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Abstract: In this paper, we implemented the in-situ observation of surface soil moisture (SSM),
vegetation water content (VWC), and microwave brightness temperatures. By analyzing this in-situ
observation dataset and the numerical simulation, we investigated the source of the uncertainty of
the current algorithms for Advanced Microwave Scanning Radiometer for Earth observation system
(AMSR-E) and AMSR2 to retrieve SSM and vegetation dynamics. Our findings are: (1) the microwave
radiative transfer at C-band and X-band is not strongly affected by the shape of vegetation and the
existing algorithm can be applied to a wide variety of plant types; (2) the diversity of surface soil
roughness significantly affects the indices which are used by the current algorithms and addressing
the uncertainty of surface soil roughness is necessary to improve the retrieval algorithms; (3) At
C-band, SSM of the homogeneous vegetated land surfaces can be detected only when their VWC is
less than approximately 0.25 (kg/m2); (4) the state-of-the-art Radiative Transfer Model (RTM) can
predict our observed dataset although we have some biases in simulating brightness temperatures at
a higher frequency. The new in-situ observation dataset produced by this study can be the guideline
for both developers and users of passive microwave land observations to consider the uncertainties
of their products.

Keywords: passive microwave observation; surface soil moisture; vegetation water content; radiative
transfer model

1. Introduction

Passive microwave satellite observations have been used extensively to monitor global surface
soil moisture (SSM) and vegetation dynamics, and contributed to deepen the understandings
of hydrological and biogeochemical cycles. For example, Anderson et al. [1] developed the
drought monitor in East Africa using the soil moisture product from Advanced Microwave
Scanning Radiometer for Earth observation system (AMSR-E). Taylor et al. [2] investigated soil
moisture-precipitation feedback globally using soil moisture data from AMSR-E. Liu et al. [3] developed
the long-term global aboveground biomass carbon dataset from vegetation optical depth (VOD), which
is correlated to vegetation water content (VWC), from Special Sensor Microwave Imager (SSM/I),
AMSR-E, FengYun-3B Microwave Radiometer Imager (MWRI) and Windsat. Zhou et al. [4] detected
the widespread decline of Congo rainforest by analyzing VOD data from AMSR-E. In addition, datasets
of passive microwave satellite observations have been assimilated to land surface models in order to
improve their performance of simulating water and energy fluxes (e.g., [5–11]).
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Most of the currently available algorithms solve an inversion of a radiative transfer model (RTM)
to retrieve SSM and VOD (or VWC) from passive microwave brightness temperatures [12–15]. Their
RTMs include a calculation of the dielectric constant of soil-water mixture (e.g., [16]), soil emissivity
which includes the effect of soil surface scattering (e.g., [17]), and radiative transfer in a vegetation
canopy (e.g, [18]). To improve the efficiency of numerically solving the inversion of RTM, previous
studies have used some useful indices calculated by multi-polarized and multi-frequency brightness
temperatures, such as Polarization Index (PI) [19] and Index of Soil Wetness (ISW) [14]. They have also
used some validated empirical relationships such as the linear relationship between surface physical
temperature and brightness temperature of 37 GHz [12,20].

However, these RTM inversions are ill-posed problems. In addition to SSM and VOD (or
VWC), vegetation structure information (e.g., single scattering albedos), surface soil roughness,
and soil texture information are often necessary to run RTM. Although these valuables have great
diversity on Earth surface, it is impossible to determine every parameter of RTM from brightness
temperatures which are observed by currently available satellites. Therefore, many algorithms
assumed fixed conditions of single scattering albedos and surface soil roughness [12,14,15] although
some efforts have been made to objectively estimate these parameters by introducing other satellite
observations (i.e., visible/infrared satellite observations) (e.g., [21,22]). This assumption brings
significant uncertainties of their retrievals [23,24]. In addition, since penetration depths of C-band and
L-band microwaves are limited, the observed brightness temperatures lose their sensitivity to SSM and
VWC as vegetation density increases, which also brings large uncertainty of the retrievals on vegetated
surfaces (e.g., [25–27]).

It is extremely difficult to quantitatively evaluate these uncertainties at the satellite footprint scales
due to variability of soil and vegetation within coarse footprint pixels. Although numerous studies
have contributed to collect ground observations of passive microwave brightness temperatures and
land surface information using ground-based radiometers (e.g., [28]), there are the limited number of
in-situ SSM, VWC, and passive microwave brightness temperatures’ observations that are continuous
over a long period of time, cover a wide variety of vegetation types under a consistent experiment
design to evaluate the effect of variation of vegetation structure and surface soil roughness.

The aim of this study is to provide and analyze the dataset of in-situ observations of SSM, VWC,
and brightness temperatures for a wide variety of plants, from short crops to tall trees. Here we
focus on brightness temperatures with frequencies which are available to AMSR-E and AMSR2. By
performing and analyzing these in-situ observations, we would like to answer the following questions:
(1) how strongly does the shape of vegetation influence microwave radiative transfer? (2) what is
the major source of the uncertainties in SSM and VWC retrieval? (3) how sensitive are microwave
brightness temperatures to SSM with moderate and dense vegetation covers? (4) Is the state-of-the-art
RTM consistent to the in-situ ground truth regarding to the uncertainties of SSM and VWC retrievals?
Our ground truth can be the guideline for both developers and users of passive microwave land
observations to consider the uncertainties of their products.

The remainder of this paper is organized as follows. In Section 2, we briefly review some existing
SSM and VOD (or VWC) retrieval algorithms and specify the important relationships to be validated
by in-situ observations. In Section 3, we describe the design of our field measurements and RTM
simulations. The results are provided in Section 4 and we describe conclusions in Section 5.

2. Theoretical Background

Here we briefly review the important processes of microwave radiative transfer which should be
validated by our ground truth data.

