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Abstract: In order to improve filtering precision and restrain divergence caused by sensor faults or
model mismatches for target tracking, a new adaptive unscented Kalman filter (N-AUKF) algorithm
is proposed. First of all, the unscented Kalman filter (UKF) problem to be solved for systems involving
model mismatches is described, after that, the necessary and sufficient condition with third order
accuracy of the standard UKF is given and proven by using the matrix theory. In the filtering process
of N-AUKF, an adaptive matrix gene is introduced to the standard UKF to adjust the covariance
matrixes of the state vector and innovation vector in real time, which makes full use of normal
innovations. Then, a covariance matching criterion is designed to judge the filtering divergence.
On this basis, an adaptive weighted coefficient is applied to restrain the divergence. Compared with
the standard UKF and existing adaptive UKF, the proposed UKF algorithm improves the filtering
accuracy, rapidity and numerical stability remarkably, moreover, it has a good adaptive capability to
deal with sensor faults or model mismatches. The performance and effectiveness of the proposed
UKF is verified in a target tracking mission.

Keywords: target tracking; unscented Kalman filter (UKF); sensor fault; model mismatch;
adaptive filtering

1. Introduction

Target Tracking is an essential technology in both military and civil fields, and it is critical to
the success of many tasks, such as target recognition and attack [1–5]. The main mission of target
tracking is to show the value of current state estimation and latter state prediction by using sensor
measurements. In this sense, target tracking is essentially a filtering problem. To perform perfect target
tracking tasks with valuable state estimation, real-time filtering algorithms with high performance
are needed [6]. However, traditional filtering algorithms are greatly limited in applications for the
complexity of the motion states and maneuvering characteristics for missiles and aircraft, thus leading
to growing difficulties in target tracking. Therefore, it must be resolved as to how to design an effective,
adaptive and stable filtering algorithm for target tracking within complicated environments.

The Kalman filter (KF) algorithm has been proven effective in dealing with theoretical and
practical estimation problems since it was first proposed for Project Apollo in 1960 [7–9], but it can
only get optimal estimation in Gaussian-Linear models, making KF quite limited in the scope of target
tracking applications. In order to improve the performance of the Kalman filter on nonlinear systems,
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the extended Kalman filter (EKF) algorithm has been developed [10,11], which replaces the state
transition and the measurement equations by Taylor series expansions. However, there are also two
main shortcomings of EKF: (1) Jacobi matrices of nonlinear functions are hard to compute and it is
easy to make errors; (2) high order truncation errors exist. Therefore, EKF will encounter low accuracy
problems when it is applied to strongly nonlinear systems. The particle filter (PF) algorithm, also
known as sequential Monte Carlo for online filtering and prediction of nonlinear and non-Gaussian
state space models, has extremely good performance in the aspect of filtering precision, unfortunately,
poor samples and large calculation problems exist [12,13].

Recently, the unscented Kalman filter (UKF) algorithm based on the unscented transformation
has gradually become one of the most popular filtering approaches for nonlinear systems [14,15].
The standard UKF passes the first and second moment of random variables through nonlinear functions
and can capture the posterior mean and covariance of the state of any Gaussian and nonlinear
systems with third order accuracy. It can also avoid the cumbersome evaluation of Jacobian matrices.
Therefore, UKF has advantages of higher filtering precision compared with EKF and lower computation
complexity than PF, which makes the algorithm easier to implement. At present, UKF has been
widely used in various fields such as signal processing [16], navigation [17], target tracking [18], fault
detection [19], and power sources [20].

Although UKF holds unique advantages for solving nonlinear filtering problems, similarly to
EKF, it requires valuable prior knowledge of the characteristics of system models and noises. However,
various limitations and factors always exist in practical engineering applications. For example, sensor
faults will produce inaccurate system models and noise statistical properties. Standard UKF have no
adaptive abilities for external and internal uncertainties of system models, and large filtering errors,
even filtering divergence, may occur. The adaptive UKF algorithm is considered an effective method
to resist the influence on the filtering solution of the inaccurate statistics of system noises [21–24], but
there are still some shortcomings: (1) the algorithm considers just the noise problem but no systems
involving model mismatches [21]; (2) new limitations are introduced, for example, not enough origin
state errors [16]; (3) the algorithm structure is too complicated to be applicable to the practical target
tracking in real-time performance [19].

In the presence of sensor faults and systems involving model mismatches, the state estimation
results will deviate from the true values seriously, if standard UKF and previous adaptive UKF are
used. To deal with this problem, Gao et al. uses a principle of variance inflation based on standard
UKF, and proposes an adaptive UKF algorithm by introducing adaptive genes, which improves the
filtering accuracy greatly [25,26]. Soken et al. puts forward a robust UKF to accomplish the satellite
attitude estimation in the presence of measurement faults [27]. However, one main deficiency of the
above suggested algorithms is that it can only apply to the system in which the process equation is
nonlinear while the measurement equation is linear, because the derivation and proof of the algorithms
are completely based on linear measurement equations. Furthermore, the filtering divergence is not
solved in the literature.

