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Abstract: Ecosystem-scale water-use efficiency (WUE), defined as the ratio of gross primary
productivity (GPP) to evapotranspiration (ET), is an important indicator of coupled carbon-water
cycles. Relationships between WUE and environmental factors have been widely investigated,
but the variations in WUE in response to biotic factors remain little understood. Here, we argue
that phenology plays an important role in the regulation of WUE by analyzing seasonal WUE
responses to variability of photosynthetic phenological factors in terrestrial ecosystems of the
Northern Hemisphere using MODIS satellite observations during 2000–2014. Our results show
that WUE, during spring and autumn is widely and significantly correlated to the start (SOS) and
end (EOS) of growing season, respectively, after controlling for environmental factors (including
temperature, precipitation, radiation and atmospheric carbon dioxide concentration). The main
patterns of WUE response to phenology suggest that an increase in spring (or autumn) WUE with an
earlier SOS (or later EOS) are mainly because the increase in GPP is relatively large in magnitude
compared to that of ET, or due to an increase in GPP accompanied by a decrease in ET, resulting from
an advanced SOS (or a delayed EOS). Our results and conclusions are helpful to complement our
knowledge of the biological regulatory mechanisms underlying coupled carbon-water cycles.

Keywords: water-use efficiency; phenology; gross primary product; evapotranspiration;
remote sensing

1. Introduction

Currently, the carbon cycles of terrestrial ecosystems have already been significantly influenced
by global warming through altered water cycles [1,2]. Ecosystem-scale water-use efficiency (WUE),
defined as the rate of carbon assimilation (e.g., gross primary productivity (GPP)) per unit of water
loss (e.g., evapotranspiration (ET), which is the sum of evaporation and plant transportation from
the Earth’s land to the atmosphere), is an important indicator of ecological function and the coupled
carbon-water cycle of terrestrial ecosystems [3,4]. A deeper understanding of how WUE has varied
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and the related underlying regulatory mechanisms will provide valuable insight into how carbon and
water cycles will change with future climate change [5].

To achieve this aim, temporal-spatial variations in WUE and their relationships with
environmental factors, such as climatic factors, CO2 concentration and nitrogen deposition, have
been investigated by manipulation experiments, site and satellite observations, and data-driven and
process-based ecosystem models [3,5–10]. However, the variations in WUE in response to biotic factors
remain inadequately understood, and this will eventually result in uncertainties in modeling of global
carbon and water budgets.

Phenology is the periodic plant life cycle, which includes not only the dates of life
cycle events or phenomena (e.g., the sprouting and coloring of deciduous plants), but the
state-transition times of annual cycles of ecosystem processes (e.g., the seasonality of photosynthesis
in winter-dormant/summer-active evergreen ecosystems) [11]. From individual plants to the entire
ecosystem, phenology directly or indirectly regulates carbon (e.g., photosynthesis and respiration) and
water (e.g., transpiration and evaporation) fluxes between the land surface and the atmosphere [12] by
altering physiological and structural characteristics, such as photosynthetic rate, canopy conductance,
albedo and surface roughness, etc. [13].

Based on both ground observations and remotely sensed data, it has been widely reported that
land surface phenology has significantly changed as a result of current climate change in terrestrial
ecosystems of the Northern Hemisphere [13–19], and this modification is likely to affect processes of
carbon and water cycles and consequent WUE [13,20–22]. However, phenology has not been fully
considered in the regulation of WUE at the ecosystem scale. First, although previous studies have
shown variations in WUE with phenology (e.g., leaf age and canopy leaf area index) at leaf scale [23–25],
it is difficult to upscale these findings from leaf to ecosystem level [9]. Second, WUE responses to yearly
anomalies in phenology for a range of plant functional types (PFTs) remain little understood [26]. It is
well known that responses of carbon assimilation and uptake to variability of phenology vary with
climate condition and plant type [12,27–29]. Due to the diverse sensitivities of carbon and water fluxes
to interannual fluctuations of phenology, the variations in WUE with phenology can potentially be
quite dynamic across PFTs [13]. Third, phenology may play different roles in regulating ecosystem
processes. For example, the conceptual scenarios proposed by Richardson et al. [22] exhibited direct
and/or indirect, positive and/or negative, and synchronized and/or lagged effects of earlier spring
phenology on plant activities. Considering that a variability of WUE is determined by changes of
both GPP and ET, the pattern by which WUE responds to phenology and the underlying mechanisms
should be more complicated.

