
Article

Circular Regression Applied to GNSS-R
Phase Altimetry

Jean-Christophe Kucwaj *, Serge Reboul *, Georges Stienne *, Jean-Bernard Choquel
and Mohammed Benjelloun

Laboratoire d’Informatique, Signal et Image de la Côte d’Opale (LISIC, EA 4491), Université du Littoral Côte
d’Opale (ULCO), F-62228 Calais, France; Jean-Bernard.Choquel@univ-littoral.fr (J.-B.C.);
mohammed.benjelloun@lisic.univ-littoral.fr (M.B.)
* Correspondence: kucwaj@lisic.univ-littoral.fr (J.-C.K.);

reboul@lisic.univ-littoral.fr or serge.reboul@univ-littoral.fr (S.R.); stienne@lisic.univ-littoral.fr (G.S.)

Academic Editors: Weimin Huang and Xiaofeng Li
Received: 5 May 2017; Accepted: 20 June 2017; Published: 23 June 2017

Abstract: This article is dedicated to the design of a linear-circular regression technique and to its
application to ground-based GNSS-Reflectometry (GNSS-R) altimetry. The altimetric estimation
is based on the observation of the phase delay between a GNSS signal sensed directly and after a
reflection off of the Earth’s surface. This delay evolves linearly with the sine of the emitting satellite
elevation, with a slope proportional to the height between the reflecting surface and the receiving
antenna. However, GNSS-R phase delay observations are angular and affected by a noise assumed
to follow the von Mises distribution. In order to estimate the phase delay slope, a linear-circular
regression estimator is thus defined in the maximum likelihood sense. The proposed estimator is
able to fuse phase observations obtained from several satellite signals. Moreover, unlike the usual
unwrapping approach, the proposed estimator allows the sea-surface height to be estimated from
datasets with large data gaps. The proposed regression technique and altimeter performances are
studied theoretically, with further assessment on both synthetic and real data.

Keywords: GNSS-reflectometry; altimetry; circular statistics; GNSS signal processing

1. Introduction

Global Navigation Satellite Systems-Reflectometry (GNSS-R) is a passive bi-static radar technique
for Earth observation using GNSS signals as signals of opportunity. This remote sensing technique
uses the L-band signal coming directly from a GNSS satellite and the signal reflected by the Earth
in order to characterize the reflecting surface. Several applications have been developed, such as
ocean altimetry [1], the characterization of sea surface roughness [2] and soil moisture estimation [3].
Using GNSS signals for Earth observation offers multiple advantages: precision of the location and
dating of the retrieved data, low sensibility to atmospheric perturbations and global coverage by
several existing constellations, implying the availability of numerous reflections observations at the
same time. In this work, the application concerns the design of a low altitude GNSS radar system for
altimetry of water surfaces in coastal areas.

The altimetry measurement is derived from the path difference between the direct and reflected
signals. This path difference can be estimated from the carrier-to-noise ratio observations [4–8],
the code observations [9–14] or the phase observations [15,16]. The GNSS signal path can be measured
with the observation of phase delay between the direct and reflected signals. This phase delay provides
a range measurement with an ambiguity corresponding to the signal wavelength. Many methods are
proposed in the published works to solve this ambiguity [14,17]. Ambiguity resolution is a complicated
problem that is still studied nowadays. The technique developed in this article allows this problem
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to be skipped. The phase difference between the direct and the reflected signals evolves linearly
with the satellite elevation sine [18,19]. The slope of this evolution provides an observation of the
height between the receiving antennas and the reflecting surface. In this article, we observe the phase
difference with a receiver similar to the one proposed in [20]. The phase delay is obtained by correlating
the reflected signal and a clean replica of the direct signal [19,21]. This approach can be considered as
conventional GNSS-R (cGNSS-R) with master/slave channel configuration [18,22].

The observations of phase delay are noisy. In the published works, long coherent integration [23]
and phase unwrapping are used in order to improve the estimation process. In [23,24], a linear
interpolation of the unwrapped phase is used to derive an accurate estimate of the height.
In [19], an iterative unwrapping circular technique is proposed. This approach aims at improving
the unwrapping process by smoothing the angular observations with a circular fusion filter. None of
these methods can be used in the case of sets of measurements including long data losses.

Unlike the code measurements, the carrier phase measurements are angular data. Angular data
are defined in an interval of length 2π ([−π, π] or [0, 2π]), which corresponds, in terms of range,
to the wavelength of the observed GNSS signal [25,26]. Consequently, the classical estimation
techniques of the linear domain provide biased results for circular data due to the occurrence of
transitions between the interval bounds over time. In this context, techniques defined in the linear
domain (for example, using the Gaussian distribution) are inapplicable for statistical processing.