2.1. Surface Physical Temperature Retrieval

Since the primary factor which controls microwave brightness temperatures is physical
temperature, the effect of the variation of physical temperature should be minimized to quantify
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the effect of SSM and VOD on the emissivity. To retrieve surface physical temperature from microwave
observations, the empirical linear relationship between physical temperatures and 37 GHz vertical
polarized brightness temperatures is often used. For example, the Land Parameter Retrieval Model
(LPRM; [12,29]) uses the following empirical equation:

Ts = 1.11TB,37V − 15.2 for TB,37V > 259.8 (1)

where Ts is the surface physical temperature (K) and TB,37V is the 37 GHz vertical polarized brightness
temperature (K). The 37 GHz vertical polarized brightness temperature balances a reduced sensitivity
to soil surface characteristics with a relatively high atmosphere transmissivity [20], which make it
suitable to the physical temperature retrieval. The Equation (1) was thoroughly validated using the
network of meteorological towers [20].

It should be noted that the Equation (1) cannot be applied in freezing conditions and the accuracy
is reduced in barren, sparsely vegetated and open shrublands [20]. In addition, Holmes et al. [20]
has confirmed that this linear relationship is highly affected by the assumption of the values of single
scattering albedos.

2.2. Vegetation Retrieval

Polarization Index (PI; [19]) has been widely accepted as an index which is sensitive to VWC [12,14,15].
PI is the normalized polarization difference of brightness temperatures and can be defined as:

PI =
2(TB,V − TB,H)

TB,V + TB,H
(2)

where TB,V and TB,H are vertical and horizontal polarized brightness temperature, respectively. Because
the difference between vertical polarized and horizontal polarized brightness temperatures is reduced
by the extinction process within the vegetation layer, PI decreases as VWC increases. One of the
advantages of PI is that the effect of physical temperatures on PI is minimal.

Although the relationship between PI and VWC has been validated in the previous studies
(e.g., [19,30]), it is highly affected by land surface conditions (i.e., SSM and surface soil roughness) [22]
and single scattering albedos [31]. It is important to evaluate the robustness of the PI-VWC relationship
with a wide variety of land surface conditions and vegetation types.

2.3. Surface Soil Moisture Retrieval

One of the methods to retrieve SSM is to directly compare the RTM-estimated and
satellite-observed surface emissivities. In the LPRM, the emissivity can be calculated since the physical
temperature has been obtained using the empirical relationship described in Section 2.1. Then, if the
correct VOD has already been obtained, the dielectric constant of soil, which is the function of SSM, can
be calculated by inversely solving the soil surface RTM. Since an observed emissivity is highly affected
by vegetation, retrieved SSM would be biased if the accurate VOD has not been obtained. Therefore,
the simultaneous retrieval of SSM and VOD, is necessary. It should be mentioned that surface soil
roughness also significantly affects a soil surface emissivity although LPRM does not consider the
variety of surface soil roughness. The other limitation of this approach is that biases of the physical
temperature retrieval described in Section 2.1 greatly affect their SSM retrieval.

The other method to retrieve SSM from microwave observations is to utilize the difference of
brightness temperatures in different frequencies. For example, the Japan Aerospace eXploration
Agency (JAXA) standard algorithm (hereafter JAXA; [14,15]) uses Index of Soil Wetness (ISW) as
an index sensitive to SSM [14]. ISW is defined as a following equation:

ISW =
2(TBi − TBj)

TBi + TBk
(3)
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where TBi and TBj are the brightness temperatures of high and low frequencies, respectively. Since the
dielectric constant of water is dependent to a frequency, the change of emissivity due to soil moisture’s
change strongly depends on the frequency. Therefore, ISW is sensitive to SSM. The advantage of ISW
is that the effect of physical temperature changes on ISW is minimal.

However, ISW is also highly sensitive to VOD (or VWC) so that the simultaneous retrieval of
SSM and VOD is necessary. In addition, the effect of surface soil roughness cannot be eliminated by
introducing ISW although the JAXA algorithm assumes the fixed value of the surface soil roughness
parameters of their RTM [15].

3. Methods and Materials

3.1. In-Situ Observation

We implemented the field measurement at Tanashi observation site, which is in the Institute for
Sustainable Agro-ecosystem Services, Graduate School of Agricultural and Life Sciences, the University
of Tokyo. The site is located in the western part of the Tokyo metropolitan area, Japan.

We installed a ground-based microwave radiometer (GBMR) in the field (Figure 1). This GBMR
has four channels which cover the frequency ranges of 6.925, 10.65, 36.5, and 89 GHz at both horizontal
and vertical polarizations. The detailed information about this GBMR (e.g., the height of the sensors,
the sizes of footprint, and the sidelobe levels) can be found in [22]. The incident angle was set to
55 degrees, which is same as for AMSR-E and AMSR2. We obtained brightness temperatures by taking
the average over 100 samples.
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Table 1 summarizes our observation schedules and Figure 2 provides the condition of the
footprints in each observation period. We planted oat, wheat, soybean, corn, and olive. Observations
of period I–III have already been used by [22] to develop the SSM and VWC retrieval algorithm. In this
paper, we analyzed observations of period IV and V as well as those of period I–III to derive the ground
truth of microwave radiative transfer on vegetated surfaces. All in-situ observation data which we
used in this paper can be downloaded as a supplemental material of this paper (Supplement Data S1).

Table 1. Observation schedule.

Phase Observed Plant(s) Period

I Oat June 2012–September 2012
II Wheat December 2012–June 2013
III Corn & Soybean August 2013–December 2013
IV Oat & Soybean May 2014–June 2014
V Olive August 2015–February 2016
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(see also Table 1).

We planted vegetation at the site and sampled them to measure their leaf area, dry mass and
VWC. In Phase I–IV, we did not perform sampling at the GBMR’s footprint and we used the sampling
area where we planted vegetation with the same density as the GBMR’s footprint. On the other hand,
in some of the observations in Phase V, we directly sampled the olive trees from the GBMR’s footprint.
This is because the olive trees do not change their mass during our short-term observation and we
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need to artificially change their VWC and dry mass by clipping and removing parts of the plant.
Specifically, for one footprint, we removed all leaves of trees in the footprint and implemented the
observation. Then we removed all brunches of trees in the footprint and collected the observation.
Finally we removed every aboveground biomass to calculate their total mass. For the other footprint,
we halved their height and implemented the observation. Then we removed every aboveground
biomass and calculated their total mass. VWC was calculated as the difference between the mass of
wet and dry biomass.

We observed SSM using a time-domain reflectometer. The measured SSM represents
approximately 0–5 cm depth soil moisture. The surface physical temperatures were also observed by
the infrared thermometers.