Taking into account the important role and future changes of phenology, awareness of
temporal-spatial WUE responses to critical phenological factors in terrestrial ecosystems is critical and
valuable. Remote sensing data are very useful for investigating long-term, large-scale variability of
ecosystem-scale WUE from a real-world perspective [8,10]. This paper investigated sensitivities of
ecosystem-scale WUE to phenological factors in the terrestrial ecosystems of the Northern Hemisphere
during the past 14 years using satellite-based products, and tried to identify response patterns of WUE
to phenology across different PFTs. Achieving these objectives is a helpful step toward improving our
understanding and predictions of variabilities of carbon and water cycles.

2. Materials and Methods

2.1. Satellite-Based WUE Datasets

Datasets of MODIS monthly GPP and ET (MOD17A2 and MOD16A2, Version 055) at 1 km
spatial resolution from 2001 to 2014 [30,31] were used to calculate the ecosystem-scale WUE, which is
defined as the ratio of GPP (g·C·m−2) to ET (mm) [4,9,10]. MODIS GPP and ET are derived from
satellite-based vegetation information data along with meteorological data, using a light-use efficiency
model [32,33] and the Penman–Monteith approach [34], respectively. It is reported that MODIS WUE
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estimates compared favorably with tower-based measurements of WUE [8]. The monthly GPP and
ET datasets were averaged to give seasonal mean for each year to a 0.5◦ grid [10]. In our analysis,
the seasons concerned included spring, summer and autumn, defined as March-May, June-August
and September-November, respectively.

2.2. Valid Pixels and Plant Functional Types

The yearly MODIS land cover type dataset (MCD12Q1, Collection 5.1 IGBP Land Cover) at
0.5◦ spatial resolution from 2001 to 2012 [35], as well as the aggregated GPP dataset, were used to
identify the valid satellite-image pixels in the Northern Hemisphere. This involved using the following
criteria: at least 10 years of data records of the constant land cover type; less than 20% gap of data
records of GPP in each year; summer active ecosystem of which summer (June–August) GPP was
the highest and winter (December–February) GPP was the lowest in an annual cycle. Additionally,
non-vegetation types (e.g., built-up, barren) and permanent wetlands were also excluded. Then,
each valid pixel was assigned to a plant functional type (PFT), which was defined by both the Köppen
climate classification [36] and MODIS IGBP land cover type. For example, boreal evergreen needleleaf
forests is referred to as D2-ENF, of which D2 indicates continental subarctic or boreal climates, and ENF
indicates evergreen needleleaf forests (Table 1). After filtering, a total of 27,484 valid pixels within
33 PFTs in the Northern Hemisphere were included in our present work, and the details and spatial
distribution of PFTs are shown in Table 1 and Figure 1.

Table 1. Descriptions of the climate and plant types in this study based on the Köppen climate
classifications and the MODIS IGBP land cover types, respectively. The details regarding the codes of
Köppen climate classifications are provided by Rubel and Kottek [36].

