresholds on the proportion
of each land cover within the spatial unit. When correctly applied, those rules generate
a comprehensive partition of all of the possible combinations of its constitutive spatial entities.
They are well suited to the characterization of complex land cover classes using spatial regions.
Each LCCS class is characterized with a unique code that guarantees a good interoperability.

• The goal of object-oriented legends is to build human-friendly representations of geo-objects
based on the knowledge that people cognitively have about the geospatial domain [49].
The conceptual schema describing information are linked with formal representation of semantics
(i.e., ontologies) [50] in an attempt to capture and organize common knowledge about the
problem’s domain. The concepts are often well understood (e.g., an urban area), but difficult
to quantitatively define. Land use and ecosystem maps belong to this category. Each concept
has a set of properties and relations between spatial entities, which involve geometric and
topological relationships.
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Figure 3. Different legends applied on the same landscape. The central image is a pixel-based
representation with a majority-rule legend. Two other representations are built consistently with this
classification. On the left, the classes are based on a set of thresholds derived from LCCS-like rules.
On the right, a majority-based legend is used. The extent of the urban area is largely affected depending
on the chosen type of legend, and this has to be taken into account for the response design.

When GEOBIA is used as a means to improve classification results at the pixel level, treating
a polygon as 100% homogeneous could lead to a biased estimate of the number of pixels in a class.
In order to properly assess the impact of GEOBIA on pixel classification, it is therefore suggested to use
pixel-based sampling units. Indeed, the alternative method combining object-based thematic accuracy
assessment and a measure of the polygons heterogeneity is likely to be less cost effective to achieve the
same results.

The variance of the overall accuracy estimation with polygon sampling units is smaller or equal
to the variance of a pixel-based validation under the same type of sampling scheme and with the
same number of sampling units [51], but there are two disadvantages of using polygon sampling units.
Firstly, the response design with polygons is often more complex than with pixels, especially when
geometric quality needs to be assessed. Polygon-based validation therefore does not necessarily reduce
the total sampling effort. Secondly, polygon sampling units are bounded to a given partition of the
landscape. They are therefore difficult to reuse for change detection [25] if the same segmentation is
not used for all dates.

5. Sampling Design

5.1. Sampling Scheme for Polygons

In practice, it is usually not possible to apply a response design to the entire map. A sampling
design is then used to select a subset of the polygons that aims to be representative of the whole dataset.
In relationship with the analysis section, the sampling design should be based on the polygons list
in order to achieve equal probability sampling for each polygon. A pragmatic solution consists in
randomly shuffling the list of polygons, then selecting the n first ones. This method yields an equal
probability sample without replacement. In contrast, the selection of polygon sampling units based
on randomly selected pixels on the map will select polygons with a probability proportional to their
area [1]. This method should, therefore, be used with care, because existing estimators of the quality
indices assume an equal probability sampling. For the same reason, systematic sampling cannot rely
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on the selection of regularly spaced polygons. Alternatively, a regular coverage of the study area with
nearly equal probability sampling can be achieved by randomly selecting one polygon inside each cell
of a regular grid several times larger than the average size of the polygons.

Because the classification accuracy also depends on the size of the polygons, Stehman and
Wickham [1], Hernando Gallego et al. [5] suggested to stratify the sampling, based on categories for the
polygon areas. This kind of stratification could replace a class-based stratification because polygon area
is also correlated with class probability [42]. Accounting both, for these areas and class probabilities in
the stratification, could thus be unnecessary and would produce too many bins, which would result in
less reliable estimations of the users’ and producers’ accuracies. In any case, the area covered by each
strata should be used to adjust the estimates of indices accuracy, as a generalization of the equation of
Card [52] for pixel-based stratification:

π̂global =
C

∑
k=1

wkπ̂k (12)

where π̂k is the proportion of the area of the stratum k that is correctly classified and wk is the proportion
of the area of the map covered by the stratum.