A new adaptive UKF (N-AUKF) algorithm for nonlinear systems involving model mismatches
is proposed. In current research, the nonlinear measurement equation is considered, and filtering
divergence can be judged and restrained. First, the filter problem to be solved is described and, for
the UKF algorithm, the third order accuracy conditions of the standard UKF algorithm is proposed
and proven. On this basis, an adaptive matrix gene is introduced to the standard UKF to adjust the
covariance matrixes of the state vector and innovation vector in real time. Moreover, the possible
filtering divergence is judged by using the covariance matching method, and an adaptive weighted
coefficient is introduced to correct covariance matrices of prediction errors to further guarantee the
stability of the adaptive UKF. Simulation results of different conditions show that the proposed
algorithm can significantly increase the filtering precision and improve the stability due to the strongly
adaptive ability to model mismatches.
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2. Problem Description

To design the new adaptive UKF algorithm, the filtering problem to be solved in the presence of
nonlinear systems involving model mismatches is described thusly.

2.1. System Model Formulation for Target Tracking

For target tracking, regard the general mathematical model of nonlinear discrete stochastic system
of the target as [1,3] {

Xk = f[Xk−1, k− 1] + Γk−1Wk−1
Zk = h[Xk, k] + Vk

(1)

Similarly, view the mathematical model of nonlinear discrete stochastic system of the target
involving model mismatches as [25,27]{

Xk = f[Xk−1, k− 1] + Γk−1Wk−1
Zk = h[Xk, k] + Vk + δhout,k

(2)

Especially, when measurement equations of the models shown in Equations (1) and (2) are linear
equations, Equations (1) and (2) respectively, can be rewritten as{

Xk = f[Xk−1, k− 1] + Γk−1Wk−1
Zk = AkXk + Vk

(3)

{
Xk = f[Xk−1, k− 1] + Γk−1Wk−1
Zk = AkXk + Vk + δAout,k

(4)

where Xk and Xk−1 denote, respectively, the system state vector at time step k and k− 1; Γk−1 is the
process noise gain matrix with appropriate dimension; Zk denotes the measurement vector; Wk−1 and
Vk represent, respectively, the process noise and the measurement noise; f[•] is a nonlinear vector
function of process equations with n dimension; h[•] is a nonlinear vector function of measurement
equations with m dimension; Ak is a coefficient matrix of linear measurement equations with m× n
dimension; both δhout,k and δAout,k represent model mismatches involved in nonlinear systems.

Assumption 1. Wk and Vk are white Gaussian noises, which meet
E[Wk] = 0, Cov[Wk, Wj] = E[WkWj

T] = Qkδkj
E[Vk] = 0, Cov[Vk, Vj] = E[VkVj

T] = Rkδkj
Cov[Wk, Vj] = E[WkVj

T] = 0
(5)

where δkj is a Kronecker− δ function; E[] and Cov[] are, respectively, the expected value and covariance of
the variable.

Assumption 2. The origin value X0 meets the following statistical properties:{
X̂0 = E[X0]

P0 = Cov[X0, X0
T] = E[(X0 − X̂0)(X0 − X̂0)

T
]

(6)

2.2. Standard UKF

Nonlinear systems evaluated by Equations (1) and (3), with accurate statistics of models and
noises, the standard UKF algorithm can be described as follows:
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Step 1: Initialize the state estimate and error covariance matrix.{
X̂0 = E[X0]

P0 = E[(X0 − X̂0)(X0 − X̂0)
T
]

(7)

For time step k = 1, 2, 3, · · · implement Step 2.
Step 2: Calculate 2n + 1 Sigma points at k− 1 moment:

χ
(0)
k−1 = Xk−1 (8)

χ
(i)
k−1 = Xk−1 +

√
n + λ(

√
Pk−1)(i), i = 1, 2, · · · , n (9)

χ
(i)
k−1 = Xk−1 −

√
n + λ(

√
Pk−1)(i−n), i = n + 1, n + 2, · · · , 2n (10)

where n is the dimension of the system state vector; λ (λ = α2(n + κ)− n) denotes the scale factor of
sampling; α is a small positive constant which is set to 10−4 ≤ α ≤ 1 normally; κ is set to 0 or 3− n [3].

Step 3: Compute the one step prediction value at k moment:

χ
(i)
k/k−1 = f[χ(i)

k−1, k− 1], i = 0, 1, 2, · · · , 2n (11)

X̂k/k−1 =
2n

∑
i=0

W(m)
i χ

(i)
k/k−1 (12)

Pk/k−1 =
2n

∑
i=0

W(c)
i [χ

(i)
k/k−1 − X̂k/k−1][χ

(i)
k/k−1 − X̂k/k−1]

T
+ Qk−1 (13)

where X̂k/k−1 is the one step prediction output value; Pk/k−1 denotes the responding covariance matrix;

both W(m)
i and W(c)

i represent weighted coefficients, which are set to
W(m)

0 = λ
n+λ

W(c)
0 = λ

n+λ + (1− α2 + β)

W(m)
i = W(c)

i = λ
2(n+λ)

, i = 1, 2, · · · , 2n

(14)

where β includes the prior information of Xk distribution, and β = 2 is set up for Gaussian distribution.
Step 4: Calculate measurement values:

γ
(i)
k/k−1 = h[χ(i)

k/k−1, k], i = 0, 1, 2, · · · , 2n (15)