Climate Types Köppen Climate Classifications Plant Types MODIS Land Cover Types

B Dry (arid and semiarid) climates:
BWh/BWk/BSh/NSk ENF Evergreen Needleleaf Forests

C1 Dry-summer or Mediterranean
climates: Csa/Csb EBF Evergreen Broadleaf Forests

C2 Humid subtropical climates:
Cwa/Cfa DNF Deciduous Needleleaf Forests

C3 Maritime temperate climates or
Oceanic climates: Cwb/Cwc/Cfb/Cfc DBF Deciduous Broadleaf Forests

D1
Hot or warm summer continental
climates or hemiboreal climates:
Dsa/Dsb/Dwa/Dwb/Dfa/Dfb

MF Mixed Forests

SHR Closed Shrublands, open Shrublands

D2
Continental subarctic or boreal
climates (with extremely severe
winters): Dsc/Dsd/Dwc/Dwd/Dfc/Dfd

WSA Woody Savannas, savannas

GRA Grasslands

E Polar and alpine climates: ET CRO Croplands, cropland/Natural
vegetation mosaic
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Figure 1. Spatial patterns of (a) Köppen climate classifications and (b) MODIS IGBP land cover types 
within the valid pixels of this study. The details regarding the codes of the climate and plant types 
are provided in Table 1. The white areas denote invalid satellite-image pixels in this study. 

Figure 1. Spatial patterns of (a) Köppen climate classifications and (b) MODIS IGBP land cover types
within the valid pixels of this study. The details regarding the codes of the climate and plant types are
provided in Table 1. The white areas denote invalid satellite-image pixels in this study.

2.3. Meteorological Datasets

Environmental factors, including the mean air temperature (◦C), total precipitation (mm), daily
shortwave solar radiation (MJ·m−2·day−1) and atmospheric carbon dioxide concentration (CO2, ppm),
were considered as the abiotic controls of WUE in our analysis. For valid pixels, the seasonal
temperature and precipitation from 2001 to 2014 were derived from the Centre for Environmental
Data Analysis (CEDA) monthly temperature and precipitation dataset at 0.5◦ spatial resolution [37].
The seasonal solar radiation dataset at 0.5◦ spatial resolution was derived from the National Centers
for Environmental Prediction (NECP) 4-times daily downward radiation data at 1.875◦ spatial
resolution [38] by interpolation and aggregation. Due to limitations of data availability, the CO2

concentration for each valid pixel was replaced by that measured daily at Mauna Loa (Hawaii) [39]
during 2001–2014, and then was aggregated to seasonal mean data for each year.

2.4. GPP-Based Phenology

In this study, the spring and autumn state-transition dates of GPP-based photosynthesis cycle,
referred as the start (SOS) and end (EOS) of growing season, were adopted rather than the traditional
phenological events of the plants. These phenological factor dates were derived at different spatial
scales. First, they were derived at the site scale using both the FLUXNET daily GPP flux measurements
and the MODIS 8-day GPP dataset at 1 km spatial resolution [30] for comparison between the
ground and satellite observed phenology. Then, the phenological factors were calculated in each
valid satellite-image pixel using the 8-day GPP dataset at 0.5◦ spatial resolution which was derived
from the MODIS 8-day GPP dataset at 1 km spatial resolution.

The Harmonic Analysis of Time Series (HANTS) model was used to smooth both the
satellite-based and tower-based GPP measurements of each year. HANTS is an improved algorithm of
the fast Fourier transform (FFT), which is described in detail in the work of Roerink et al. [40]. In this
study, the HANTS algorithm was implemented in MATLAB R2013a (The Mathworks, Inc., Natick,
MA, USA), and the code was provided by Mohammad Abouali [41]. For the algorithm, the number of
frequencies is set to 1, the fit error tolerance is set to 5.0, and the degree of overdeterminedness is set to 1.
Then, the smoothed GPP time series were used to define the SOS and EOS in each pixel-year (site-year)
data, with the dates on which the smoothed daily GPP reached 10% of the seasonal maximum in spring
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and autumn used to indicate the onset and end of significant photosynthesis, respectively (Figure 2a).
This 10% GPP threshold was determined because dynamic thresholds are more beneficial for capturing
and comparing interannual variations in phenological events [42].
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Figure 2. Comparison between the tower-based and satellite-based (a) start (SOS) and (b) end (EOS) 
of growing season at the FLUXNET sites and the corresponding MODIS 3 × 3 pixels. Solid and dash 
lines denote significant and no significant linear regression, respectively, between tower-based and 
satellite-based phenological factors. DOY denotes day of year. The details regarding the FLUXNET 
sites are provided in Table S1. 