Varglobal =
C

∑
k=1

w2
kVark (13)

5.2. Sampling Scheme for Entity Counting

Most of the time, detected geo-objects only cover a portion of the area of interest. A sample of
spatial entities detected by the image analysis is, therefore, unable to measure the omission errors.
On the other hand, spatial entities may cover only a small part of the area. Building a reference
dataset based on random point-based sampling is not practical, because the sampling probability
of the spatial entities would be too low. An external wall-to-wall dataset with the location of the
spatial entities is therefore needed. When the exhaustive validation of the study area is impractical,
region-based sampling can be used to provide a subset of territory from where to extract reference
data. Whiteside et al. [20] used buffers around random point samples; however, systematic sampling
based on regular grids [53] (or beehives) is a sound alternative.

6. Geometric Precision

When the boundaries are extracted during the GEOBIA process, information about their quality
could be needed. The boundary extraction depends on the scale of the analysis (scale is the great
boundary maker according to Couclelis [8]) and on the resolution of the input data. We must therefore
distinguish two uncertainty types: we may be uncertain (i) with respect to the precise location of
a crisp boundary due to measurement errors or (ii) with respect to indefinite correspondence between
concepts (e.g., ecotone) and the represented world [8]. Furthermore, there is a duality between the
definition of a boundary and the definition of its interior. The geometric quality of the delineation can,
therefore, focus more either on the interior of the geo-object (structural quality) or on its boundaries
(positional quality), depending on the application.

6.1. Structural Quality

Structural quality is related to the ability of the polygon to enclose a specific patch [5].
Structural quality depends on the segmentation quality and can, in turn, affect the thematic quality.
The two facets of structural quality are over-segmentation and under-segmentation. On the one hand,
over-segmentation consists in subdividing an geo-object into two or more smaller polygons. It is
usually due to a larger-than-needed scale of analysis. On the other hand, under-segmentation consists
of including sizable parts in the interior of the polygon that had rather been placed in a different
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polygon. The impact of over- and under-segmentation on the quality of the product depends on the
purpose of the analysis.

Structural quality is particularly important in the case of entities detection because it directly impacts
the geo-objects count. Under-segmentation can induce under-detection, while over-segmentation
tends to contribute to an overestimation of the number of geo-objects. Over- and under-segmentation
are quantified based on the comparison between the polygons and reference polygons (often manually
delineated on the image). Under-segmentation is measured by the number of mapped polygons having
their centroids inside the reference polygons and the opposite can be done for over-segmentation [32].
However, in practice, it may not be necessary to derive specific indices related to over- and
under-segmentation in the case of spatial entities. Indeed, as mentioned in Section 3, over-segmentation
errors are already contributing to the count of true positives (hit) and under-segmentation errors will
increase the number of false negatives (miss).

For area-based mapping, it is commonly accepted that a poor quality of the segmentation leads
directly to a low quality of the classification [54]. However, over-segmentation does not have a direct
impact on the final quality because correctly classified polygons can be merged after classification
if necessary [55]. For instance, Grenier et al. [56] used merged polygons from different levels for
validation. Over-segmentation could, however, affect the thematic accuracy, as previous studies
highlighted that the classification accuracy depends on the size of polygons [42,43], but its impact is
not always negative. As this impact can be measured by the thematic accuracy indices, investigating
over-segmentation is not necessary for spatial region mapping.

On the other hand, under-segmentation can adversely impact the quality of the map because
subparts are missing. The definition of the classes then plays a major role in the accuracy assessment
and could lead to major misunderstandings. GEOBIA is indeed often linked with a data model
representing a continuous reality with discrete boundaries [57]. As discussed in the introduction,
spatial heterogeneity is a component of many spatial regions and entities. For instance, a car loses
its functionality if its wheels are removed, and a savanna would not host the same animal species
with a continuous tree cover. Heterogeneity is, therefore, not necessarily an undesired characteristic of
geo-objects, but it can be optimized at a given scale.

The response design (Section 4) should take heterogeneity into account and specify when
individual parts compose the geo-objects (e.g., windows on a roof top of a building, sparsely distributed
trees in an open forest) and when they are erroneously included (e.g., island in a lake). In the case of
an inclusion, a minimum mapping unit is needed to determine if the polygon is correctly delineated.
This minimum mapping unit is linked to the scale of the map, but can also differ for each class of
a geographic database because geo-objects occur at different scales [47].