Ẑk/k−1 =
2n

∑
i=0

W(m)
i γ

(i)
k/k−1. (16)

Step 5: Calculate P(XZ)k/k−1 and P(ZZ)k/k−1:

P(XZ)k/k−1 =
2n

∑
i=0

W(c)
i [χ

(i)
k/k−1 − X̂k/k−1][γ

(i)
k/k−1 − Ẑk/k−1]

T
(17)

P(ZZ)k/k−1 =
2n

∑
i=0

W(c)
i [γ

(i)
k/k−1 − Ẑk/k−1][γ

(i)
k/k−1 − Ẑk/k−1]

T
+ Rk. (18)

Step 6: Calculate gain matrices:

Kk = P(XZ)k/k−1(P(ZZ)k/k−1)
−1. (19)
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Step 7: Calculate filtering solutions:

X̂k = X̂k/k−1 + Kk(Zk − Ẑk/k−1) (20)

Pk = Pk/k−1 −KkP(ZZ)k/k−1Kk
T. (21)

2.3. Problem Description of the Filter for Systems Involving Model Mismatches

According to steps of the standard UKF algorithm, the actual calculated results of χ
(i)
k/k−1 and

X̂k/k−1 are influenced through Equations (11) and (12), if the deviation between the initialized value

and actual value of X̂0 exists, and the affected χ
(i)
k/k−1 and X̂k/k−1 will lead to errors of innovation

vectors forecasts Ẑk/k−1 by Equation (15). What is more, uncertainties, such as δhout,k and δAout,k, are
affecting the calculated values of X̂k/k−1, Ẑk/k−1, and X̂k via Equations (15), (16) and (20), making
standard UKF unsuitable for systems given by Equations (2) and (4) involving model mismatches.

The effective adaptive UKF algorithms for the system given by Equation (4) have been
proposed [25–27]. Therefore, the filtering problem to be solved is described as an issue of how to design
an effective adaptive UKF algorithm for systems given by Equation (2) based on the measurement
Zk = [z1k, z2k, · · · , zmk]

T, when the model mismatches exist, namely the system model uncertainties
δhout,k and δAout,k.

3. Adaptive UKF Algorithm

For adaptive UKF, it is absolutely necessary to make full use of the information obtained in
the filtering process for resisting the disturbance of system noise and model errors on system state
estimation. In order to decrease the influence of the initial estimation value deviation and system
model uncertainties on the filtering solution, the latest adaptive UKF algorithm is put forward [25–27],
and is abbreviated as L-AUKF for simplicity.

3.1. L-AUKF Algorithm

L-AUKF inflates Pk/k−1, P(XZ)k/k−1 and P(ZZ)k/k−1 adaptively by using traditional thinking,
which can balance the influence of system states and measurement information.

Rewrite the covariance matrices in Equations (17), (18) and (21) as

P(XZ)k/k−1 =
1
αk

2n

∑
i=0

W(c)
i [χ

(i)
k/k−1 − X̂k/k−1][γ

(i)
k/k−1 − Ẑk/k−1]

T
(22)

P(ZZ)k/k−1 =
1
αk

2n

∑
i=0

W(c)
i [γ

(i)
k/k−1 − Ẑk/k−1][γ

(i)
k/k−1 − Ẑk/k−1]

T
+ Rk (23)

Pk =
1
αk

Pk/k−1 −KkP(ZZ)k/k−1Kk
T (24)

where αk(0 < αk ≤ 1) denotes an adaptive gene, which is set to

αk =

 1 tr(Z̃k/k−1Z̃k/k−1
T) ≤ tr(P(ZZ)k/k−1)

tr(P(ZZ)k/k−1)

tr(Z̃k/k−1Z̃k/k−1
T)

tr(Z̃k/k−1Z̃k/k−1
T) > tr(P(ZZ)k/k−1)

(25)

where tr(•) represents the trace of a matrix; Z̃k/k−1 denotes the innovation residual vector,
which satisfies

Z̃k/k−1 = Zk − Ẑk/k−1. (26)

According to the concrete algorithm of L-AUKF and simulation results analyses, the L-AUKF
algorithm can greatly improve the accuracy of filtering solutions for system given by Equation (4).
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3.2. N-AUKF Algorithm

Motivated by L-AUKF, a new adaptive UKF algorithm, charged as N-AUKF, is designed for
the system given by Equation (2) through setting adaptive matrix genes. To facilitate discussion,
covariance matrices Pk/k−1, P(XZ)k/k−1 and P(ZZ)k/k−1 are rewritten as Pe

k/k−1, Pe
(XZ)k/k−1 and

Pe
(ZZ)k/k−1, respectively, when the adaptive UKF is applied for the system given by Equations (2)

and (4).

Theorem 1. L-AUKF can only apply to the particular system given by Equation (4), but not to the general
system given by Equation (2).