It was shown in [27] that the additive noise on the phase delay of a GNSS signal follows
a von Mises distribution. This distribution (also called circular normal distribution) is widely
used for the modeling of angles in a Bayesian framework [28,29]. Applied to angular observations,
the von Mises distribution plays the same role as the normal distribution for observations defined
on the R line. Detailed overviews of circular statistics can be found in [30–32]. In recent years,
several techniques, based on 2π periodic distributions, have been defined for the statistical processing
of circular signals. For example, using a von Mises distribution, a circular median filter is defined in [33]
and applied to color images processing. The same distribution is used to derive a circular recursive
filter (or Kalman-like filter) for angle measurements in [34]. In the context of dynamic estimation,
a circular filter was proposed for GNSS phase smoothing in [35] and GNSS phase positioning with
cycle slip detection and repair in [35]. In [36], a von Mises-based Probability Hypothesis Densities
(PHD) filter is proposed and applied to the problem of multiple angular targets tracking. In [37], it is
the Bingham distribution that is used for deriving a recursive filter dedicated to π symmetric circular
problems. The optimality of such estimation techniques according to various circular error criteria and
further techniques for reaching such optimality have been investigated in [38,39].

In this article, using the von Mises distribution, we propose to define the maximum likelihood
estimator that provides a direct estimation of the height with observations defined in the circular
domain. The proposed estimator is defined as a linear-circular regression [30,40] in the time reference
frame of the sine of the satellite elevation and allows one to avoid the phase unwrapping step. It is
based on a loss function derived from the measurement likelihood. This loss function is maximized
using a Newton–Raphson algorithm.

The paper is organized as follows. The phase observation model is presented Section 2. Section 3
is dedicated to the linear-circular regression height estimator. In Section 4, the proposed approach is
assessed on synthetic and real data. The last section is the conclusion.

2. GNSS-R Altimetry Using Phase Measurement

2.1. Height Retrieval Using GNSS Phase Signals

Figure 1 describes the geometry of the GNSS-R altimeter. In this figure, T is the transmitting GNSS
satellite and S is the specular reflection point. In our approach, the surface of reflection is assumed to
be the plane, and the incidence and reflection angles are the same. R is the position of the receiving
antennas, at an altitude h over the reflecting surface. Two antennas are considered: an up-looking
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antenna, with right-hand circular polarization, and a down-looking antenna, with left-hand circular
polarization. These two antennas respectively sense the direct and the reflected GNSS signal. The
direct and reflected signals of the s-th satellite are respectively noted SD

s and SR
s . The elevation angle is

θel
s . For a low altitude h, the satellite is assumed to be at an infinite distance in regards to the position

of the receiver. Consequently, the elevation angle θel
s is equal to the incidence and the reflection angle.
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Figure 1. Geometry of a ground-based GNSS-Reflectometry (R) altimeter.

The height h between the antennas and the reflecting surface is the parameter to estimate.
The height is derived from the path difference between the direct and the reflected signals. According
to the system geometry presented in Figure 1, the path difference for satellite s at instant t is given by
the following equation:

∆s(t) = 2h sin
(

θel
s (t)

)
(1)

where the satellite elevation θel
s (t) can be derived from the current GNSS satellites ephemeris and from

the GNSS positioning of the receiving antennas.
In the case of the civil component of a GPS-L1 signal received from the satellite s, the direct signal

SD
s and the reflected signal SR

s can be defined as follows:

SD
s (t) = AD

s CAs(t− τD
s (t)) sin(2π f D

s t− φD
s (t)) + ηD

s (t) (2)

SR
s (t) = AR

s CAs(t− τD
s (t)− ∆s(t)/c) sin(2π f D

s t− φD
s (t)− ψs(t)) + ηR

s (t) (3)

where AD
s and AR

s are the amplitudes of the direct and reflected signals. CAs(t) is the CDMA code
broadcast by the satellite, at a period of one millisecond. τD

s is the code delay of the received signal
at the RHCP (Right Hand Circular Polarization)antenna (in seconds). f D

s is the frequency of the
direct signal, and φD

s is its phase delay. ηD
s and ηR

s are additive zero-mean white Gaussian noises [26],
respectively, on the direct and reflected signals. ∆s is the path difference between the direct and the
reflected signals for the satellite s. c is the speed of light. The term ψs is the difference of phase between
the direct and the reflected signals for satellite s.



Remote Sens. 2017, 9, 651 4 of 19

The phase ψs corresponding to the path difference observed in the phase delay can be derived
from Equation (1) as:

ψs(t) =

(
2π

λ
∆s(t)

)
mod(2π)

=

(
4π

λ
h sin

(
θel

s (t)
))

mod(2π) (4)

ψs is an angular datum, defined in an interval of length 2π, which corresponds to λ ≈ 19.05 cm in
range for a GPS-L1 signal. We notice, from Equation (4) that ψs evolves linearly with sin

(
θel

s (t)
)

, the
sine of the s-th satellite elevation. The slope of ψs in the elevation sine time frame is proportional to
the height h between the receiving antennas and the reflecting surface, with a factor of 4π/λ.