3.2. Partial Correlations between WUE and Phenological Factors 

Figure 3 provides the spatial distributions of coefficients of partial correlation (r) between yearly 
fluctuations of seasonal WUE and phenological factors during 2001–2014, where r is significant when 
the absolute value of r is higher than 0.60. Negative partial correlations between WUE and SOS (i.e., 
WUE enhanced with earlier SOS or WUE decreased with later SOS) dominate the spring (96.08% 
pixels), and 67.33% of these are statistically significant (P < 0.05) mainly in the mid- and high latitudes 
(over 50°N), southwestern China and mid-western North America (Figure 3a). At the PFT level, our 
statistics show in general, the negative partial correlations between spring WUE and SOS enhance 

Figure 2. Comparison between the tower-based and satellite-based (a) start (SOS) and (b) end (EOS)
of growing season at the FLUXNET sites and the corresponding MODIS 3 × 3 pixels. Solid and dash
lines denote significant and no significant linear regression, respectively, between tower-based and
satellite-based phenological factors. DOY denotes day of year. The details regarding the FLUXNET
sites are provided in Table S1.

To validate satellite-derived photosynthetic phenology, 13 sites (a total of 85 site-years) in the
FLUXNET (the “Fair Use” LaThuile FLUXNET data set (V4)) [43] were identified, and the daily
GPP fluxes were derived from 30-min eddy covariance measurements (net ecosystem exchange of
CO2, NEE) that were standardized and gap-filled using a set of common algorithms [44,45]. Here,
only summer active ecosystem sites which were identified by the same rule as the valid pixel were
included in our analysis. In addition, the sites were filtered by data quality (less than 20% gap-filled
records in each year; a lack of recent disturbances) and length of data record (a minimum of six
years of continuous data since 2000). The details regarding these valid sites are provided in Table S1.
According to the center geographic coordinates (latitude and longitude) of the selected field sites, the
satellite-derived GPP time-series were extracted from 3 × 3 MODIS pixels (~3 km × ~3 km) centered
on the flux tower [42].

2.5. Statistical Analysis Strategy

First, sensitivities of ecosystem-scale seasonal WUE to phenological factors were examined
by Spearman partial correlation analysis for each valid pixel, after controlling for environmental
factors (including temperature, precipitation, solar radiation and CO2 concentration). Meanwhile,
the variation in WUE in response to phenological and environmental factors at the PFT level was
quantitatively identified by a panel (data) analysis [46] using a linear random-effects generalized least
squares (GSL) regression model [47] across all pixels in each PFT. The partial correlation analysis and
panel analysis were implemented in MATLAB R2013a (The Mathworks, Inc., Natick, MA, USA) and
STATA 14 (StataCorp LP, College Station, TX, USA), respectively.

Then, response patterns of WUE to phenology were identified according to relationships of WUE
and its components (GPP and ET) with the phenological factor (SOS or EOS). Here, six response
patterns of WUE to phenology were defined by the partial correlation coefficients of RWUE (WUE vs.
phenology), RGPP (GPP vs. phenology) and RET (ET vs. phenology), including RWUE < 0, RGPP < 0
and RET < 0 (Pattern I), RWUE < 0, RGPP < 0 and RET > 0 (Pattern II), RWUE < 0, RGPP > 0 and RET > 0
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(Pattern III), RWUE > 0, RGPP < 0 and RET < 0 (Pattern IV), RWUE > 0, RGPP > 0 and RET < 0 (Pattern V)
and RWUE > 0, RGPP > 0 and RET > 0 (Pattern VI).