Proof. For the system given by Equation (4), the theoretical covariance matrix of X̂k/k−1 should be
amplified to [28,29]

Pg
k/k−1 =

1
αk

Pe
k/k−1 (27)

where αk denotes the adaptive gene, which is set to 0 < αk ≤ 1.
According to Equation (26), and rules of variance propagation for linear equations, the theoretical

covariance matrix of Z̃k/k−1 is obtained as

Pg
(ZZ)k/k−1 = AkPg

k/k−1Ak
T + Rk. (28)

After introducing the adaptive gene, the adaptive UKF algorithm must meet the following condition:

Pe
(Z̃Z̃)k/k−1

= Pg
(ZZ)k/k−1 (29)

where Pe
(Z̃Z̃)k/k−1

denotes the covariance matrix of Z̃k/k−1, and it is expressed as Pe
(Z̃Z̃)k/k−1

=

Z̃k/k−1Z̃k/k−1
T.

For linear measurement equations, Equation (18) is rewritten as

Pe
(ZZ)k/k−1 = AkPe

k/k−1Ak
T + Rk. (30)

One can obtain the following from Equations (27)–(30):

αk =

 1 tr(Z̃k/k−1Z̃k/k−1
T) ≤ tr(P(ZZ)k/k−1)

tr(Pe
(ZZ)k/k−1−Rk)

tr(Z̃k/k−1Z̃k/k−1
T−Rk)

tr(Z̃k/k−1Z̃k/k−1
T) > tr(P(ZZ)k/k−1)

(31)

where the relative small matrix Rk in the numerator and denominator can be neglected, then the
expression of αk is approximated for Equation (25). Therefore, the adaptive UKF algorithm can meet
the adaptive requirement of the system given by Equation (4), specifically, L-AUKF can apply to the
system given by Equation (4), after the adaptive gene αk is constructed as Equation (25) based on the
standard UKF algorithm.

For the system given by Equation (2), the rules of error propagation for linear equations are invalid
because the measurement equations are nonlinear, making the establishment false for Equations (28)
and (30) of the derivation process. Therefore, Equation (31) can also not be deduced, which means that
the adaptive gene αk in Equation (25) cannot meet the adaptive requirement of a filter for the system
given by Equation (2), specifically, L-AUKF cannot apply to the system given by Equation (2).

This completes the proof. �



Remote Sens. 2017, 9, 657 7 of 20

Theorem 2. To reach third order accuracy, the necessary and sufficient condition of the UKF algorithm designed
for systems given by Equations (1) and (3) involving no model mismatches is

Pk/k−1 = P(X̃X̃)k/k−1 = E[X̃k/k−1X̃k/k−1
T] (32)

P(XZ)k/k−1 = P(X̃Z̃)k/k−1 = E[X̃k/k−1Z̃k/k−1
T] (33)

P(ZZ)k/k−1 = P(Z̃Z̃)k/k−1 = E[Z̃k/k−1Z̃k/k−1
T] (34)

where X̃k/k−1 represents the prediction error vector, and X̃k/k−1 = Xk − X̂k/k−1.

Proof. Similar to Z̃k/k−1 and X̃k/k−1, the estimation error vector can be defined as

X̃k = Xk − X̂k. (35)

For the system given by Equation (1), expanding Xk via Taylor series, at stated points X̂k−1 and
X̂k/k−1, respectively, for time step k, we have

Xk = f[X̂k−1, k− 1] + ∂f[Xk−1,k−1]
∂Xk−1

∣∣∣Xk−1=X̂k−1
(Xk−1 − X̂k−1) +

2 (Xk−1 − X̂k−1) + Γk−1Wk−1

= f[X̂k−1, k− 1] + Ωk−1Fk−1(Xk−1 − X̂k−1) + Γk−1Wk−1
(36)

Zk = h[X̂k/k−1, k] + ∂h[Xk ,k]
∂Xk

∣∣∣Xk=X̂k/k−1
(Xk − X̂k/k−1) + Vk

= h[X̂k/k−1, k] + ΞkHk(Xk − X̂k/k−1) + Vk
(37)

where Fk−1 =
∂f[Xk−1,k−1]

∂Xk−1

∣∣∣Xk−1=X̂k−1
, Hk =

∂h[Xk ,k]
∂Xk

∣∣∣Xk=X̂k/k−1
; Ωk−1 and Ξk are introduced matrixes to

decrease the first order approximation error.
Substitute, respectively, Equations (36) to (35), and Equations (37) to (26), the following Equations

can be obtained:
X̃k/k−1 = Ωk−1Fk−1X̃k−1 + Γk−1Wk−1 (38)

Z̃k/k−1 = ΞkHkX̃k/k−1 + Vk. (39)

The result of substituting Equations (37) to (20) is

X̂k = X̂k/k−1 + Kk(Zk − Ẑk/k−1)

= X̂k/k−1 + KkΞkHkX̃k/k−1 + KkVk
. (40)

Based on Equations (35) and (40), the predicted error in transmission equation is deduced by

X̃k = Xk − X̂k/k−1 −KkΞkHkX̃k/k−1 −KkVk
= (I−KkΞkHk)X̃k/k−1 −KkVk

. (41)

It follows from Equations (38) and (41) that

X̃k+1/k = ΩkFk (I−KkΞkHk)X̃k/k−1 + ΩkFkKkVk + ΓkWk. (42)

Expanding Equation (42) to the general case, one can obtain

X̃k+i/k+i−1 =
i

∏
j=1

[Ωk+j−1Fk+j−1 (I−Kk+j−1Ξk+j−1Hk+j−1)X̃k/k−1]