2.2. Phase Observation

Figure 2 presents the different blocks of the receiver architecture used to observe the phase delay
ψs,k. This receiver architecture is designed as a master/slave configuration as in [18]. The incoming
direct and reflected signals, respectively SD

s and SR
s , are demodulated with an internal oscillator at

frequency f OL and digitized with a sampling frequency fs. The local oscillator frequency f OL is fixed
so the residual frequency after down-conversion is both larger than the inverse of the integration
interval and lower than half the sampling frequency fs. The tracking module of the direct signal
provides the GNSS parameters f D

s , τD
s and φD

s in order to construct the replicas pI,D
s and pQ,D

s . The
demultiplexing module described in Figure 2 provides the observations Is,k and Qs,k.

Reflected Signal 

𝑺𝒔
𝑹(𝒕)

Direct Signal 
𝑺𝒔
𝑫(𝒕)

𝑓𝑂𝐿 internal 
oscillator

ADC

Sampling 
Frequency 𝑓𝑠

𝒂𝒓𝒄𝒕𝒂𝒏∗
𝑸𝒔,𝒌
𝑰𝒔,𝒌

𝝍𝒔,𝒌
Noisy observations of the 
Phase delay between the 

direct and the reflected signal

Tracking module 
of the direct signal

fs
d, 𝜏𝑠
𝐷 , 𝜙𝑠
𝐷

𝒑𝒔
𝑸,𝑫
(𝒕)

𝒑𝒔
𝑰,𝑫(𝒕)

𝑸𝒔,𝒌

Demultiplexing module

 

 

𝑰𝒔,𝒌

Sampling 
Frequency 𝑓𝑠

ADC

Figure 2. Construction of the ψs,k observable.

Let us define Is,k and Qs,k as the in-phase and quadrature components at instant k for the
s-th satellite. k is the measurement index, the measurements being separated by a fixed period
corresponding to the coherent integration Tc used in the tracking module. This period has a minimum
value of Tc = 1 ms, which corresponds to the C/A code length. These components are obtained after
the demodulation of the reflected signal with local replicas of the direct signal:

Is,k =
∫ (k+1) Tc

k Tc
SR

s (t)pI,D
s (t)dt (5)

Qs,k =
∫ (k+1) Tc

k Tc
SR

s (t)pQ,D
s (t)dt (6)

where pI,D
s (t) and pQ,D

s (t) are the in-phase and quadrature clean replicas of the direct signal. These local
replicas are constructed with the parameters provided by the tracking loop of the direct signal.
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These parameters are the estimates of f D
s , φD

s and τD
s . The local replicas are defined by:

pI,D
s (t) = CAs

(
t− τD

s (t)
)

sin
(

2π f D
s t− φD

s (t)
)

(7)

pQ,D
s (t) = CAs

(
t− τD

s (t)
)

cos
(

2π f D
s t− φD

s (t)
)

(8)

Finally, Is,k and Qs,k can be modeled as:

Is,k =
AR

s
2

Λ (−∆s,k/c) cos (−ψs,k) + η I
s,k (9)

Qs,k =
AR

s
2

Λ (−∆s,k/c) sin (−ψs,k) + ηQ
s,k (10)

where Λ () models the normalized correlation function of the CDMA code. For ground-based
measurements, we assume that the altitude of the receiving antennas is lower than 150 m, implying
that Λ (∆s/c) is not null. η I

s,k and ηQ
s,k are two independent zero-mean Gaussian noises.

Using Relations (9) and (10), a noisy observation of the phase delay ψs,k, also called interferometric
phase observations [18] , can be obtained every millisecond with the following model:

ψs,k = − arctan∗
(

Qs,k

Is,k

)
=

(
4π

λ
h sin

(
θel

s,k

)
+ η

ψ
s,k

)
mod(2π) (11)

where arctan∗ is the quadrant-specific arc-tangent and η
ψ
s,k is a zero-mean noise. The noise is assumed

to be distributed according to a von Mises distribution [27,30] with a concentration parameter κ
ψ
s .

The noise on the observations of ψs,k is not correlated over time as there is no tracking of the reflected
signal. In this model, the height h and the concentration parameter κ

ψ
s are the only unknown parameters.

3. Linear-Circular Regression Applied to GNSS-R Altimetry

3.1. Circular Model

The normal distribution N is inappropriate for a physical process involving periodic angle
measurements. The von Mises distribution, also known as the circular normal distribution CN ,
describes a circular random variable and can be considered as the equivalent of the normal distribution
in the circular domain [30].

The von Mises distribution f (θ, µ, κ) for a circular random variable θ, with mean value µ and
concentration parameter κ, is given by:

f (θ; µ, κ) =
1

2πI0(κ)
eκ cos(θ−µ) (12)

with:

I0(κ) =
1

2π

∫ 2π

0
eκ. cos θ dθ =

∞

∑
r=0

(κ

2

)2r
(

1
r!

)2
(13)

The concentration parameter κ takes values between zero and infinity and approximately behaves
like the inverse of the Gaussian variance. The term of normalization I0(κ) is the modified Bessel
function of the first kind and order zero.
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In this paper, we propose the following model for the observation of ψs,k, the phase delay
associated with the satellite s at instant k:

ys,k =
(

α + β xel
s,k + η

y
s,k

)
mod(2π) (14)

ys,k is the angular observation and xel
s,k the associated reference time frame. The parameters α and β

are respectively the ordinate at the origin and the slope of the linear evolution of the observations.
The term η

y
s,k is a zero-mean additive von Mises noise realization with a concentration parameter κs. In

our approach, the reference time frame corresponds to the sine of the elevation: xel
s,k = sin

(
θel

s,k

)
, and

the value of h is derived from the value of β: h = λβ
4π .