3.2. Radiative Transfer Model

An RTM was used in this paper for two reasons. First, we evaluated if our RTM can reproduce
the results of our in-situ observation. Second, we interpreted our observations by analyzing the results
of our RTM simulation.

The RTM has been developed and used by [8,9,17,22]. In this RTM, surface reflectivity is calculated
by the advanced integral equation model (AIEM) [32] with an incorporated shadowing effect [17]. The
equation to get soil surface reflectivity is the following:

Rp = rp exp[−(2kσ cos θ)2]S(θ, θ)+

1
4π cos θ

2π∫
0

π/2∫
0

[hpp(θ, θj, φj)S(θ, θj) + hpq(θ, θj, φj)S(θ, θj)] sin θjdθjdφj
(4)

where p and q refer to the polarization state (vertical (V) and horizontal (H)), Rp is the reflectivity of the
land surface, rp is the Fresnel reflectivity, k is the wave number, σ is the RMS height, hpp and hpq are the
single scattering terms, j is the scattering direction, and θ is the incidence angle, and φ is the azimuth
angle. S is the shadowing function, which is dependent on the surface roughness parameters (RMS
height and correlation length). Complete equations can be found in [17]. In this model, the dielectric
constant of the soil-water mixture is calculated using the method developed by [33].

We used the tau-omega model [18] to obtain the total emission and attenuation from the land
surface and vegetation canopy using the following equation:

TBp = (1− Rp)Ts exp(−VOD)

+(1−ωcp)Tc(1− exp(−VOD))

+Rp(1−ωcp)Tc(1− exp(−VOD)) exp(−VOD)

(5)

where TBp is the brightness temperature at the radiometer level, Ts is the physical land surface
temperature, Tc is the canopy temperature, ωcp is the single scattering albedo of the canopy, and
subscript p indicates polarizations (vertical (V) or horizontal (H)). VOD is the vegetation optical depth,
which has the linear relationship with VWC. In this study, we assume Ts = Tc, which is widely accepted
in the previous studies (e.g., [15,19,22]).

VOD is linearly correlated with VWC [28] as the following equation:

VOD = b′ × λχ ×VWC (6)

where VWC is vegetation water content, λ is the wavelength of microwave, b′ and χ are parameters.
To investigate the behavior of the RTM and compare it with the in-situ observations, we calculated

the brightness temperatures of 6.925 GHz, 10.35 GHz, and 36.5 GHz with many combinations of
RTM inputs which are SSM, VWC, vertical and horizontal single scattering albedos, and RMS height.
The datasets of the combinations of brightness temperatures and RTM inputs are called the LookUp
Tables (LUTs) in the previous studies [15]. Table 2 shows the range of the RTM inputs of the LUT
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generated in this study. The LUT has 1,000,000 combinations of brightness temperatures and RTM
inputs (100 SSM bins × 100 VWC bins × 10 vertical single scattering albedo bins × 10 horizontal single
scattering albedo bins × 10 RMS height bins). Table 2 also shows the values of some fixed parameters
of the RTM when we generated the LUT. Since we obtained no prior information of single scattering
albedos and surface soil roughness in this study, the ranges of these values in the LUT were chosen
based on the selected values by the previous studies [12–15]. We will compare the structure of this
LUT and the in-situ observations.

We implemented the simple sensitivity analysis for the RTM by analyzing the LUT. For example,
when we define our target valuable (e.g., PI or ISW) Pi,j,k,l,m, the sensitivity of SSM to this objective
value with given other inputs, SPi,j,k,l,m was calculated by:

SPi,j,k,l,m =

√
(Pi+ ∆

2 ,j,k,l,m − Pi− ∆
2 ,j,k,l,m)

2 (7)

where i, j, k, l and m are bin numbers for SSM, VWC, vertical single scattering albedo, horizontal single
scattering albedo, and RMS height, respectively. ∆ is the increment for the change of the RTM input to
evaluate the sensitivities and the values of ∆ are summarized in Table 2.

Table 2. List of inputs/parameters of the RTM to generate the lookup table.

Type Name Value (s) # of Bins Intervals of
Two Bins

Increment
(∆ in Equation (7))

variable in
LUT

Surface soil moisture (m3/m3) 0.005–0.5 100 0.005 10

Vegetation water content (kg/m2) 0.0–4.0 100 0.04 10

Single scattering albedo (vertical) 0.0–0.09 10 0.01 2

Single scattering albedo (horizontal) 0.0–0.09 10 0.01 2

RMS height of soil surface (cm) 0.1–1.0 10 0.1 2

Invariable
in LUT

Wavelength-independent parameter
of VOD-VWC relationship (b’) 0.5

Wavelength-dependent parameter of
VOD-VWC relationship (χ) −1.0

Correlation length of soil surface (cm) 1.5

Physical Temperature (K) 293

4. Results

Our primary target is to evaluate how the microwave radiative transfer is sensitive to the
vegetation types. Figure 3a–c show that the observed plants have diverse structures. Figure 3a
shows that the dry mass and VWC for oat, wheat, soybean, corn, and olive tree. Dry carbon biomass of
olive trees is heavier than VWC while dry carbon biomass of other crops (oat, wheat, and soybeans)
are often lighter than VWC. Plots of corns are scattered mainly due to sampling errors and decrease
in VWC with unchanged dry mass as they were dying. Figure 3b shows that the olive trees and
wheat have a larger amount of VWC in stems than oat, soybeans, and corns. Although oat and wheat
generally have similar morphology, they have different ratio of VWC in stem to that in leaf probably
because they were planted and raised in the different seasons (see Table 1) and they showed different
phenology. Figure 3c also shows that the olive trees and wheat have smaller LAI than other crops.

In Section 4.1, we evaluate the in-situ observed relationship between 37 GHz vertically polarized
brightness temperatures and ground physical temperatures. In Section 4.2, we evaluate the robustness
of the relationship between PI and VWC at 6.925 GHz and 10.65 GHz. In Section 4.3, we analyze the
in-situ observed relationship between emissivities and SSM and the relationship between ISW and
SSM. We discuss the possibility to observe SSM under the vegetation canopy.
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Figure 3. Diversity of the structures of the observed vegetation. (a) Relationship between dry mass
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4.1. 37 GHz Vertical Brightness Temperature—Physical Temperature Relationship

Figure 4a shows the relationship between 36.5 GHz vertical-polarized brightness temperatures
and ground physical temperatures for oat, wheat, soybeans, corns, and olive trees. The dashed line
indicates the empirical model of [20] (Equation (1)). The empirical relationship of [20] has a good
performance to predict our in-situ observed ground temperature data.