−
i

∑
l=1

i−l
∏
j=1

[Ωk+j−1Fk+j−1 (I−Kk+j−1Ξk+j−1Hk+j−1)]Ωk+l−1Fk+l−1Kk+l−1Vk+l−1

+
i

∑
l=1

i−l
∏
j=1

[Ωk+j−1Fk+j−1 (I−Kk+j−1Ξk+j−1Hk+j−1)]Wk+l−1

. (43)
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For an innovation residual vector Z̃k/k−1, define the covariance matrix P(Z̃Z̃)k/k−1(i) as

P(Z̃Z̃)k/k−1(i) = E[Z̃k+i/k+i−1Z̃k/k−1
T]

= E
{
[Ξk+iHk+iX̃k+i/k+i−1 + Vk+i][ΞkHkX̃k/k−1 + Vk]

T
}

= Ξk+iHk+i
i

∏
j=1

[Ωk+j−1Fk+j−1(I−Kk+j−1Ξk+j−1Hk+j−1)]

•Pk/k−1Hk+i
TΞk+i

T − Ξk+iHk+i
i−1
∏
j=1

[Ωk+j−1Fk+j−1

•(I−Kk+j−1Ξk+j−1Hk+j−1)]ΩkFkKkRk

= Ξk+iHk+i
i

∏
j=1

[Ωk+j−1Fk+j−1(I−Kk+j−1Ξk+j−1Hk+j−1)]

•ΩkFk[Pk/k−1Hk
TΞk

T −Kk(ΞkHkPk/k−1Hk
TΞk

T + Rk)

(44)

where Pk/k−1 = P(X̃X̃)k/k−1 = E[X̃k/k−1X̃k/k−1
T].

Specifically, the covariance matrix of Z̃k/k−1 will be

P(Z̃Z̃)k/k−1 = E[Z̃k/k−1Z̃k/k−1
T]

= ΞkHkPk/k−1Hk
TΞk

T + Rk
. (45)

For X̃k/k−1 and Z̃k/k−1, the cross-covariance matrix is

P(X̃Z̃)k/k−1 = E[X̃k/k−1Z̃k/k−1
T]

= E[X̃k/k−1(ΞkHkX̃k/k−1 + Vk)
T
]

= Pk/k−1Hk
TΞk

T

. (46)

According to Equations (19) and (44) can be expressed as

P(Z̃Z̃)k/k−1(i) = Ξk+iHk+i
i

∏
j=1

[Ωk+j−1Fk+j−1(I−Kk+j−1Ξk+j−1Hk+j−1)]

•ΩkFk[P(X̃Z̃)k/k−1 −KkP(Z̃Z̃)k/k−1]

= Ξk+iHk+i
i

∏
j=1

[Ωk+j−1Fk+j−1(I−Kk+j−1Ξk+j−1Hk+j−1)]

•ΩkFkP(X̃Z̃)k/k−1[I− P(ZZ)k/k−1
−1P(Z̃Z̃)k/k−1]

. (47)

According to the precision and optimization requirements of the standard UKF algorithm, if
P(Z̃Z̃)k/k−1(i) = 0, the result is

P(ZZ)k/k−1 = P(Z̃Z̃)k/k−1. (48)

Equation (48) validates the establishment of Equation (34), similarly, Equations (32) and (33) can
be validated.

This completes the proof. �

Remark 1. Formulas given by Equations (32)–(34) always hold for systems given by Equations (1) and
(3), because the third order accuracy conditions of the UKF algorithm are independent of Ωk+i and Ξk+i.
However, practical calculated values Pe

k/k−1, Pe
(XZ)k/k−1, Pe

(ZZ)k/k−1 Pe
k/k−1, Pe

(XZ)k/k−1, Pe
(ZZ)k/k−1 deviate

from theoretical values Pk/k−1, P(XZ)k/k−1, P(ZZ)k/k−1 for systems given by Equations (2) and (4), which makes
Equations (32)–(34) false, and it implies that the standard UKF algorithm cannot apply to systems given by
Equations (2) and (4).

For common sensors, measurement components are supposed to be relatively independent, so a
diagonal matrix gene can be introduced creating the following theorem:
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Theorem 3. Design a N-AUKF algorithm by constructing the adaptive diagonal matrix gene ∆k =

diag(ε1k ε2k · · · εmk), and let

P(ZZ)k/k−1 =
2n

∑
i=0

W(c)
i [γ

(i)
k/k−1 − Ẑk/k−1][γ

(i)
k/k−1 − Ẑk/k−1]

T
+ ∆kRk (49)

where ∆k meets

2n

∑
i=0

W(c)
i [γ

(i)
k/k−1 − Ẑk/k−1][γ

(i)
k/k−1 − Ẑk/k−1]

T
+ ∆kRk = P(Z̃Z̃)k/k−1. (50)

Thus, the N-AUKF algorithm can apply to systems given by Equations (2) and (4).