3.2. Log-Likelihood Estimator

In order to estimate the two parameters α and β, we derive the likelihood function associated
with the measurement model. The probability density function f (ys,k; α, β; κs) is given by:

f (ys,k; α, β; κs) =
1

2πI0(κs)
eκs cos( ys,k−(α+β xel

s,k) ) (15)

Considering N measurements Y = {ys,1, ..., ys,N}, the likelihood function is given by:

L(Y) = f (ys,1; α, β; κs), ..., f (ys,N; α, β; κs)

=
N

∏
k=1

1
2πI0(κs)

exp
(

κs cos
(

ys,k −
(

α + βxel
s,k

)))
=

1
(2πI0(κs))N exp

(
κs

N

∑
k=1

cos
(

ys,k − α− βxel
s,k

))
(16)

and the log-likelihood function is:

ln L(Y) = −N (2πI0(κs)) + κs

N

∑
k=1

cos
(

ys,k − α− βxel
s,k

)
(17)

With the log-likelihood function, we define the following contrast function:

W (Y) =
N

∑
k=1

cos
(

ys,k −
(

α + β xel
s,k

))
(18)

The values of α and β that maximize the contrast function W(Y) provide the maximum likelihood
estimates α̂ and β̂.

α̂ is the solution of:

∂ W (Y)
∂α

= 0

⇔
N

∑
k=1

sin
(

ys,k −
(

α̂ + β xel
s,k

))
= 0

⇔ cos (α̂)
N

∑
k=1

sin
(

ys,k − β xel
s,k

)
− sin (α̂)

N

∑
k=1

cos
(

ys,k − β xel
s,k

)
= 0 (19)
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and finally, α̂ is obtained with the following expression:

α̂ = arctan∗

∑N
k=1 sin

(
ys,k − β xel

s,k

)
∑N

k=1 cos
(

ys,k − β xel
s,k

)
 (20)

This expression shows that α̂ can be directly deduced from the estimation of β. We conclude that
β is the only parameter to estimate to fit the model to the observed data.

We propose to use the Newton–Raphson algorithm to estimate the value of the slope β that
maximizes W(Y). The Newton–Raphson algorithm is an iterative procedure based on the second
derivative of the loss function W(Y):

β̂i+1 = β̂i − g
(

∂2 W (Y)
∂β2

) ∣∣∣∣−1

β=β̂i

∂ W (Y)
∂β

∣∣∣∣
β=β̂i

(21)

where g is a step size. The estimate β̂ that maximizes the contrast function is obtained iteratively from
Equations (18) and (21) with the following relations:

α̂i = arctan∗

∑N
k=1 sin

(
ys,k − β̂i xel

s,k

)
∑N

k=1 cos
(

ys,k − β̂i xel
s,k

)
 (22)

β̂i+1 = β̂i + g
∑N

k=1 sin
(

ys,k −
(

α̂i + β̂ixel
s,k

))
∑N

k=1 xel
s,k cos

(
ys,k −

(
α̂i + β̂ixel

s,k

)) (23)

In this recursive scheme, β̂i converges to a local maximum of the contrast function W(Y).
In the GNSS-R altimetry context, the height is deduced from the estimated value of the slope β̂ by:

ĥ =
λ

4π
β̂ (24)

Assuming that all of the GNSS signal reflections are on the same surface, we can suppose that
the slope β is common for all of the phase delay evolutions corresponding to all of the satellites in view.
All of the interferometric phase observations can be observed in the same time reference frame, and it
is possible to construct a contrast function fusing several GNSS reflections. The contrast function can
be modified from Relation (18) in order to take into account the whole set of S visible satellites. The
loss function becomes:

W(Y) =
S

∑
s=1

N

∑
k=1

cos(ys,k − (α + β xel
s,k)) (25)

The proposed height estimator is unchanged, replacing the sums from one to N by sums from one
to SN.

3.3. Initialization and Assessment

Figure 3 shows a theoretical representation of W (Y) as a function of the slope β. We observe
that the contrast function W(Y) has several local maxima and a global maximum corresponding
to βth, the value to estimate. The Newton–Raphson algorithm is a local maximization technique.
The estimate β̂ thus depends on the initialization β̂i=0. In order to reach the global maximum, we
propose to initialize β̂i=0 with an additional search step.
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Figure 3. W (Y) as a function of β.