3. Results

3.1. Validation of Satellite-Based Phenology

The method described in Section 2.4 was used to determine the SOS and EOS from both the
tower-based and satellite-based GPP time-series at the site scale (Figure 2). The linear regression
analysis showed that satellite-based SOS and EOS were positively correlated with tower-based
SOS (Pearson’s r = 0.69 ± 0.20) and EOS (Pearson’s r = 0.80 ± 0.12) at all 13 study sites over the
measurement period, and positive relationships for SOS and EOS were significant (P < 0.05) at 8
and 9 of the 13 sites, respectively. The corresponding RMSEs for SOS and EOS were nearly 17 and
11 days, respectively. Although the bias is expected to introduce inconsistence in the absolute dates of
phenological transitions, this should not affect interannual fluctuation changes and long-term trends
or the interannual relationships of fluxes with phenology for each site or satellite pixel [28].

3.2. Partial Correlations between WUE and Phenological Factors

Figure 3 provides the spatial distributions of coefficients of partial correlation (r) between yearly
fluctuations of seasonal WUE and phenological factors during 2001–2014, where r is significant
when the absolute value of r is higher than 0.60. Negative partial correlations between WUE and
SOS (i.e., WUE enhanced with earlier SOS or WUE decreased with later SOS) dominate the spring
(96.08% pixels), and 67.33% of these are statistically significant (P < 0.05) mainly in the mid- and high
latitudes (over 50◦N), southwestern China and mid-western North America (Figure 3a). At the PFT
level, our statistics show in general, the negative partial correlations between spring WUE and SOS
enhance from warm climates to cold climates (Figure 4a). The PFT-level average partial correlation
coefficient between them ranges from −0.28 in dry climates (B) to −0.80 in continental subarctic
climates (D2), with the strongest correlation of −0.87 (±0.10) in D2-WSA. The panel analysis shows
similar results (Table S2). When SOS advances a 10-day, the spring WUE will increase on average by
0.05, 0.04, 0.21 and 0.06 g·C·m−2·mm−1 in dry climates (B), temperate/mesothermal climates (C1, C2
and C3), continental/microthermal climates (D1 and D2) and Polar and alpine climates (E), respectively.

During summer, both negative and positive correlations between WUE and SOS are found
(Figure 3b), with 16.64% of valid pixels having significant negative correlations (P < 0.05) mainly
at high latitudes (e.g., northern Siberia, northeastern Canada and mid-western United States) and
4.14% significant positive correlations (P < 0.05) mainly in mid-eastern United States, most Europe,
north-eastern China and central Siberia. D1-DBF shows the strongest positive partial correlations
between summer WUE and SOS with a coefficient of 0.45 (±0.28) (Figure 4b), and decreases by an
average value of 0.11 (±0.01) g·C·m−2·mm−1 with a 10-day advancement of SOS (Table S2). E-SHR and
D2-SHR show the strongest negative partial correlation (r = −0.51 ± 0.28) (Figure 4b) and the lowest
regression coefficient of panel analysis (coef = −0.15 g·C·m−2·mm−1 10-day−1) between summer WUE
and SOS, respectively (Table S2), indicating significant promotions of earlier SOS to summer WUE in
extreme cold regions.