According to [20], the largest source of errors in this relationship is the uncertainty of single
scattering albedo. Following the analysis by [20], we calculate the bias of Equation (1) using calculated
36.5 GHz vertical polarized brightness temperatures with various single scattering albedos in the LUT.
The LUT has the fixed surface physical temperature (293 (K)). This physical temperature is “truth”
in the LUT. The LUT also has 36.5 GHz vertical-polarized brightness temperatures by driving the
RTM so that we can calculate the surface physical temperature from this brightness temperature using
Equation (1). This is the “estimated” physical temperature by Equation (1). Figure 4b shows the
difference between “truth” and “estimated” physical temperatures as a function of single scattering
albedo. Figure 4b indicates that the Equation (1) is unbiased with the assumption that single scattering
albedo is approximately 0.05, which is consistent to [20]. However, the Equation (1) may have large
errors with the plants which have smaller or larger single scattering albedo than 0.05. Figure 4a shows
that the performance of the Equation (1) is degraded for the footprint of oat, which might be due to the
small single scattering albedos of oat.
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Figure 4. (a) Relationship between the observed 37 GHz vertical polarized brightness temperatures (TB)
and the observed ground physical temperatures. Dashed line is the empirical relationship proposed by
Holmes et al., 2008. (b) The difference between the physical temperature of the lookup table (293 (K))
and the physical temperature estimated by the empirical relationship of Holmes et al., 2008 using the
37 GHz vertical polarized brightness temperatures of the lookup table. Surface soil moisture, vegetation
water content, and RMS height are set to 0.25 (m3/m3), 2.0 (kg/m2), and 0.1 (cm), respectively.

4.2. PI-VWC Relationship

Figure 5a,b show the relationship between PI and VWC at 6.925 GHz and 10.65 GHz, respectively.
First, although PI monotonically decreases as VWC increases, the sensitivity of VWC to PI at 6.925 GHz
and 10.65 GHz is small if VWC is larger than 1.5 (kg/m2) and 1.0 (kg/m2), respectively. Second,
the variances of PI under same VWC increase as VWC decrease. Third, the PI-VWC relationship is
independent to the plant’s type.
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These findings are consistent to the LUT sensitivity analysis. Figure 6a,b show the sensitivity of
VWC to PI at 6.925 GHz as a function of soil surface roughness and SSM, respectively. The sensitivity of
VWC to PI rapidly decreases as VWC increases. When VWC is 1.5 (kg/m2), the change of PI generated
by the 0.4 (kg/m2) change of VWC is the order of 0.01, which is cannot be detected in the real world
applications. Figure 6a also indicates that PI is more sensitive to VWC on smooth surfaces than rough
surfaces. On the other hand, the sensitivity of VWC to PI is not significantly affected by soil wetness
(Figure 6b).
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Figure 6. (a) Sensitivity of vegetation water content to PI as a function of RMS height and vegetation
water content (surface soil moisture, vertical and horizontal single scattering albedos are set to
0.30 (m3/m3), 0.04, and 0.04, respectively). (b) Same as (a) but as a function of surface soil moisture
and vegetation water content (RMS height, vertical and horizontal single scattering albedos are set to
0.1 (cm), 0.04, and 0.04, respectively). (c) Sensitivity of RMS height to PI as a function of RMS height and
vegetation water content (surface soil moisture, vertical and horizontal single scattering albedos are set
to 0.30 (m3/m3), 0.04, and 0.04, respectively). (d) Sensitivity of SSM to PI as a function of surface soil
moisture and vegetation water content (RMS height, vertical and horizontal single scattering albedos
are set to 0.1 (cm), 0.04, and 0.04, respectively).

The large variances of PI under small VWC mainly come from the variability of surface soil
roughness. Figure 6c shows the change in PI generated by the 2.0 (mm) change in RMS height. When
VWC is less than 0.5 (kg/m2), the sensitivity of RMS height to PI is the order of 0.1. Considering
that we generally do not have any a priori information on surface soil roughness, this sensitivity of
RMS height to PI is significantly large. In our in-situ observation, we randomly cultivate the field
before seeding and surface soil roughness may change during the one observation period due to wind,
precipitation, and our land management (e.g., removing weeds). Therefore, we can conclude that
the most important uncertainty of the observed PI-VWC relationship is the uncertainty of surface
soil roughness.
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The sensitivity of SSM to PI is relatively small although it cannot be neglected. Figure 6d shows
the change in PI generated by the 0.05 (m3/m3) change in SSM. Although an increment of SSM for
the sensitivity analysis is large (=0.05 (m3/m3)), the sensitivity of SSM to PI is smaller than VWC and
RMS height.

The bifurcation of gray lines with high VWC (>1.5 (kg/m2)) is induced by the polarization
differences of single scattering albedos. The polarization difference of single scattering albedos is
important in the case of high VWC [31]. However, compared with the effect of uncertainty of RMS
height, the sensitivity of single scattering albedos to PI is smaller. The 0.02 change in single scattering
albedos induces the change in PI with the order of 0.01 (not shown). This small effect of vegetation
shape on PI is consistent to our visual interpretation of Figure 5a,b.

4.3. SSM-Emissivity & SSM-ISW Relationship

Figure 7a–d show the relationship between the observed SSM and microwave emissivity at
6.925 GHz. The observed emissivity is calculated by the ratio of the observed brightness temperature
to the observed surface physical temperature. Figure 7a,c show that it is generally difficult to retrieve
SSM in vegetated land surface by using C-band microwave brightness temperatures. The observed
emissivity is weakly correlated to SSM when we exclude all plots with VWC > 0.2 (kg/m2) (Figure 7b,d).
This small sensitivity of SSM to emissivity with dense vegetation is consistent to the sensitivity analysis
of the LUT shown in Figure 8a,b. With VWC = 0.5 (kg/m2), the sensitivity of SSM to emissivity is the
order of 0.01 at both vertical and horizontal polarizations. The 0.01 change in emissivity corresponds
to the brightness temperature’s change of <3 (K). Although this change can be detected in the synthetic
analysis (e.g., [22,25]), it is not practically easy to detect this change in the real world applications.
Since the signal from soil surface is strongly disturbed by vegetation, we cannot accurately observe
SSM by 6.925 GHz microwave emissivity if VWC is large.