Due to the periodicity of the angular data, the local maxima of W(Y) are distributed periodically,
with a period denoted βT . This period only depends on the xel

s parameter. The period βT can thus be
obtained by numerically solving the following unnoisy formula, where the measurement component
is canceled (which corresponds to βth = 0):

N

∑
k=1

cos

− arctan∗


N
∑

k=1
sin
(
−βTxel

s,k

)
N
∑

k=1
cos

(
−βTxel

s,k

)
− βTxel

s,k

 = 0 (26)

which can be rewritten as:

N

∑
k=1

cos
(

βT

(
xel

s − xel
s,k

))
= 0 (27)

where xel
s is the mean of

{
xel

s,k

}
k=1:N

.

The period βT can be obtained as the minimum value that solves this equation. β̂i=0,
the initialization of the Newton–Raphson algorithm, can then be obtained by realizing a first fast global
maximization of W (Y) with a search step of βT .

The expected accuracy of the proposed method is the same as the variance of the classic linear
regression. For our model, the theoretical variance of the estimate is:

var
(

ĥ
)
=

λ

4π

σ 2
s

∑N
k=1

(
xel

s,k − xel
s

) (28)

The standard deviation σs of the noise is defined as in the linear domain by approximating the von
Mises distribution by a wrapped normal distribution. It is shown in [30] that σs can be linked to κs

using the following expression:

σ 2
s = −2 ln

(
I1(κs)

I0(κs)

)
(29)

with κs the concentration parameter associated with the von Mises noise measurement of the observed
phase delay.
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We can observe in Expression (28) that the variance of the estimate decreases (so the accuracy
of the estimation increases) when the denominator increases. The denominator increases as the data
are observed over a larger span of satellite elevation. In practice, in order to increase this span,
large observation durations are needed. This is a major drawback of the proposed method. However,
we show that it is possible to fuse several reflections observations using the contrast function defined
in Equation (25). In this case, the denominator of Expression (28), and the estimation accuracy,
is increased by using GNSS satellites that have different elevations.

4. Experimentation

4.1. Assessment with Synthetic Data

We first assess the linear-circular regression on synthetic GNSS-R data. In this section, we consider
synthetic data corresponding to a realistic GPS constellation scenario. The height is fixed at 100 m
(β ≈ 6603.63), and the observation rate is fixed at 1000 Hz (one measure per millisecond, the length of
the GPS-L1 civil code) . The noise of the interferometric phase observations is defined for different
values of carrier to noise ratio C/N0. The carrier to noise ratio C/N0 and the associated concentration
parameter κs are described in Table 1. In common conditions, the carrier to noise ratio associated with
the interferometric signal is close to 40 dB-Hz for GPS-L1 signals, so we assess the estimator for C/N0

values of 30, 35, 40 and 45 dB-Hz.

Table 1. Concentration parameter κs corresponding to various C/N0 values of the interferometric signal.

C/N0 (dB-Hz) 30 35 40 45

κs 1.35 2.96 9.34 30.82

The interferometric phase observations are obtained with an initial elevation fixed at 75◦ and
an elevation rate of 0.006◦/s. This corresponds to a usual case as observed over the city of Calais [7,19].
We compute the RMSE (Root Mean Square Error) of the estimator over 300 realizations of the
observations model. Figure 4 presents the obtained RMSE as a function of the integration time
along with the theoretical standard deviation of the estimator, calculated using Equation (28).
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Figure 4. RMSE and theoretical standard deviation of the estimated height as a function of
the integration time, for various values of C/N0.
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We observe from Figure 4 that the RMSE fits the theoretical standard deviation. We first note
that the linear-circular regression height estimator is unbiased (the mean error is indeed null, and
the RMSE thus corresponds to the standard deviation of the estimator). We also can conclude that
the theoretical formulation for the standard deviation is correct. Furthermore, we observe that the
linear-circular regression height estimate reaches an accuracy of at least 5 cm for a period of integration
of 100 s for any carrier to noise ratio C/N0 superior to 35 dB-Hz. We also observe, as expected, that
when the carrier to noise ratio increases, the accuracy of the estimator increases.

We show in Figure 5 the standard deviation of the proposed estimator as a function of the satellite
elevation rate and for various initial elevations. For these simulations, the considered observation
period is fixed at 100 s, and the C/N0 is 35 dB-Hz. We observe that the standard deviation of
the estimated height decreases when the elevation rate increases, as expected according to Equation (28).
Figure 5 also depicts the influence of the initial elevation: the estimator is less precise for high initial
elevations, with especially highly increasing precision losses for initial elevations increasing over 70◦.
High values of the initial elevation indeed provide smaller (sin(θel

s,k)− sin(θel
s,k)) spans as the sine gets

very close to one for any elevation over 70◦.
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Figure 5. Standard deviation of the estimated height as a function of the satellite elevation rate and for
various initial elevations.

4.2. Experimental Setup

In our implementation, we use an experimental setup that allows recording the direct and
the reflected signals using only one channel receiver. This original setup is presented Figure 6.
In the proposed setup, the reflected GNSS signal is delayed using a fiber optic coil. The delay,
denoted τL, depends on the length of the coil and is known by the user. The reflected signal is summed
with the direct signal before digitization using a signal combiner. The fiber optic coil does not affect
the linear behavior of the phase delay. In our approach, the aim of this delay line is to separate
the direct and the reflected signal in time in order to be able to track these two signals independently
using a single channel receiver. Such a system is less complex and less expensive than a classical
multi-channel data grabber for GNSS reflectometry and also requires less memory. However, the
recording of both signals in a single channel reduces the C/N0 by approximately 3 dB-Hz: the noise
associated with the combination of satellite signals sensed affects the recorded reflected signal and
vice versa.
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Figure 6. Experimental setup.