Positive correlations between autumn WUE and EOS are mainly observed in 86.67% of valid
pixels (Figure 3c), and 32.40% of these are statistically significant (P < 0.05) mainly at high latitudes
(e.g., northern North America and northern Eurasia). Similar to spring, the partial correlations between
autumn WUE and EOS of PFTs in cold regions are generally stronger than those in warm areas
(Figure 4c). However, the correlations are weaker overall, ranging from 0.12 in humid subtropical
climates (C2) to 0.43 in continental subarctic climates (E) on average. Moreover, some areas with
a significant correlation in spring (e.g., eastern North America, north Europe and West Siberia)
exhibit no significant correlation in the autumn, indicating differences in ecological effects of different
phenological changes observed in a changing climate.
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Figure 4. Relationships between the phenological factor (SOS/EOS) and WUE during (a) spring 
(March–May), (b) summer (June–August) and (c) autumn (September–November) at the plant 
functional type (PFT) level. Partial correlation coefficient is calculated after controlling the 
environmental factors (including temperature, precipitation, insolation and CO2 concentration), 
which is significant (P < 0.05) when the absolute value of coefficient is higher than 0.60. The 
x-axis and color indicate the climate types and plant types of PFTs, respectively, and the details 
regarding the codes of PFTs are provided in Table 1.The bar indicates the mean partial correlation 
coefficient (±standard error) for each PFT. 
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accompanied by a decrease in ET resulting from an advance in SOS. However, for some PFTs in dry 
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During autumn, Pattern VI (RWUE > 0, RGPP > 0, RET > 0) and Pattern V (RWUE > 0, RGPP > 0, RET < 0) 
are observed in 50.61% and 31.16% of valid pixels, respectively (Figure 5c). These response patterns 
of autumn WUE to EOS indicate that an increased autumn WUE resulting from a delayed EOS is 
mainly associated with an enhanced GPP, with either a relatively slight increase in ET or a decrease 
in ET. Nevertheless, in parts of central United States, Inner Mongolia and southwest China and east 
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Figure 4. Relationships between the phenological factor (SOS/EOS) and WUE during
(a) spring (March–May); (b) summer (June–August) and (c) autumn (September–November) at
the plant functional type (PFT) level. Partial correlation coefficient is calculated after controlling
the environmental factors (including temperature, precipitation, insolation and CO2 concentration),
which is significant (P < 0.05) when the absolute value of coefficient is higher than 0.60. The x-axis
and color indicate the climate types and plant types of PFTs, respectively, and the details regarding
the codes of PFTs are provided in Table 1.The bar indicates the mean partial correlation coefficient
(±standard error) for each PFT.
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3.3. Response Patterns of WUE to Phenology

Here, spatial distributions of the six response patterns of WUE to photosynthetic phenology
are shown in Figure 5. The results show that Pattern I (RWUE < 0, RGPP < 0, RET < 0) and Pattern II
(RWUE < 0, RGPP < 0, RET > 0) are widespread (about 54.87% and 36.83% of the valid pixels, respectively)
in the high and mid latitudes during spring (Figure 5a). This indicates that the negative response
of spring WUE to the advance in SOS is mainly because the negative sensitivity of GPP to SOS is
relatively strong in magnitude compared to that of ET, or GPP negatively responds to SOS while ET
positively responds to SOS during spring. In other words, an increasing spring WUE with earlier
SOS, for example, is mainly shown by a steeper increase in GPP than ET, or by an increase in GPP
accompanied by a decrease in ET resulting from an advance in SOS. However, for some PFTs in dry
or Mediterranean climates (e.g., B-SHR and C1-WSA) (Figure 6a), both spring GPP and ET exhibit a
positive correlation with variations in SOS, leading to an increase or decrease in WUE according to
their changing magnitudes.

The response patterns of summer WUE to SOS give a different picture (Figure 5b), with only
15.05% and 27.13% of pixels showing Pattern I (RWUE < 0, RGPP < 0, RET < 0) and Pattern II (RWUE < 0,
RGPP < 0, RET > 0), respectively, mainly in regions of north of 60◦N, northeastern Canada and East
and South China. Areas with Pattern III (RWUE < 0, RGPP > 0, RET > 0) and Pattern VI (RWUE > 0,
RGPP > 0, RET > 0) (about 20.00% and 18.98% of the valid pixels, respectively) are widespread in the
mid latitudes (including most PFTs in dry climates, Mediterranean climates and continental climates
with warm summers) (Figure 6b), indicating that summer GPP and ET positively respond to advance
in SOS, whereas summer WUE increases or decreases are determined by the changing magnitudes of
GPP and ET.Remote Sens. 2017, 9, 664 8 of 14 
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Figure 6. Frequency distribution of response patterns of seasonal WUE to phenological factors 
(SOS/EOS) at plant functional type (PFT) level. RWUE, RGPP, RET indicate the partial correlation 
coefficient of WUE, GPP, ET with phenological factor after controlling the environmental factors 
(including temperature, precipitation, insolation and CO2 concentration). The partial correlation 
coefficients are calculated in (a) spring (March–May), (b) summer (June–August) and (c) autumn 
(September–November), respectively. The details regarding the codes of PFTs are provided in Table 1. 