To further discuss the difficulty in detecting the signal of SSM under vegetation, we sorted every
data according to their VWC values. Then we sampled 20 observations from the observation which
has 1st smallest VWC to the observation which has 20th smallest VWC and calculate the slope of
linear regression between SSM and emissivity on those 20 data. We performed the same analysis
on the data from 2nd smallest VWC to 21st smallest VWC and then performed the analysis on the
data from 3rd smallest VWC to 22nd smallest VWC. We iterated this process until all data is analyzed.
Figure 9a shows the result of this iteration. In Figure 9a, the vertical axis indicates the slope of linear
regression between SSM and emissivity in each group which has 20 observations while the horizontal
axis indicates the averaged value of VWC among the 20 observations of each group. Theoretically, the
emissivity decreases as SSM increases. We cannot find any negative slopes of the linear regressions if
VWC is 0.5 (kg/m2) although some negative correlations can be found if VWC is less than 0.4 (kg/m2).
The theoretical relationship between SSM and emissivity can be detected only when VWC is small in
our ground truth.

Our sensitivity analysis shows that the uncertainty of surface soil roughness also makes it difficult
to accurately retrieve SSM. Figure 8c,d show the sensitivity of RMS height to emissivity. As we
discussed in the previous section, the increment of RMS height in the sensitivity analysis (=2 (mm))
is very small considering that we generally do not have the access to the a priori information of this
parameter. In vertical polarization, the sensitivity of RMS height is similar to that of SSM. On the
other hand, in horizontal polarization the sensitivity of RMS height is much larger than that of SSM.
The horizontal emissivity varies more widely than the vertical emissivity, which is why horizontally
polarized brightness temperature is often used for the retrieval algorithm [12]. However, the vertical
polarized emissivity might be useful to minimize the effect of uncertainty of soil surface roughness.
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Figure 9. Slope of the linear regression between (a) 6.925 GHz emissivity and surface soil moisture, and
(b) 6.925 GHz and 37 GHz ISW and surface soil moisture as a function of averaged vegetation water
content among 20 observations sampled from our in-situ observations. Blue and green lines show the
results of vertical polarized and horizontal polarized microwave, respectively. See manuscript for the
details of this analysis.

The characteristic of the SSM-ISW relationship is similar to that of the SSM-emissivity relationship.
Here we calculate ISW using 6.925 GHz and 36.5 GHz brightness temperatures. We cannot detect the
strong correlation between SSM and ISW with a large amount of VWC (Figure 7e,g), which is consistent
to the small sensitivity of SSM to ISW with VWC > 0.2 (kg/m2) in the LUT (Figure 8e,f). The observed
ISW is weakly correlated to SSM with VWC < 0.2 (kg/m2) (Figure 7f,h). Theoretically, ISW increases as
SSM increases. It becomes difficult to detect this positive correlation as VWC increases (Figure 9b). The
effect of RMS height on ISW is significant and in horizontal polarization, the sensitivity of RMS height
to ISW is larger than that of SSM (Figure 8g,h).

The performance of the LUT to reproduce observed ISW is limited. The RTM cannot reproduce
the observed high ISW at both vertical and horizontal polarizations. The RTM of AIEM and the
parameterization of dielectric constant by [33] cannot accurately simulate the emissivity of high frequencies
(e.g., 36.5 GHz and 89 GHz) especially for horizontal polarization (Neluwara et al. in preparation).
Since the calculation of ISW needs the brightness temperature of higher frequencies, the uncertainty of the
RTM’s parameterizations in higher microwave frequencies degrades the simulation of ISW. Our in-situ
observation suggests that there is much room for improvement of the RTM especially on horizontal
polarized and higher frequency microwaves.

5. Discussion

In this paper, we provide the dataset of in-situ observed SSM, VWC, and brightness temperatures
for a wide variety of plants: wheat, soybeans, corns, and olive trees. By analyzing this ground truth
dataset and the result of numerical simulations, we support the following ideas about the uncertainty
of SSM and VWC retrievals from passive microwave observations.

First, the PI-based algorithms to retrieve VOD and VWC are species-independent. Although this
species’ independence has already been observed by [22], we increase the robustness of this theory
by increasing the number of observations and including the observations of the olive trees. From
short crops (soybeans) to tall trees (olives), the PI-VWC relationship is robust and we do not need to
consider the effect of the difference of vegetation shape on microwave radiative transfer in the canopy
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at 6.925 GHz and 10.65 GHz as a first-order approximation. At 6.925 GHz, the upper limit of detectable
VWC is approximately 1.5 (kg/m2).

Second, the uncertainty of surface soil roughness significantly degrades both SSM and VWC
retrieval skills according to our analysis on numerical simulations. There are large sensitivities of RMS
height to PI, emissivity, and ISW. Surface soil roughness is controlled by many factors and has large
spatial and temporal variability. In this study, the field was randomly cultivated by a cultivator and
hands, which brings a large spatial variability of surface soil roughness even in the small footprint
of the GBMR. Surface soil roughness is also affected by wind and precipitation, which further brings
spatial and temporal variability of surface soil roughness. In addition, sprouting from seed and the
other ecosystem activities may contribute to change surface soil roughness. Many retrieval algorithms
assume the fixed roughness parameters globally [15], and cannot address the effect of this surface
soil roughness uncertainty. Some approaches to objectively determine the surface soil roughness
parameters of RTM by introducing the visible/infrared observations (e.g., [21,22]) should be included
to improve our VWC and SSM retrieval skills. In addition, our sensitivity analysis indicates that
the vertically polarized brightness temperatures are less sensitive to surface soil roughness than the
horizontally polarized brightness temperatures. In this study, we could not directly observe an accurate
footprint-scale surface soil roughness since it is extremely difficult to correctly obtain the footprint
scale roughness. The datasets of in-situ observations of surface soil roughness using laser scanning
(e.g., [34,35]) should be provided in the future.