From a quality assessment perspective, under-segmentation should thus be considered as
a precision issue and not an accuracy issue. A well defined legend indeed includes decision rules
for all possible associations of individual parts, so that each predicted label can be matched with
a corresponding reference label. However, the variance of the proportions of elementary units inside
each polygon is larger when there is a large probability to have inclusions. A GEOBIA product with
large under-segmentation issues could, therefore, be accurately labeled, but might provide imprecise
estimates of the area covered by elementary units.

In practice, assessing the structural consistency of the polygons would be very time consuming
because it is similar to the area-based accuracy assessment of a map, but applied to each sampling unit.
A wall-to-wall approach, similar to the area-based segmentation goodness indices [58], can thus be
used for each polygon. In practice, this level of quality assessment is only necessary for the delineation
of spatial entities, and it is sometimes useful for large spatial regions.

6.2. Positional Quality

Due to the scale of the errors, positional quality of polygons has less impact on the thematic
quality assessment than pixel sampling units [1]. However, positional errors do affect the map
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quality. Those errors could be due to (i) geometric errors in the source data or (ii) delineation
errors resulting from the segmentation process. Information about the spatial precision of the map
should, therefore, be provided in order to document the scale at which it can be used, and to detect
potential bias due to the difference between the actual boundaries and those observed by remote
sensing. The uncertainty on the position of these boundaries may come from different sources:
(i) the spatial resolution of the sensor; (ii) orthorectification errors (e.g., residual parallax along large
height gradients); (iii) segmentation errors; (iv) fuzziness due to gradual transitions between adjacent
regions (e.g., ecotone) and (v) fuzziness due to variability over time (e.g., sea shore).

The boundaries of spatial entities are usually sharp and easy to describe with a set of widely
accepted rules. However, the actual position of the boundary between two spatial regions is often
fuzzy (e.g., ecotone between two biotopes). Previous studies further showed that some geo-objects
were more complex to accurately digitize than others, and that there was a high degree of variability
among image interpreters when hand-digitizing the same geo-objects [59]. The geometric precision
of GEOBIA should, therefore, focus on true land cover transitions when available [5], while median
boundaries are recommended when the photo-interpreters disagree [60].

In order to document the uncertainty of the position of the boundaries, the distance between
the reference boundaries and the corresponding boundaries in the geographic database has to be
measured. The Root Mean Square Error (RMSE) or CE95 (the radial error, which 95% of all errors in
a circular distribution will not exceed) [61], are standard indices to report positional errors and are
directly related to the cartographic scale. There is no standard method to estimate these errors, but two
types of approaches have been proposed:

• Surface-based methods consider the geo-object as an entity to be compared with a polygon of
reference. Areas of the controlled polygons in and out of the reference polygon are then measured
for different buffer sizes [17] so that the proportion of correctly delineated geo-objects is reported
for a set of distances. This method can thus be used to empirically determine the buffer distance
that embeds a given proportion of the errors [62].

• Edge-based methods measure some statistics about the distance between the reference edge
and the delineated edge. The RMSE can be derived from point samples along the reference
boundaries compared with their perpendicular projection on the polygon boundaries [63].
The mean absolute error is estimated by dividing the area of mismatch by the length of the
boundary [5,64]. The proportion of the boundaries within a given tolerance has also been
suggested [21]. These methods are more difficult to implement, but can be useful to describe the
errors for different types of edges. The fuzziness and the measurement errors indeed depend on
the type of edges [6,63].

Alternative methods looking at the boundaries include a comparison of the distance between
vertices [58] or the overlap of buffers around the perimeters of the two geo-objects [65]. They are,
however, more difficult to relate to scale: the former could be affected by the density of vertices and
the latter is not designed to reach 100% because the same buffer is applied to each boundary.

7. Overview of the Recommended Practices

Details about the quality assessment of GEOBIA products with a crisp classification are provided
in the previous sections. From a more pragmatic viewpoint, it is not necessary to estimate all indices in
all cases. Table 1 summarizes the recommended practices with respect to the objectives of the GEOBIA
described in Section 2.