The composite signal (sum of the direct and reflected GNSS signals) is recorded by a Syntony
“SiFEn-R-one by one” data grabber. This front-end receiver has a sampling frequency up to 200 MHz
and a quantization up to 8 bits. It can be used for any GNSS signal, with adjustable frequency
down-conversion. For the experimentation, a sampling frequency of 25 MHz and a quantization of
1 bit were used. The down-conversion frequency is fixed for the frequency of the GPS-L1 band.
The additional code delay is fixed at τL = 5.12 µs (1 km of optical fiber), which is sufficient
for separating the direct and reflected signals’ correlation peaks for a ground-based experiment
with satellites at any observable elevation. Figure 7 presents a Delay-Doppler Mapping (DDM) of
a composite signal sensed during the experimentations. The composite signal is processed using
the architecture described in Figure 2. The additional τL delay is taken into account in the local code
replica in Equations (7) and (8) by adding it to τD

s .

Figure 7. Example of delay-Doppler map obtained with the proposed receiver. The direct and reflected
signals are separated in time by a delay τL = 5.12 µs (in addition to the path delay).

4.3. Assessment with Real Data

This experimentation on real data is an application of the experimental setup presented in
the previous section, the receiver architecture described Section 2.2 and the circular estimator described
Section 3.3. The proposed system is tested using the civil component of GPS-L1 signals reflected on
an artificial canal basin in Calais. As shown Figure 8, the receiving antennas system, composed of an
up-looking RHCP antenna and a down-looking LHCP (Left Hand Circular Polarization)antenna, is
located at the top of a telescopic mast. The mast can rise up to a height of 10 m and is mounted on
an experimental vehicle. The reference height between the reflecting water surface and the receiving
antennas is obtained using a measurement tape.
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Figure 8. Experimental vehicle carrying the GNSS-R altimeter. The observed GPS signals are reflected
on an artificial basin in Calais, France (50.962689◦N, 1.857305◦E).

The first experiment took place on 30 June 2016. The reference height between the antennas and
the water surface was 12.60 m. This height did not change during the experimentations, as the basin
gates were locked. In Figure 9, an example of interferometric phase evolution in the time frame of the
sine of the satellite elevation is shown. Each measure is obtained with one millisecond of coherent
integration. In this figure, we observe, in accordance with Relation (4), that the phase difference ψs

evolves linearly as a function of the elevation sine. However, the linear slope is affected by oscillations
that are not considered in our model. This effect can be due to the oscillations of the different elements
of the system such as the mast or the surface of reflection.

0.689 0.69 0.691 0.692 0.693 0.694 0.695

−3

−2

−1

0

1

2

3

sin(θ
s
el)

ψ
s 

Figure 9. Example of interferometric phase observations obtained for a GPS-L1 reflection on the
artificial basin.

The GPS satellites in view and their associated footprints on the basin are displayed in Figure 10.
Only two footprints, corresponding to satellites PRN (Pseudo-Random Number) 18 and 21, can be
used, as the footprint for satellite PRN 20 was partially out of sight during the experimentations. We
acquired three successive sets of data at 15 h 25 min, 15 h 38 min and 15 h 51 min. For each dataset, the
recording duration was of 600 s. We report in Table 2 the elevation and the carrier-to-noise ratio of the
interferometric signal for each satellite.
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Figure 10. GPS satellites in view and corresponding footprints on the basin 30 June 2016, 15 h 25 min.

Table 2. Parameters for satellites PRN 18 and 21, 30 June 2016, during 600 s of observation at 15 h
25 min, 15 h 38 min and 15 h 51 min.

15 h 25 min

Satellite PRN Interferometric Signal C/N0 (dB-Hz)
Elevation

min. (◦) max. (◦) mean (◦) rate (◦/s)

18 36.5 36.44 39.21 37.85 0.0046
21 34 53.73 57.56 55.65 −0.0064

15 h 38 min

Satellite PRN Interferometric Signal C/N0 (dB-Hz)
Elevation

min. (◦) max. (◦) mean (◦) rate (◦/s)

18 37 39.99 42.23 41.15 0.0037
21 34.1 48.55 52.51 50.53 −0.0066

15 h 51 min

Satellite PRN Interferometric Signal C/N0 (dB-Hz)
Elevation

min. (◦) max. (◦) mean (◦) rate (◦/s)