Figure 5. Spatial distribution of response patterns of seasonal WUE to phenological factors (SOS/EOS).
RWUE, RGPP, RET indicate the partial correlation coefficients of WUE, gross primary productivity
(GPP), evapotranspiration (ET) with the phenological factor after controlling the environmental factors
(including temperature, precipitation, insolation and CO2 concentration), respectively. The partial
correlation coefficients are calculated in (a) spring (March–May); (b) summer (June–August) and
(c) autumn (September–November), respectively. The white areas denote invalid satellite-image pixels
in this study.
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During autumn, Pattern VI (RWUE > 0, RGPP > 0, RET > 0) and Pattern V (RWUE > 0, RGPP > 0,
RET < 0) are observed in 50.61% and 31.16% of valid pixels, respectively (Figure 5c). These response
patterns of autumn WUE to EOS indicate that an increased autumn WUE resulting from a delayed
EOS is mainly associated with an enhanced GPP, with either a relatively slight increase in ET or a
decrease in ET. Nevertheless, in parts of central United States, Inner Mongolia and southwest China
and east Siberia, the contrast patterns are observed; there is a negative relationship between autumn
WUE, and EOS is associated to with a negative correlation of autumn GPP with EOS.
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Figure 6. Frequency distribution of response patterns of seasonal WUE to phenological factors 
(SOS/EOS) at plant functional type (PFT) level. RWUE, RGPP, RET indicate the partial correlation 
coefficient of WUE, GPP, ET with phenological factor after controlling the environmental factors 
(including temperature, precipitation, insolation and CO2 concentration). The partial correlation 
coefficients are calculated in (a) spring (March–May), (b) summer (June–August) and (c) autumn 
(September–November), respectively. The details regarding the codes of PFTs are provided in Table 1. 

Figure 6. Frequency distribution of response patterns of seasonal WUE to phenological factors
(SOS/EOS) at plant functional type (PFT) level. RWUE, RGPP, RET indicate the partial correlation
coefficient of WUE, GPP, ET with phenological factor after controlling the environmental factors
(including temperature, precipitation, insolation and CO2 concentration). The partial correlation
coefficients are calculated in (a) spring (March–May); (b) summer (June–August) and (c) autumn
(September–November), respectively. The details regarding the codes of PFTs are provided in Table 1.

4. Discussion

4.1. WUE Responses to Phenology

Our analysis shows that WUE sensitivity to phenology exhibits an obvious difference among
different PFTs, and further highlights that the difference varies with the season. During spring,
WUE sensitivity to phenology gradually enhances from PFTs in warm climates to those in cold
climates. This result is in agreement with the fact that ecological functions seem to be more sensitive in
cold-habitat and alpine ecosystems compared to warm-habitat ones [48,49]; this may be because there
are fewer but longer days of growing season at higher latitudes [50]. Although the sensitivities of PFTs
in similar climates also show a variance, the amplitude of variance is much less than that in different
climates, indicating fundamental similarities in ecosystem functioning across a broad geographic range
of climate conditions, with the different sensitivities of different plant types [51].