Proof. For systems given by Equations (2) and (4), because the stated equation includes uncertainties
and disturbances, according to Theorem 2, the result is

Pe
k/k−1 = Pk/k−1 = P(X̃X̃)k/k−1 (51)

Pe
(XZ)k/k−1 = P(XZ)k/k−1 = P(X̃Z̃)k/k−1. (52)

After constructing the adaptive diagonal matrix gene ∆k given by Equation (49), one can obtain

Pe
(ZZ)k/k−1 = P(ZZ)k/k−1 = P(Z̃Z̃)k/k−1. (53)

Equations (49)–(53), show that the N-AUKF algorithm meets the necessary and sufficient condition
with third order accuracy of the standard UKF algorithm according to Theorem 2. When sensor faults
and uncertainties of measurement equations exist, the N-AUKF algorithm adjusts the covariance
matrixes of the stated vector and innovation vector in real time, which improves the filter accuracy
remarkably. Therefore, the N-AUKF algorithm can apply to systems given by Equations (2) and (4).

This completes the proof. �

From Equation (50), the following can be obtained:

∆k =

{
P(Z̃Z̃)k/k−1 −

2n

∑
i=0

W(c)
i [γ

(i)
k/k−1 − Ẑk/k−1][γ

(i)
k/k−1 − Ẑk/k−1]

T
}

Rk
−1 (54)

where the practical calculated formula of P(Z̃Z̃)k/k−1 is

Pp
(Z̃Z̃)k/k−1

=
1

k− 1

k

∑
i=1

Z̃i/i−1Z̃i/i−1
T. (55)

In the practical engineering application, if there are no sensor faults and no model mismatches for
nonlinear systems, the value of ∆k is

∆k = diag(1 1 · · · 1︸ ︷︷ ︸
m

). (56)

In the presence of the situation shown by Equation (56), the N-AUKF algorithm is the same to the
standard UKF algorithm. In N-AUKF, whether or not there are sensor faults depends on the innovation
residual vector values and preset threshold values, which are set based on the types, characteristics,
and measurement components of sensors. At every sample moment, if any one component of the
innovation residual vector values is greater than the corresponding threshold value, the sensor fault is
judged to exist; otherwise, the sensor is in normal working condition.
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In summary, the value of ∆k depends on the following steps:
Step 1: Set the threshold matrix Θ = [z0,1 z0,2 · · · z0,m] based on the characteristics of sensors;
Step 2: Let Z̃k/k−1 = [z1k z2k · · · zmk], and use the mathematical method to judge the

OR operations:
z1k > z0,1||z2k > z0,2||· · ·||zmk > z0,m.

Step 3: If the judgment in step 2 is true, the sensor fault exists, thus one can obtain

∆k =

{
P(Z̃Z̃)k/k−1 −

2n

∑
i=0

W(c)
i [γ

(i)
k/k−1 − Ẑk/k−1][γ

(i)
k/k−1 − Ẑk/k−1]

T
}

Rk
−1

and if the judgment is false, the sensor fault does not exist, one can obtain

∆k = diag(1 1 · · · 1︸ ︷︷ ︸
m

).

3.3. Filtering Divergence Suppression of the N-AUKF Algorithm

Compared with the standard UKF, adaptive UKF algorithms are always easier to produce the
filtering divergence, so it is necessary to restrain the filtering divergence for N-AUKF.

First of all, use the covariance matching criterion to judge

tr(Z̃k/k−1Z̃k/k−1
T) ≤ Ψ · tr(P(ZZ)k/k−1) (57)

where Ψ (Ψ ≥ 1) is a preset adjustable coefficient. If Equation (57) holds, the filtering is convergent,
and N-AUKF algorithm designed in Section 3.2 is used. If Equation (57) is not workable, the filtering
divergence exists and an adaptive weighted coefficient ζk is introduced to N-AUKF. ζk can update
Pk/k−1 in real time, which increases the contribution of the current measurement Zk on the filtering
solution and restrains the filtering divergence.

Pk/k−1, shown by Equation (13), changes to

Pk/k−1 = ζk

2n

∑
i=0

W(c)
i [χ

(i)
k/k−1 − X̂k/k−1][χ

(i)
k/k−1 − X̂k/k−1]

T
+ Qk−1 (58)

where ζk is determined by

ζk =

{
ζ0 ζ0 ≥ 1
1 ζ0 < 1

(59)

ζ0 =
tr(P(Z̃Z̃)k/k−1 −Rk)

tr(
2n
∑

i=0
W(c)

i [χ
(i)
k/k−1 − X̂k/k−1][χ

(i)
k/k−1 − X̂k/k−1]

T
)

. (60)

3.4. Implementation Steps of N-AUKF Algorithm

Aimed at target tracking problems, the N-AUKF algorithm can realize the filtering function in the
presence of sensor faults and systems involving model mismatches. The implementation steps of the
N-AUKF algorithm are as follows:

Step 1: Original value selection and prediction updating.
Select the initial values X̂0 and P0, and calculate the covariance matrixes Pk/k−1,

P(XZ)k/k−1, P(ZZ)k/k−1 based on the standard UKF, respectively.
Step 2: Adaptive matrix gene calculation and prediction error covariance matrixes correction.
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Define the value of ∆k according to Equations (54)–(56), and correct the value of P(ZZ)k/k−1 based
on Equation (49) by

P(ZZ)k/k−1 =
2n

∑
i=0

W(c)
i [γ

(i)
k/k−1 − Ẑk/k−1][γ

(i)
k/k−1 − Ẑk/k−1]

T
+ ∆kRk. (61)

Step 3: Filtering divergence judgment and suppression.
Judge whether there is filtering divergence through Equation (57); if the divergence exists, update

Pk/k−1 to Pk/k−1 according to Equations (58)–(60); if the convergence exists, go straight to the next step.
Step 4: Measurement updating.