One needs to first identify if GEOBIA is used to enhance per-pixel classification or if the conceptual
model of the geographic database is better represented with polygons. In the first case, pixel sampling
unit is recommended, because: (i) it simplifies the response design and (ii) it does not require specific
boundary or structural quality control. Standard methods for the accuracy assessment of pixel-based
classification (see [4]) are thus fully applicable in those cases.
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When the legend is defined at the scale of the polygons, the thematic accuracy assessment should
be based on the polygon sampling units. An appropriate response design should then take the
conceptual model into account in order to define the binary agreement between the polygons and the
“real world” (see Section 4). Within object-based conceptual models, GEOBIA products are usually
either a wall-to-wall map of the landscape into (mainly) spatial regions, or a spatially discontinuous
set of one (sometimes several) types of spatial entities. These two types of GEOBIA products should
be validated with the set of indices that reflect their purpose.

In case of wall-to-wall mapping, (i) area-based accuracy assessment indices are recommended
(Section 3) and (ii) additional information about the precision of the boundaries and the generalization
of the content could be needed (Section 6). The response design should be based on the content of each
polygon. Due to the variable size of those polygons, the area of each sampling unit has to be taken into
account in order to provide an unbiased estimate of the accuracy indices.

Finally, studies dedicated to a set of spatial entities usually aim at either updating large scale
vector maps (entity delineation) or inventorying a specific type of entity (entity counting). For the
former, thematic accuracy is not a primary concern and the validation should focus on the geometric
quality of the polygons (Section 6). For the latter, count-based quality assessment (Section 3.1) should
be applied with a response design that addresses possible segmentation errors. However, the quality
of the delineation is usually not an issue as long as the spatial entities are correctly detected. In case of
poor delineation, the response design should clearly state the matching rules that define when a spatial
entity has been detected.

Table 1. Recommended validation practices for four objectives of geographic object-based image
analysis. The sign − indicates that indices are not necessary and + indicates that they are important.
The sign ± indicates that the decision depends on multiple factors.

Indices Sampling Unit Boundaries Structure
Section 3 Section 4 Section 6.2 Section 6.1

Enhanced pixel classification Area-based Pixels − −
Wall-to-wall (region) mapping Area-based Polygons + ±

Entities detection Count-based Polygons − ±
Entities delineation (Count-based) Polygons + +

8. Examples

8.1. Illustration of Tree Crown Detection

This example is a synthetic case study of a typical GEOBIA analysis where the purpose is to count
a specific type of spatial entities. For instance, these could be houses, trees, tents, vehicles or animals.
It is worth noting that, especially for vehicles and animals, the reference must come from the same
image as the one that is used from the image analysis, therefore assuming that photo-interpretation
will be closer to reality. Looking at images of the same sensor at different dates could further help to
consolidate the photo-interpretation because it is unlikely that moving spatial entities remain exactly
at the same place on two different dates.

In this case study, the photo-interpreters are asked to locate one point at the centroid of each
spatial entity that they identify on the map. The response design considers here, as a match, a centroid
that is closer than 2 m from the centroid of the corresponding reference entity. However, given that our
simulated results include 11,000 points (see Figure 4), validating all of them would be cumbersome
and a subset region has to be selected.

At this stage, only detected entities are available, and they are homogeneously distributed in the
study area. A systematic region-based sampling without stratification is, therefore, selected. In other
circumstances, the density of detected entities could be used to stratify the sampling.
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A priori, the number of points needed to assess the quality of the GEOBIA results could be
computed based on Equation (14), as in Olofsson et al. [4], with:

n = z2 ∗ p ∗ (1− p)/d2 (14)

E.g., with an expected accuracy of p = 0.9, one needs approximately n = 864 points to estimate
the TP rate with a confidence interval d of ±2% at a 95% confidence level (for which z = 1.96).
With a grid of 100 cells, there will be 110 detected entities per cell on the average. Eight of those cells
are, therefore, randomly selected to obtain a sufficient sample size, and reference data is then collected
inside each cell (see Figure 4).