Third, at 6.925 GHz, SSM cannot be detected with VWC > 0.5 (kg/m2) and it is extremely difficult
to detect SSM signals when VWC is larger than 0.2–0.3 (kg/m2). Since the emission from soil surface is
disturbed by the vegetation canopy, it becomes difficult to detect the signal of surface emissions as VWC
increases. In addition, the effect of RMS height on surface scattering strongly disturbs the relationship
between SSM and surface emission. Therefore, we cannot detect any clear relationship between surface
emission and SSM if VWC is more than 0.2–0.3 (kg/m2). This result is qualitatively consistent to
Calvet et al. [36] in which a statistical soil moisture retrieval algorithm using C-band microwave
field observations did not perform very well on a homogeneous wheat field with approximately
0–3 (kg/m2) VWC. The mission for AMSR-E was a root-mean-square error of 0.06 (m3/m3) soil
moisture retrieval with VWC < 1.5 (kg/m2) [37] and the mission for AMSR2 is soil moisture retrieval
with VWC < 2.0 (kg/m2). Based on our ground truth, these criteria seem to be too challenging. In many
previous studies, however, SSM in moderately vegetated surfaces can be successfully retrieved from
AMSR-E and AMSR2 brightness temperatures (e.g., [23]). Since there are many canopy openings
in the large satellite footprint (>25 km), we may be able to retrieve SSM using the contribution of
the emission from these canopy openings even if footprint-averaged VWC is large. Our results with
the homogeneous footprints cannot be directly applied to the real world application in this aspect.
In addition, in the real satellite applications, SSM and VWC (or VOD) are simultaneously retrieved
although we analyzed the performances of indices sensitive to SSM and VWC individually. The effect
of the simultaneous use of the indices has not been included in the analysis of this paper.

Fourth, the LUT generated by AIEM and tau-omega model includes almost all of our in-situ
observations, which means the state-of-the-art RTM can accurately predict our in-situ observed
microwave radiative transfer. However, the RTM may have some biases in the simulation of higher
frequencies. Improving this part of the RTM to accurately simulate ISW should be our future work.

Please note that the findings of this paper cannot be directly applied to the SSM and VWC
retrievals based on L-band microwave observations. Sensitivity of brightness temperature to SSM,
VWC, and the other land surface variables strongly depends on a microwave frequency used. We
recommend to implement a long-term observation campaign with a similar observation design to this
study in order to quantitatively discuss the capability and limitation of the retrieval algorithms used
for Soil Moisture and Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP).
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6. Conclusions

In this paper, we provided the new in-situ observation dataset which is useful to evaluate the
capability and limitation of the SSM and VWC retrieval algorithms based on microwave radiometry.
Since the dataset is available as a Supplementary Material of this paper (Data S1), we expect that the
new-insitu observation dataset is the useful benchmark for both developers and users of SSM and
VWC products retrieved by passive microwave remote sensing. By analyzing this dataset as well as
the simulation by the RTM, we obtained several findings related to the capability and limitation of
the current AMSR-E/AMSR2 SSM and VWC retrieval algorithms. First, C-band microwave radiative
transfer in canopy is species-independent as a first-order approximation. Current algorithms which do
not explicitly consider the diversity of the vegetation structure are reasonable. Second, the uncertainty
of surface soil roughness significantly degrades the retrieval skills so that technique to eliminate the
effect of surface soil roughness uncertainty is urgently needed. Third, SSM cannot be detected with
VWC > 0.5 (kg/m2) by AMSR-E/AMSR2 observations if the footprint is homogeneously vegetated.
It should be noted that the current performance of satellite SSM products in a vegetated area may be
strongly influenced by the contribution of canopy openings in the large satellite footprint. Considering
microwave satellite based SSM retrieval as a mixed picture problem is important. Fourth, the LUT
generated by the RTM can accurately predict our in-situ observations. The AIEM and tau-omega
model is the suitable model for SSM and VWC retrievals.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/9/7/655/s1.

Acknowledgments: Yohei Sawada has been supported by Japan Society of Promotion of Science (JSPS) (255893).
This study is funded by Japan Aerospace eXploration Agency (JAXA), the Research Program on Climate Change
Adaptation (RECCA), and JSPS KAKENHI Grant Number JP17K18352. We thank Mohamed Rasmy, Rie Seto,
Panduka Neluwala, Kinya Toride, Martin Gomez Garcia, Huiyu Bao, Weiqiang Ma, Yushi Suzuki, Peter Lawford,
Seemanta Bhagabati, Ralph Achierto, Katsunori Tamagawa and Atsushi Yamamoto for helping our field work.
We appreciate the staffs at the Institute for Sustainable Agro-ecosystem Services, Graduate School of Agriculture,
the University of Tokyo, for their support to maintain the observation site.

Author Contributions: All authors, Y.S., H.T., and T.K. contributed to design the study. Y.S. and H.T. performed
the field experiment. Y.S. performed numerical experiments, analyzed the data and wrote the initial version of the
paper. T.K. was the PI and lead the project. All authors, Y.S., H.T., and T.K. contributed to edit and discussed the
contents of the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Anderson, W.B.; Zaitchik, B.F.; Hain, C.R.; Anderson, M.C.; Yilmaz, M.T.; Mecikalski, J.; Schultz, L. Towards
an integrated soil moisture drought monitor for East Africa. Hydrol. Earth Syst. Sci. 2012, 16, 2893–2913.
[CrossRef]

2. Taylor, C.M.; de Jeu, R.A.M.; Guichard, F.; Harris, P.P.; Dorigo, W.A. Afternoon rain more likely over drier
soils. Nature 2012, 489, 423–426. [CrossRef] [PubMed]

3. Liu, Y.Y.; van Dijk, A.I.J.M.; de Jeu, R.A.M.; Canadell, J.G.; McCabe, M.F.; Evens, J.P.; Wang, G. Recent reversal
in loss of global terrestrial biomass. Nat. Clim. Chang. 2015, 5, 470–474. [CrossRef]