Kk = P(XZ)k/k−1(P(ZZ)k/k−1)
−1 (62)

X̂k = X̂k/k−1 + Kk(Zk − Ẑk/k−1) (63)

Pk = Pk/k−1 −KkP(ZZ)k/k−1Kk
T. (64)

4. Experimental Results and Discussion

In order to validate the filtering performance of the proposed N-AUKF algorithm for target
tracking applications, contrast simulations of the standard UKF [18], L-AUKF [25,27] and N-AUKF
algorithms, respectively, are conducted in two simulation cases. In this study, all experiments are
performed using MATLAB R2013a on an Intel i7 quad-core 2.40-GHz 64-bit machine with 8 GB RAM.

4.1. Simulation Cases

Suppose that the radar observation station is located in origin coordinates. The target makes an
approximate uniform linear motion, then a turn movement in a two-dimensional plane.

Simulation Case 1: The radar is in normal working condition, which implies that there are no
model mismatches, and the nonlinear system of the target can be depicted as

Xk = f[Xk−1, k− 1] + Wk−1

Zk =

[
rk
θk

]
=

[ √
(xk

2 + yk
2)

tan−1(yk/xk)

]
+ Vk

. (65)

Simulation Case 2: The radar fault exists, which implies that there are model mismatches, and
the nonlinear system of the target can be depicted as

Xk = f[Xk−1, k− 1] + Wk−1

Zk =

[
rk
θk

]
=

[ √
(xk

2 + yk
2)

tan−1(yk/xk)

]
+ Vk + δhout,k

. (66)

For Equations (65) and (66), the stated equation is as follows.

Xk =


1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

Xk−1 + Wk−1.

In the above two cases, X = [x, y,
.
x,

.
y] is the stated vector, where x and y represent, respectively,

components along the x-axis and y-axis of the position coordinates of the target;
.
x and

.
y represent,

respectively, components along the x-axis and y-axis of the velocity of the target. Zk = [rk θk]
T denotes

the measurement vector, where rk represents the slope distance between the radar and target, and
θk represents the azimuth angle of the target relative to the radar. Wk−1 and Vk are limited to be
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independent Gaussian noises with zero mean value. δhout,k = [δrk δθk]
T stands for the radar fault,

where δrk is the measurement deviation and δθk is the drift rate. In the simulation process, δrk and δθk
are both random variations with an interval value of [−5m 5m] and [0 1.0× 10−2rad/s] respectively.
The initial value of the target is X0 = [0m, 0m, 21m/s, 21m/s], and the variance matrix of the system
noise is

Q = σ2
a


T4

4 0 T3

2 0
0 T4

4 0 T3

2
T3

2 0 T2 0
0 T3

2 0 T2

 (67)

where σa = 1. The variance matrix of the system noise is R = diag
(
σ2

w, σ2
w
)

= diag(15, 15).
The observation time is 100 s, and the sampling period is 1 s.

4.2. Simulation Results

The simulation is repeated 100 times using the Monte Carlo method in two cases, and the standard
UKF, L-AUKF and N-AUKF algorithms through the root mean square error (RMSE) is assessed. RMSE
is calculated by

E =

√√√√( 1
N

N

∑
i=1

(
X̂i − Xi) (X̂i −Xi

)T
)

(68)

where N is the simulation times, and N = 100; X̂i and Xi represent, respectively, the estimation and
real value of the target state vector in the ith simulation. In an independent simulation experiment, the
true motion path of the target is depicted in Figure 1.Remote Sens. 2017, 9, 657  13 of 20 
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Figure 1. True trajectory of the target.

For Case 1, the comparisons of RMSE curves of three filtering algorithms are depicted in Figures 2
and 3, the true and estimated trajectories of the target are depicted in Figure 4, and the statistical data
of RMSE are shown in Table 1.
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As shown in Figures 2–4 and Table 1, the filtering precision and stability of the standard UKF,
L-AUKF and N-AUKF are basically the same in Case 1, which demonstrates that the three algorithms
are almost the same in respect to filtering effects when there are no sensor faults and no model
mismatches for nonlinear systems.
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For Case 2, the comparisons of RMSE curves of three filtering algorithms are depicted in Figures 5
and 6, the true and estimated trajectories of the target are depicted in Figure 7, and the statistical data
of RMSE are shown in Table 2.

Table 2. Performance comparison of algorithms for Case 2.
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Mean Variance Mean Variance

UKF 37.6647 6.2481 6.9442 5.2972
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Figure 7. True and estimated trajectories of the target for Case 2.

It can be seen that the filtering error of the standard UKF is too large, although the filtering
convergence is good. L-AUKF increases the filtering precision to some extent, compared with the
standard UKF, but it makes little contribution to filtering precision, furthermore, the convergence
is poor since even L-AUKF will diverge as time goes on. For the N-AUKF algorithm, the filtering
precision has been greatly improved, compared with the other two algorithms, moreover, the filtering
convergence has been maintained.