Figure 4. Illustration of region-based sampling for the validation of spatial entities detection. Reference
data were collected for eight randomly selected cells and compared with the detected entities.
True positives are colored in green, false positives in red and false negatives in black. The grey
points have not been validated.

As the spatial entities are sparsely distributed, true negatives are undefined. Equations (4) and (5)
are, therefore, used to estimate the user’s and producer’s accuracies based on the number of true
positives (TP = 793), false negatives (FN = 87) and false positives (FP = 85), with:

UA = 793/(85 + 793) = 90.3% (15)

PA = 793/(87 + 793) = 90.1% (16)

When the sample is based on regions, the total number of sampling units is a priori unknown.
Now that the total number of points is known for each sampled region and the accuracy indices have
been estimated, the 95% confidence interval can be updated by replacing the guessed values with the
observed values. Equation (17) gives the result for UA, which is approximately the same as for PA.

CIUA = 1.96×
√

0.9× (1− 0.9)/878 = 1.4% (17)

Finally, the count accuracy can be computed from Equation (6) for each cell, then the bias and the
confidence interval on this quantity can be measured. In this example, omissions and commissions
errors largely compensate each other, but there is a variability between cells. The CA here is equal



Remote Sens. 2017, 9, 646 15 of 23

to 1.002± 0.04 at 95% confidence level. The confidence interval is based on the variance of the CAs
computed for each sampled cell.

8.2. Wall-to-Wall Land Cover Map

The wall-to-wall land cover map presented here is a real case study and was produced in the
framework of the Lifewatch European Research Infrastructure Consortium. The version assessed
here is the first public release (Version 2.7), which was based on 25-cm-resolution aerial images of
2015, and LIDAR data from 2012/2013. It covers 16,844 km2 of the Walloon region (Belgium) with
1,000,000+ polygons.

A stratified random sampling is used for the validation, based on three super-classes: open areas
(crops, pasture and vegetation mixtures with small tree cover), forest areas (broadleaved, needle-leaved,
mixed forests, and vegetation mixtures dominated by trees) and others (sparse urban, dense urban,
bare soils, water and wetlands). The classes are grouped in three strata in order to minimize confusions
within them and to include all classes. The characteristics of each stratum is summarized in Table 2.

Table 2. Characteristics of the strata used for the stratified sampling.

Strata Number of Polygons Proportion of the Total Area Average Polygon Size (ha)

Open areas 470,731 0.463 1.5
Forest areas 363,804 0.331 1.3

Others 391,722 0.205 0.9

A lower accuracy was expected for the open areas stratum due to the low separability between
some crops and pastures. More points were therefore selected in this category according to
Equation (14), with values of p = 0.8, 0.9 and 0.9 for the overall accuracies of the Open areas,
Forest areas and Other areas, respectively. Considering the large (>106) number of polygons in the
map, Equation (14) can be used as a conservative approximation to compute the number of required
sampling units. The number of validation samples was then empirically optimized for a precise
estimation of the overall accuracy, aiming at a confidence interval of ±2.5% at a 95% confidence
level, with:

CIOA = 1.96×
√

0.462 × 0.8(1− 0.8)/392 + 0.332 × 0.9(1− 0.9)/219 + 0.202 × 0.9(1− 0.9)/142 ≈ 2.5% (18)

For each stratum, randomly selected polygons are validated by photo-interpretation based on
orthophotos and ancillary data from authentic sources. The response design used threshold-based
decision rules that are provided in the Appendix A. Table 3 summarizes the outputs in terms of number
and area of polygons that are correctly classified within each group. In order to take into account
the relationship between area and classification accuracy, the count-based accuracy was estimated
with quantiles of polygons area. Three quantiles were used with the Open areas stratum and only
two were used for the other strata, as a compromise between the number of bins and the precision of
the estimates inside each bin. For the Open areas stratum, the count-based accuracy of the smallest
polygons was significantly smaller than for the medium and largest polygons, with values respectively
equal to 82.3%, 90.8% and 92.4%. There is a significant size effect too for the Others stratum (83.1% and
90.1% respectively for small and large polygons), but there is no significant size effect for the Forest
areas stratum (83.5% and 85.5% respectively for small and large polygons). As an example, the overall
accuracy for the Other areas stratum is computed as:

π̂Ω =
112 + (0.831× 75, 047 + 0.901× 271, 958)

347, 129
= 88.6% (19)
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by plugging the observed values in Equation (7). The area in the sample is 112 hectares of correctly
classified polygons and the total area of the polygons from the Others stratum is 347, 128 hectares
(see Table 2). The count-based accuracies estimated from the small and large polygons are multiplied
by the total area of the small and large polygons in the set of non sampled polygons.

Table 3. Area-based overall accuracy values for each stratum. CCP are the Correctly Classified Polygons
in the sample according to the response design. NSP are the Non-Sampled Polygons. OA is the Overall
Accuracy for each stratum.

Strata Count of CCP Area of CCP Area of NSP OA (%)

Open areas 345 600 ha 785,294 ha 90.9
Forest areas 185 267 ha 562,135 ha 84.5

Others 123 112 ha 347,005 ha 88.6

The overall accuracy of the whole map is computed as the weighted sum of the overall accuracy
of each stratum (Table 3) based on their relative proportion (Table 2). The total overall accuracy value
is 88.3%. As the measured overall accuracies per stratum were different from the first guess used for
the sampling design, the confidence interval needed to be updated. By reusing Equation (18) with the
observed values, it was updated to ±2.3%.

Both count-based (Table 4) and area-based (Table 5) confusion matrices are presented in this
example to highlight the differences between them. On average, there is an absolute difference of 2%
between the various users’ accuracies and 4% between the various producers’ accuracies. The largest
difference (15%) is observed for the producers’ accuracy for water (W), because the omission errors
occurred for very small polygons.

Table 4. Count-based confusion matrix. The LCCS-based legend includes six homogeneous classes as
well as associations of different entities from larger scale. The homogeneous classes are Cropland (C),
Broadleaved Forest (BLF), Needle-Leaved Forest (NLF), Grassland (G), Bare soils (B) and Water (W).
Heterogeneous classes include Urban areas (U), Sparse Vegetation (SV), Crop-dominated vegetation
Mixture (CM1), Mixture of vegetation with Crops (CM2), Tree-dominated vegetation mixture without
crops (TM1) and open vegetation mixture with some trees (TM2). The table also includes the
Count-based Users’ (UA) and Producers’ Accuracies (PA). The values in this table were not weighted
by their sampling probability for the sake of clarity, but the relative number of polygons in each stratum
is taken into account for the computation of the producers’ accuracy.

Class C CM1 CM2 BLF NLF MF TM1 TM2 G SV U B W UA

C 143 5 1 0 0 0 0 2 7 0 0 1 1 0.89
CM1 3 11 1 0 0 0 0 0 1 0 0 0 0 0.69
CM2 1 1 23 0 0 0 1 2 8 0 2 0 0 0.60
BLF 0 0 1 107 0 7 5 4 0 0 0 0 1 0.86
NLF 0 0 0 1 45 0 0 0 0 0 0 0 0 0.98
MF 0 0 0 2 2 15 1 0 0 0 0 0 0 0.75