4. Zhou, L.; Tian, Y.; Myneni, R.B.; Ciais, P.; Saatchi, S.; Liu, Y.Y.; Piao, S.; Chen, H.; Vermote, E.F.; Song, C.; et al.
Widespread decline of Congo rainforest greenness in the past decade. Nature 2014, 509, 86–90. [CrossRef]
[PubMed]

5. Walker, J.P.; Houser, P.R. A methodology for initializing soil moisture in a global climate model: Assimilation
of near-surface soil moisture observations. J. Geophys. Res. Atmos. 2001, 106, 11761–11774. [CrossRef]

6. Yang, K.; Watanabe, T.; Koike, T.; Li, X.; Fujii, H.; Tamagawa, K.; Ma, Y.; Ishikawa, H. Auto-calibration
System Developed to Assimilate AMSR-E Data into a Land Surface Model for Estimating Soil Moisture and
the Surface Energy Budget. J. Meteorol. Soc. Jpn. 2007, 85A, 229–242. [CrossRef]

7. Rasmy, M.; Koike, T.; Boussetta, S.; Lu, H.; Li, X. Development of a Satellite Land Data Assimilation System
Coupled With a Mesoscale Model in the Tibetan Plateau. IEEE Trans. Geosci. Remote Sens. 2011, 49, 2847–2862.
[CrossRef]

www.mdpi.com/2072-4292/9/7/655/s1
http://dx.doi.org/10.5194/hess-16-2893-2012
http://dx.doi.org/10.1038/nature11377
http://www.ncbi.nlm.nih.gov/pubmed/22972193
http://dx.doi.org/10.1038/nclimate2581
http://dx.doi.org/10.1038/nature13265
http://www.ncbi.nlm.nih.gov/pubmed/24759324
http://dx.doi.org/10.1029/2001JD900149
http://dx.doi.org/10.2151/jmsj.85A.229
http://dx.doi.org/10.1109/TGRS.2011.2112667


Remote Sens. 2017, 9, 655 17 of 18

8. Sawada, Y.; Koike, T. Simultaneous estimation of both hydrological and ecological parameters in
an ecohydrological model by assimilating microwave signal. J. Geophys. Res. Atmos. 2014, 119. [CrossRef]

9. Sawada, Y.; Koike, T.; Walker, J.P. A land data assimilation system for simultaneous simulation of soil
moisture and vegetation dynamics. J. Geophys. Res. Atmos. 2015, 120. [CrossRef]

10. Sawada, Y.; Koike, T. Towards ecohydrological drought monitoring and prediction using a land data
assimilation system: A case study on the Horn of Africa drought (2010–2011). J. Geophys. Res. Atmos.
2016, 121, 8229–8242. [CrossRef]

11. Lu, H.; Yang, K.; Koike, T.; Zhao, L.; Qin, J. An improvement of the radiative transfer model component of
a land data assimilation system and its validation on different land characteristics. Remote. Sens. 2015, 7,
6358–6379. [CrossRef]

12. Owe, M.; de Jeu, R.; Walker, J. A methodology for surface soil moisture and vegetation optical depth retrieval
using the microwave polarization difference index. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1643–1654.
[CrossRef]

13. Njoku, E.G.; Jackson, T.J.; Lakshmi, V.; Chan, T.K.; Nghiem, S.V. Soil Moisture Retrieval From AMSR-E.
IEEE Trans. Geosci. Remote Sens. 2003, 41, 215–229. [CrossRef]

14. Koike, T.; Nakamura, Y.; Kaihotsu, I.; Davva, G.; Matsuura, N.; Tamagawa, K.; Fujii, H. Development of an
Advanced Microwave Scanning Radiometer (AMSR-E) Algorithm of Soil Moisture and Vegetation Water
Content. Ann. J. Hydraul. Eng. 2004, 48, 217–222. (In Japanese) [CrossRef]

15. Fujii, H.; Koike, T.; Imaoka, K. Improvement of the AMSR-E Algorithm for Soil Moisture Estimation by
Introducing a Fractional Vegetation Coverage Dataset Derived from MODIS Data. J. Remote Sens. Soc. Jpn.
2009, 29, 282–292.

16. Ulaby, F.; Moore, R.K.; Fung, A. Microwave Remote Sensing: Active and Passive—Volume Scattering and Emission
Theory; Artech House: Dedham, MA, USA, 1986.

17. Kuria, D.N.; Koike, T.; Lu, H.; Tsutsui, H.; Graf, T. Field-Supported Verification and Improvement of a Passive
Microwave Surface Emission Model for Rough, Bare and Wet Soil Surfaces by Incorporating Shadowing
Effects. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1207–1216. [CrossRef]

18. Mo, T.; Choudhury, B.J.; Schmugge, T.J.; Wang, J.R.; Jackson, T.J. A Model for Microwave Emission From
Vegetation-Covered Fields. J. Geophys. Res. 1982, 87, 11229–11237. [CrossRef]

19. Paloscia, S.; Pampaloni, P. Microwave polarization index for monitoring vegetation growth. IEEE Trans.
Geosci. Remote Sens. 1988, 26, 617–621. [CrossRef]

20. Holmes, T.R.H.; De Jeu, R.A.M.; Owe, M.; Dolman, A.J. Land surface temperature from Ka band (37 GHz)
passive microwave observations. J. Geophys. Res. 2009, 114, D04113. [CrossRef]

21. Wang, S.; Wigneron, J.P.; Jiang, L.M.; Parrens, M.; Yu, X.Y.; Al-Yaari, A.; Ye, Q.Y.; Fernandez-Moran, R.; Ji, W.;
Kerr, Y. Global-Scale Evaluation of Roughness Effects on C-Band AMSR-E Observations. Remote Sens. 2015, 7,
5734–5757. [CrossRef]

22. Sawada, Y.; Tsutsui, H.; Koike, T.; Rasmy, M.; Seto, R.; Fujii, H. A field verification of an algorithm for
retrieving vegetation water content from passive microwave observations. IEEE Trans. Geosci. Remote Sens.
2016, 54, 2082–2095. [CrossRef]

23. Jackson, T.J.; Cosh, M.H.; Bindlish, R.; Starks, P.J.; Bosch, D.D.; Seyfried, M.; Goodrich, D.C.; Moran, M.S.;
Du, J. Validation of Advanced Microwave Scanning Radiometer Soil Moisture Products. IEEE Trans. Geosci.
Remote Sens. 2010, 48, 4256–4272. [CrossRef]