Going a step further, the real-time performance of the standard UKF, L-AUKF and N-AUKF is
studied for Case 2, and the computational cost curves are depicted in Figure 8.
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Although the computational cost of N-AUKF is a little more than the standard UKF and L-AUKF,
there are no big differences among them. The mean time of the standard UKF at every step is 6 ms,
L-AUKF is 7 ms, and N-AUKF is 8.5 ms, which can ensure that the three algorithms all have good
real-time results and are effective for engineering applications.

As is mentioned in Section 3.2, whether there are sensor faults or not can be judged. For Dual
State-Parameter estimation approaches [27,30,31], charged as D-AUKF, sensor biases can also be
estimated within the filter as an additional state. Therefore, contrast simulations of the D-AUKF [31]
and N-AUKF are conducted for Case 2. For simplicity, only the sensor biases estimations and statistical
data of RMSE are given. The radar faults estimation results are depicted in Figure 9 and the statistical
data of RMSE for state estimation is shown in Table 3.

Figure 9 shows that both D-AUKF and N-AUKF have the ability to estimate the sensor faults as
an additional state, and there are no big differences in sensor fault estimated performance for them.
Stated estimation shown in Table 3, the D-AUKF is still significantly disturbed by the uncertainties of
sensor faults, resulting in a decrease in filtering precision compared with N-AUKF. Thus, N-AUKF has
better filtering performance than D-AUKF in respect to stated estimation.

Table 3. Performance comparison of D-AUKF and N-AUKF for Case 2.

Algorithm
Position Error (m) Velocity Error (m/s)

Mean Variance Mean Variance

D-AUKF 18.2655 3.8917 2.1542 4.2263
N-AUKF 7.9632 0.9117 0.7854 0.6544
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4.3. Discussion

The nonlinear filtering problems for target tracking have been researched, and a new adaptive
UKF algorithm has been proposed to deal with model mismatches involved in nonlinear systems
caused by sensor faults. It can be seen from Figures 2–4 and Table 1 that, the standard UKF, L-AUKF
and N-AUKF algorithms have almost the same filtering performance, such as good filtering accuracy,
when there are no sensor faults and no model mismatches for nonlinear systems. The reasons are
that, the three methods are all UKF algorithms in essence, and they are all third-order accurate in
Taylor series.

Sensor faults and model mismatches have a great influence on the filtering effect. As was shown
in the experiment results in Figures 5–7 and Table 2, when model mismatches exist, the standard UKF
had poor filtering precision, which could lead to target misdetection. Although the standard UKF
also could solve uncertainties, for example, noises, it could no longer meet the third order accuracy
conditions when model mismatches were involved in nonlinear systems. Compared with the standard



Remote Sens. 2017, 9, 657 18 of 20

UKF, L-AUKF increased the filtering precision by constructing an adaptive gene, but it made little
contribution to filtering precision due to the nonlinear characteristics of the measurement equation.
On the other hand, because L-AUKF had no suppression strategies, there was a trend of divergence
for L-AUKF.

Using N-AUKF, the filtering precision was greatly improved due to the introduction of the
adaptive matrix gene compared with the other two algorithms, which was proven by the third order
accuracy conditions. The filtering convergence was well maintained by using the covariance matching
method and introducing an adaptive weighted coefficient. Therefore, although N-AUKF was proposed
as a method for systems involving model mismatches caused by sensor faults, in most cases, it also
performed well in nonlinear filtering problems, such as unknown statistics of noises. Furthermore,
N-AUKF had a more complicated algorithm structure, but the computational cost had no difference
from the standard UKF and L-AUKF, which was shown in Figure 8. Thus, N-AUKF also had a good
real-time performance and can be effectively used for engineering applications. Meanwhile, the
N-AUKF not only could estimate the state of the system, but also the sensor faults, which was shown
in Figure 9 and Table 3.

In summary, the proposed N-AUKF algorithm greatly improves the filtering precision, rapidity
and stability in the presence of sensor faults and systems involving model mismatches, compared with
the standard UKF and existing adaptive UKF algorithms. Future research topics applying N-AUKF to
other navigation systems with infrared sensors or laser sensors, and integrated navigation systems,
can significantly broaden the application fields of N-AUKF.

5. Conclusions

In a target tracking process, the filtering precision will decrease and filtering divergence may
appear for the standard and existing adaptive UKF, if there are sensor faults and systems involving
model mismatches. For that reason, a new adaptive UKF algorithm named N-AUKF is proposed.
In the N-AUKF, the covariance matrixes of the state vector and innovation vector can be adjusted
in real time by introducing an adaptive matrix gene and the optimality with third order accuracy
is guaranteed and proven theoretically. The filtering divergence is judged by using a covariance
matching method, then, the filtering divergence is effectively restrained by introducing an adaptive
weighted coefficient making the filtering precision, rapidity and stability of the filter greatly improved.
Simulation results show that the proposed adaptive UKF algorithm has the advantage of high filtering
performance, compared with the standard UKF and existing adaptive UKF algorithms. The research
results will benefit practical missions of target tracking in the future. For future study, it is proposed to
set up a simple, but surprisingly effective, framework for the detection, recognition and tracking of
remote sensing images and moving targets based on the proposed UKF algorithm.
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