TM1 0 0 0 1 0 1 21 1 0 0 0 0 0 0.87
TM2 0 0 1 0 0 0 2 9 1 0 0 0 0 0.69

G 3 0 0 0 0 0 3 8 229 1 0 4 0 0.92
SV 0 0 0 0 0 0 0 0 0 2 0 0 0 1.00
U 0 0 0 0 0 0 0 0 0 0 45 2 0 0.96
B 0 0 0 0 0 0 0 0 0 0 0 1 0 1.00
W 0 0 0 0 0 0 0 0 0 0 0 0 6 1.00
PA 0.95 0.65 0.91 0.96 0.96 0.68 0.74 0.33 0.93 0.62 0.95 0.11 0.72
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Table 5. Area-based confusion matrix. The LCCS-based legend includes six homogeneous classes as
well as associations of different entities from larger scale. The homogeneous classes are Cropland (C),
Broadleaved Forest (BLF), Needle-Leaved Forest (NLF), Grassland (G), Bare soils (B) and Water (W).
Heterogeneous classes include Urban areas (U), Sparse Vegetation (SV), Crop-dominated vegetation
Mixture (CM1), Mixture of vegetation with Crops (CM2), Tree-dominated vegetation mixture without
crops (TM1) and open vegetation mixture with some trees (TM2). The table also includes the
Count-based Users’ (UA) and Producers’ Accuracies (PA). The values in this table were not weighted
by their sampling probability for the sake of clarity, but the relative number of polygons in each stratum
is taken into account for the computation of the producers’ accuracy.

Class C CM1 CM2 BLF NLF MF TM1 TM2 G SV U B W UA

C 301 7 0.4 0 0 0 0 4 6 0 0 0.9 0.5 0.94
CM1 3 7 0.2 0 0 0 0 0 0.3 0 0 0 0 0.66
CM2 0.3 0.2 22 0 0 0 1 4 6 0 2 0 0 0.65
BLF 0 0 0.5 122 0 9 4 9 0 0 0 0 0.2 0.84
NLF 0 0 0 2 78 0 0 0 0 0 0 0 0 0.97
MF 0 0 0 0.7 2 15 0.5 0 0 0 0 0 0 0.81

TM1 0 0 0 1 0 1 21 1 0 0 0 0 0 0.87
TM2 0 0 0.6 0 0 0 2 7 0.6 0 0 0 0 0.69

G 5 0 0 0 0 0 5 6 338 0.8 0 3 0 0.90
SV 0 0 0 0 0 0 0 0 0 2 0 0 0 1.00
U 0 0 0 0 0 0 0 0 0 0 36 1 0 0.94
B 0 0 0 0 0 0 0 0 0 0 0 0.5 0 1.00
W 0 0 0 0 0 0 0 0 0 0 0 0 7 1.00
PA 0.95 0.66 0.89 0.96 0.96 0.68 0.74 0.22 0.94 0.47 0.98 0.05 0.87

The structural quality of the polygons was quantified using the proportion of the dominant
class. The average proportion within the sampled polygons was 80%. As mentioned in Section 4,
polygon heterogeneity is sometimes necessary to describe complex landscapes. However, it is
often difficult to objectively decide when the structural quality could be improved. In this study,
a larger average proportion was observed for correctly classified than for incorrectly classified
polygons (87% and 66%, respectively). This tendency to better classify the homogeneous classes
was also captured by the confusion matrix, where most of the errors occurred at the transition
between two classes. This suggests that the thematic accuracy of the map could be improved if the
under-segmentation was reduced or if the legend could be optimized for the specifically heterogeneous
regions. On the other hand, the homogeneity is a very class-specific feature that is related to the
landscape. Crop is the most homogeneous land cover in the study area (98%), closely followed by bare
soil and water (>95%). Grassland, which might encapsulate isolated trees, has a homogeneity value
of 91%. Forests are the most heterogeneous (≈80%) of the homogeneous classes due to natural and
artificial thinning or gaps. The other classes are heterogeneous by definition, ranging from 48% to 66%,
and are not defined by the majority class. For instance, one third of the urban areas have a majority
class that is not built up, but they are nevertheless classified as urban areas because they are covered
by at least 25% of buildings and roads.

With respect to geometric precision, reference boundaries have been selected from correctly
classified polygons in the homogeneous classes in order to avoid processing fuzzy boundaries during
the quantitative assessment. The area of the omission and commission errors on both sides of the
reference boundaries (Figure 5) is divided by the length of the reference boundary. The result provides
an estimate of the mean distance to the boundaries. As shown in Table 6, those errors depend on the
type of boundaries. Similar differences have been observed in previous studies [63].
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Figure 5. Illustration of the segmentation errors along the boundaries. The highlighted polygons
indicate mismatch with the boundaries of the reference polygons.

Table 6. Geometric errors along the boundaries for the main homogeneous classes.