18 35 42.80 44.38 43.63 0.0026
21 32.3 43.39 47.38 45.38 −0.0066

Table 3 shows the estimated heights obtained for Satellites 18 and 21. On the first two lines of
this table, the heights estimated independently for Satellites 18 and 21 at 15 h 25 min, 15 h 38 min and
15 h 51 min are presented. The estimated heights are within 10 cm of accuracy except for Satellite
21 at 15 h 51 min, with a difference with the tape measurement of 25 cm, and for Satellite 18 at 15 h
38 min and 15 h 51 min with a difference of 27 and 42 cm. For Satellite 21 at 15 h 51 min, the higher
inaccuracy can be explained by the low C/N0 of the signal. For Satellite 18 at 15 h 38 min and 15 h
51 min, the higher inaccuracy is explained by the low elevation rates (in absolute value), in accordance
with the theoretical study. For observation durations of 600 s, the accuracy was expected to be of
at least 5 cm according to this study. However, the additional oscillations, due to the waves being
not taken into account in the model, affect the estimation precision. Over 600 s, the oscillations are
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averaged in the estimation process with some residuals. The loss of accuracy in the estimated height
as compared to the theoretical study is supposed to be due to these residuals.

Table 3. Estimated heights 30 June 2016 for 600 seconds of observation, Satellites PRN 18 and 21.

Satellite PRN

15 h 25 min 15 h 38 min 15 h 51 min
hre f = 12.60 m hre f = 12.60 m hre f = 12.60 m

Estimated Height ĥ (m) Estimated Height ĥ (m) Estimated Height ĥ (m)

18 12.68 12.87 13.02
21 12.65 12.49 12.36

18 + 21 12.61 * 12.61 * 12.51 *

18 + 21 12.60 **

* Results obtained using the proposed fusion operation on both satellites. ** Results obtained using
the proposed fusion operation on both satellites and all recordings.

In order to improve the accuracy of the estimated height, we used the fusion operation defined
in Equation (25) on the interferometric phase delays obtained for the two satellites. We present on
the third line of Table 3 the estimated heights obtained at 15 h 25 min, 15 h 38 min and 15 h 51 min using
this technique. The advantage is both to increase the amount of data and to increase the elevation sine
span. At 15 h 25 min and 15 h 38 min, the estimated heights are both 1 cm close to the reference height.
At 15 h 51 min, the estimated height is 9 cm away from the reference height. This can be explained
looking at Figure 11, which shows the observed interferometric phases for Satellites 18 and 21 at 15 h
38 min and 15 h 51 min. In this figure, we observe that the elevation sine span is over two-times smaller
at 15 h 51 min than at 15 h 38 min, explaining (through Equation (28)) the accuracy loss.

Figure 11. (Left) Observed interferometric phase for Satellites 18 and 21 at 15 h 38 min, 30 June 2016.
(Right) Observed interferometric phase for satellite 18 and 21 at 15 h 51 min, 30 June 2016.

We present in Table 4 the estimated heights obtained with the fusion of the observations for
Satellites 18 and 21 at 15 h 25 min, 15 h 38 min and 15 h 51 min, as a function of the considered
observation duration. We show that for various elevation spans (of the order of 20◦ at 15 h 25 min,
10◦ at 15 h 38 min and a few degrees at 15 h 51 min), centimeter accuracy can be reached for any
duration over 30 s (60,000 data points). This shows that fusing the data from several satellites can
highly reduce the observation duration required for reaching a given accuracy. The main explanation
is the increase of the elevation sine span. For a 15-s duration, the amount of data is not sufficient. This
is in accordance with Figure 4: the equivalent number of data points (30,000) corresponds to the fast
increase of the height estimation error.
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Table 4. Estimated height (m) as a function of the observation duration, obtained by fusion of Satellite 18
and 21 data at 15 h 25 min, 15 h 38 min and 15 h 51 min, 30 June 2016 (reference height: hre f = 12.60 m.)

Sat.: 18 + 21 15 s 30 s 50 s 100 s 150 s 300 s 600 s

15 h 25 min 8.80 12.63 12.62 12.62 12.61 12.62 12.61
15 h 38 min 7.54 12.62 12.61 12.61 12.62 12.62 12.61
15 h 51 min 16.01 12.56 12.53 12.54 12.55 12.55 12.51

In addition to merging data obtained from several satellites, it is also possible to merge data
corresponding to different observation instants using the proposed estimator. On the fourth line of
Table 3, we display the estimated height corresponding to the fusion of all of the available datasets,
for both satellites and all three dates. The result of 12.60 m corresponds to the tape measured height.

The second experiment took place on 6 July 2016 between 13 h 52 min and 14 h 10 min.
The reference height between the antennas and the water surface was 11.27 m (constant height
during the experimentation). The GPS satellites in view and the associated footprints are displayed
Figure 12. The aim of this experiment is to show the feasibility of the proposed technique in the case of
a single satellite signal observation including data losses. We considered the footprint of Satellite PRN
25 for this experimentation. We acquired five 13-s sets of data distributed over a 20-min span. Figure 13
shows the obtained interferometric phases as a function of the satellite elevation sine. We used all
of the observations of phase for the height estimation, so the total amount of data corresponds to
65 s of observation (65,000 data points), with a satellite elevation varying over 20 min (in this case,
over 7.5◦). The theoretical study thus predicts a good accuracy. The estimated height is 11.30 cm, three
centimeters away from the tape measured height. This experimentation shows that the amount of data
can be highly reduced if the span of variation of the satellite elevation is large. It also shows that the
proposed linear-circular regression approach can be applied to sets with missing data, which could not
be done in an estimation process including phase unwrapping. Such a case could correspond to signal
losses or attenuations yielding to the selection of limited data intervals.