24. Patton, J.; Hornbuckle, B. Initial Validation of SMOS Vegetation Optical Thickness in Iowa. IEEE Trans.
Geosci. Remote Sens. Lett. 2013, 42, 647–651. [CrossRef]

25. Crow, W.T.; Chan, S.T.K.; Entekhabi, D.; Houser, P.R.; Hsu, A.Y.; Jackson, T.J.; Njoku, E.G.; O’Nell, P.E.; Shi, J.;
Zhan, X. An observing system simulation experiment for Hydros radiometer-only soil moisture products.
IEEE Trans. Geosci. Remote Sens. 2005, 43, 1289–1303. [CrossRef]

26. Zhan, X.; Crow, W.T.; Jackson, T.J.; O’Nell, P.E. Improving spaceborne radiometer soil moisture retrievals
with alternative aggregation rules for ancillary parameters in highly heterogeneous vegetated areas. IEEE
Trans. Geosci. Remote Sens. Lett. 2008, 5, 261–265. [CrossRef]

27. Neelam, M.; Mohanty, B.P. Global sensitivity analysis of the radiative transfer model. Water Resour. Res.
2015, 51, 2428–2443. [CrossRef]

28. Jackson, T.J.; Schmmuge, T.J. Vegetation effects on the microwave emission of soils. Remote Sens. Environ.
1991, 36, 203–212. [CrossRef]

http://dx.doi.org/10.1002/2014JD021536
http://dx.doi.org/10.1002/2014JD022895
http://dx.doi.org/10.1002/2015JD024705
http://dx.doi.org/10.3390/rs70506358
http://dx.doi.org/10.1109/36.942542
http://dx.doi.org/10.1109/TGRS.2002.808243
http://dx.doi.org/10.2208/prohe.48.217
http://dx.doi.org/10.1109/TGRS.2007.894552
http://dx.doi.org/10.1029/JC087iC13p11229
http://dx.doi.org/10.1109/36.7687
http://dx.doi.org/10.1029/2008JD010257
http://dx.doi.org/10.3390/rs70505734
http://dx.doi.org/10.1109/TGRS.2015.2495365
http://dx.doi.org/10.1109/TGRS.2010.2051035
http://dx.doi.org/10.1109/LGRS.2012.2216498
http://dx.doi.org/10.1109/TGRS.2005.845645
http://dx.doi.org/10.1109/LGRS.2008.915931
http://dx.doi.org/10.1002/2014WR016534
http://dx.doi.org/10.1016/0034-4257(91)90057-D


Remote Sens. 2017, 9, 655 18 of 18

29. Owe, M.; de Jeu, R.; Holmes, T. Multisensor historical climatology of satellite-derived global land surface
moisture. J. Geophys. Res. 2008, 113, F01002. [CrossRef]

30. Paloscia, S.; Pampaloni, P. Microwave vegetation indexes for detecting biomass and water conditions of
agricultural crops. Remote Sens. Environ. 1992, 40, 15–26. [CrossRef]

31. Ferrazzoli, P.; Guerriero, L.; Paloscia, S.P.; Pampaloni, P. Modeling Polarization Properties of Emission from
Soil Covered with Vegetation. IEEE Trans. Geosci. Remote Sens. 1992, 30, 157–165. [CrossRef]

32. Chen, K.; Wu, T.D.; Tsang, L.; Li, Q.; Shi, J.C.; Fung, A.K. The emission of rough surfaces calculated by the
integral equation method with a comparison to a three dimensional moment method simulation. IEEE Trans.
Geosci. Remote Sens. 2001, 38, 249–256. [CrossRef]

33. Dobson, D.M.; Ulaby, F.; Hallikainen, M.; El-Rayes, M. Microwave dielectric behavior of wet soil—Part II:
Dielectric mixing models. IEEE Trans. Geosci. Remote Sens. 1985, 23, 35–46. [CrossRef]

34. Haubrock, S.N.; Kuhnert, M.; Chabrillat, S.; Guntner, A.; Kaufmann, H. Spatiotemporal variations of soil
surface roughness from in-situ laser scanning. Catena 2009, 79, 128–139. [CrossRef]

35. Alvarez-Mozos, J.; Verhoest, N.E.C.; Larranaga, A.; Casali, J.; Gonzalez-Audicana, M. Influence of surface
roughness spatial variability and temporal dynamics on the retrieval of soil moisture from SAR observations.
Sensors 2009, 9, 463–489. [CrossRef] [PubMed]

36. Calvet, J.C.; Wigneron, J.P.; Walker, J.; Karbou, F.; Chanzy, A.; Albergel, C. Sensitivity of Passive Microwave
Observations to Soil Moisture and Vegetation Water Content: L-Band to W-Band. IEEE Trans. Geosci.
Remote Sens. 2011, 49, 1190–1199. [CrossRef]

37. Shibata, A.; Imaoka, K.; Koike, T. AMSR/AMSR-E level 2 and 3 algorithm developments and data validation
plans of NASDA. IEEE Trans. Geosci. Remote Sens. 2003, 41, 195–203. [CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1029/2007JF000769
http://dx.doi.org/10.1016/0034-4257(92)90123-2
http://dx.doi.org/10.1109/36.124226
http://dx.doi.org/10.1109/36.823917
http://dx.doi.org/10.1109/TGRS.1985.289498
http://dx.doi.org/10.1016/j.catena.2009.06.005
http://dx.doi.org/10.3390/s90100463
http://www.ncbi.nlm.nih.gov/pubmed/22389611
http://dx.doi.org/10.1109/TGRS.2010.2050488
http://dx.doi.org/10.1109/TGRS.2002.808320
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Theoretical Background 
	Surface Physical Temperature Retrieval 
	Vegetation Retrieval 
	Surface Soil Moisture Retrieval 

	Methods and Materials 
	In-Situ Observation 
	Radiative Transfer Model 

	Results 
	37 GHz Vertical Brightness Temperature—Physical Temperature Relationship 
	PI-VWC Relationship 
	SSM-Emissivity & SSM-ISW Relationship 

	Discussion 
	Conclusions 