Type of Boundaries Mean Absolute Error Maximum Error

Crop and pasture 2 m 6 m
Broadleaved forest and open areas 3.5 m 15 m

Needle-leaved forest and open areas 2.5 m 13 m
Water and open areas 1 m 2 m

9. Conclusions

The recommended good practices for GEOBIA quality assessment that were presented here
are intending to extend the general guidelines from Olofsson et al. [4] in order to yield rigorous
and defensible accuracy estimates in the case of GEOBIA. The objectives of the analysis should be
clearly identified prior to the validation process in order to select the most appropriate approach.
Critical choices include (i) the type of sampling unit (pixel or polygon), (ii) the types of accuracy indices
(count-based or area-based) and (iii) the relevance of geometric quality assessment. GEOBIA accuracy
assessment can be more complex than pixel-based accuracy assessment, but in turn provides more
information such as area-dependent classification accuracy or class-specific boundary errors.

The proposed guidelines are based on arbitrary categories of GEOBIA objectives that are
not exhaustive and not always exclusive. For instance, spatial entity detection and delineation
could be combined in a single study. On the other hand, GEOBIA could also be used to derive
quantitative parameters or class memberships that would require a specific validation framework.
Furthermore, some key issues still need to be addressed in future studies. In order to further improve
the accuracy assessment framework, standard methods for the quality assessment of boundaries
are still needed and the impact of response design on the quality indices should be investigated.
Furthermore, several indices proposed in this study still lack a formula for their variance, which is
an issue for the comparison of algorithms and for the reporting of the estimated values. Last but
not least, good practices for the estimation of areas based on GEOBIA wall-to-wall maps should
be developed.
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Appendix A. Code Sample for the Response Design

def ResponseDesign ( grass , crop , broadleaved , needleleaved , a r t i f i c i a l , water , bare , shrub ) :
vgt = grass + crop + broadleaved + needleleaved + shrub
t o t = grass + crop + broadleaved + needleleaved + a r t i f i c i a l + water + bare + shrub
f o r e s t = broadleaved + needleleaved
i f waterv > 0 . 5 :

return " water "
e l i f a r t i f i c i a l > 0 . 2 5 :

return " urban "
e l i f vgt < 0 . 0 4 :

a = " bare s o i l "
e l i f vgt < 0 . 1 5 :

a = " sparse vegeta t ion "
e l i f crop > 0 . 5 and ( vgt−crop ) >= 0 . 2 :

a= " vegeta t ion mixture dominated by crops "
e l i f cropv > 0 . 1 5 and ( vgtv−cropv ) >= 0 . 5 and for < 0 . 7 :

a= " vegeta t ion mixture with crops "
e l i f grass > 0 . 5 and ( f o r e s t + shrub ) > 0 . 2 :

a = " vegeta t ion mixture dominated by grass "
e l i f grass > 0 . 1 5 and crop < grass and ( f o r e s t + shrub ) >= 0 . 5 and f o r e s t < 0 . 7 :

a= " vegeta t ion mixture with grass "
e l i f crop > 0 . 1 5 and f o r e s t < crop and grass < crop :

a = " cropland "
e l i f grass > 0 .150 and f o r e s t < grass and crop < grass :

a = " grass land "
e l i f f o r e s t > 0 . 1 5 0 :

i f broadleaved > 0 . 2 5 and needleleaved > 0 . 2 5 :
a = " mixed f o r e s t "

e l i f broadleaved > needleleaved :
a = " broadleaved f o r e s t "

e lse :
a= " needleleaved f o r e s t "

e l i f shrub > 0 . 1 5 :
a = " shrubland "

return a

Abbreviations

The following abbreviations are used in this manuscript:

TP True Positive
TN True Negative
FN False Negative
FP False Positive
UA User’s Accuracy
PA Producer’s Accuracy
OA Overall Accuracy
CE Circular Error
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CCP Correctly Classified Polygons
NSP Non-Sampled Polygons
LCCS Land Cover Classification System
FAO Food and Agriculture Organization
CI Confidence Interval
RMSE Root Mean Square Error
GEOBIA Geographic Object-Based Image Analysis
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