Figure 12. GPS footprints on the canal basin, 6 July 2016 at 13 h 59 min.
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Figure 13. Observed interferometric phase from Satellite 25.

5. Discussion

The proposed receiver architecture and associated signal processing are applicable for static
ground-based height measurements. In the dynamic case, the proposed method would only be valid
for a constant height during the observation duration. The required observation duration for centimeter
accuracy being linked with the number of observable reflected signals, very short durations could be
sufficient with a multi-constellations and/or multi-frequency receiver. In the case of height variations
during the measurements, the phase delay model and the associated regression estimator would have
to be modified in order to be able to provide accurate, non-constant height estimation.

One of the drawbacks of the proposed technique is that the receiver altitude is limited. The
largest observable path difference is indeed equal to 300 m (which corresponds to the C/A code
length). The maximum observable height is 150 m for a satellite elevation of 90◦, 300 m for a satellite
elevation of 30◦ and higher for lower elevations. Assuming the height is approximately known by
other means (an accuracy of tens of meters is sufficient), this limitation can be avoided by adding
the corresponding approximate code delay in the replicas (7) and (8). The other height limitation
is linked to the assumption that the emitting satellite can be considered at an infinite distance from
the observation zone: the technique described in this article is not applicable for spaceborne GNSS-R.

We found in the experimentation on real data the effects of the elevation variation span and
observation duration that were predicted by the theoretical study. The main difference between
the results on synthetic and real data is linked to the oscillations that affected the phase observations.
These oscillations, which are not considered in the phase model, affected the data as an additional
non-von Mises noise and altered the height estimation accuracy.

The classical approach used to improve the robustness of the estimation toward high noise levels
is to reduce the filter bandwidth of the receiver. In the digital case, this is realized by increasing
the correlation integration time, at the expense of time resolution. However, for high integration time,
if the local replica frequency is not equal to the frequency of the received GNSS signal, the correlation to
noise ratio is reduced. This problem can appear in the GNSS-R context if the direct and reflected signals
have different frequencies. In addition, from a statistical point of view, using 1-ms integration time or
more provides the same accuracy for the proposed estimator, as larger integration time provides less
data points.

Larger integration times would be required for tracking the weak reflected signal in a classic
lock loop. In the approach proposed in this article, the main advantage of the master/slave receiver
architecture is that only the stronger direct signal has to be tracked. The interferometric GNSS-R
(iGNSS-R) approach based on cross-correlating the direct and reflected received signals [22,41] allows
using the military encrypted components of GNSS signals, leading to better performances than the
proposed approach when only one satellite reflection is considered. However, iGNSS-R requires the use
of directional antennas aiming at a single satellite signal. Being able to use omnidirectional antennas



Remote Sens. 2017, 9, 651 17 of 19

and to combine the data from several satellites reflections is a major advantage of the proposed method
over iGNSS-R. Finally, in terms of signal processing, the linear-circular regression technique defined in
this article can be used to get height estimates from datasets with large data gaps, which is something
that cannot be done with the classical use of unwrapping techniques. Moreover, unwrapping can
fail in the case of low C/N0, provoking cycle slips in the phase evolution and subsequently affecting
the height estimation.

6. Conclusions

In this article, we present an innovative signal processing approach to ground-based GNSS-R
phase altimetry. This approach is based on an original interferometry instrument providing phase
delay observations that have a linear evolution in a certain time reference frame. The slope of this
linear evolution provides a direct measurement of the height to estimate. In our approach, the phase
observations are processed as angles, defined in the circular domain, and the measurement noise
is assumed to follow a von Mises distribution. We accordingly derive a linear-circular regression
estimator of the phase slope in the maximum likelihood sense. In an experimentation on synthetic data,
we evaluate the proposed technique in terms of accuracy as a function of the satellite elevation span
and of the signal carrier to noise ratio. We show that centimeter accuracy can be reached in common
cases for a period of observation of 100 s. In an experimentation on real data, an original hardware
receiver architecture is proposed. This architecture, based on the use of an optic fiber delay line,
allows the separated recording of direct and reflected signals on a classic, inexpensive mono-channel
receiver. The experiments on real data show that although GNSS-R signals are affected by external
interferences that were not modeled, the centimeter accuracy can be obtained with the proposed
estimator through various methods. When only one satellite footprint is available, a continuous
observation of 10 min allows obtaining the decimeter accuracy. In that same context, a discontinuous
observation of 1 min of data points over 20 min allows obtaining centimeter accuracy. This implies
that the proposed altimetry technique can be used efficiently in the case of data losses. When several
satellite footprints are available, two in the presented experimentations, the proposed estimator can
fuse the available data and reach 1-cm accuracy for a 30-s continuous observation.
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