WUE response to phenology, indeed, is the coupling of GPP and ET responses to phenology.
Our analysis shows different response patterns of WUE to phenology, and here are some potential
cues to explain how GPP and ET responds to phenology:
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(1) During spring, increases in WUE with earlier SOS are generally associated with increases in GPP
with advanced SOS. Warmer spring air temperature can trigger leaf sprouting and unfolding [28].
Thus, increases in productivity are driven by the longer growing season (earlier SOS). Moreover,
an earlier spring phenology may result in greater leaf area, enhancing light interception and
canopy-level photosynthetic potential and thereby spring GPP [52]. Both negative and positive
correlations between ET and SOS are widespread during spring. The spring onsets represents
a release from temperature limitation, but it is generally still not warm enough to have large
evaporative losses from soil. Transpiration will be the larger contributor to ET at this time of year.
On the one hand, the transpiration of the leaves and canopy interception evaporation would
increase with the greater leaf area at the beginning of the growing season [53], which could
increase ecosystem ET. Meanwhile, warmer spring temperatures could increase soil evaporation
during the early growing season, accompanying an earlier spring phenology [54]. On the other
hand, an earlier and/or greater display of leaf area can decrease soil evaporation resulting from
lower local temperatures [29,55] and land surface insolation [56]. The offset of these effects
determines the relationship between spring ET and SOS, which would imply Pattern I or Pattern
II in spring.

(2) In summer, an advance in SOS also promotes GPP in humid subtropical climates and subarctic
climates, which is probably attributed to higher foliar N or leaf area index resulting from warmer
spring temperature [57,58], which would also imply Pattern I or Pattern II. However, positive
correlations between summer GPP and SOS are mainly observed during summer, especially in
dry climates and continental climates. These positive relationships (that is, earlier SOS reducing
summer GPP) may be attributed to water stress resulting from the preseason environmental
condition [54,59] and/or from the enhanced plant activity during the warm spring [1,54]. In this
case, summer ET may not increase if leaf transpiration and soil evaporation are limited by soil
water availability [13], and so it exhibits a positive correlation with SOS. The decrease in GPP and
ET due to earlier SOS linked with summer water deficit would imply Pattern III or Pattern VI.

(3) Similar to spring, a longer growing season (later EOS) promotes autumn GPP, and might cause
plants to close stomates and increase WUE because soil moisture deficit at this time of year is
common. On the contrary, in some areas of United States, China and high latitudes (around 60◦ N),
temperature and solar radiation during autumn tend to be negatively correlated, and warming
would likely bring more cloudy weather and less insolation [60]. Hence, carbon assimilation may
be limited by photosynthetically active radiation despite of an extended growing season [61],
showing a negative relationship between autumn GPP and EOS. Besides, the offset between
soil evaporation and leaf transpiration influenced by temperature and insolation determines the
increase or decrease in autumn ET. This simultaneous decrease in GPP and ambiguous ET would
imply Pattern I or Pattern II in autumn.

Huang et al. [4] have investigated variability of ecosystem-scale WUE at global scale using
data-driven and process-oriented models and flux data, and showed that the seasonal variation of
WUE trends is primarily attributable to effects of seasonal climatic variables. Here, our study further
highlights that WUE during spring and autumn are extensively and significantly sensitive to phenology
after statistically controlling for the climatic variables and CO2 concentration. Even though during the
summer WUE is also significantly affected by SOS in parts of regions with continental and subarctic
climates. This demonstrates that phenology plays a crucial role in the regulation of ecosystem WUE,
which should not be ignored in earth system models [13].

4.2. Uncertainties and Further Studies

Previous studies have reported that MODIS produces a systematic error for GPP and ET and
WUE is compared to other satellite-based products (e.g., JUNG flux products, see [62]) due to the
algorithms in tropical regions [10]. With this point, only summer active ecosystems in extratropical
areas were taken into account in this study, which is helpful in reducing the uncertainty around the
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findings. In further studies, multi-source data, as well as model simulation, are helpful to improve on
our present analysis to characterize robust relationships between WUE and phenology. Additionally,
more ecosystems should be comprehensively considered across climatic gradients, especially those
where greening is closely associated with water supplement availability [63].

Mismatch between ground- and satellite-observed phenology is always a difficult question
in phenology research due to temporal and spatial scales, mixed pixel, etc. For the validation of
satellite-based phenology, it is more appropriate that the comparison is made using interannual
fluctuation changes or long-term trends rather than actual dates [28]. Moreover, an ensemble of diverse
algorithms is helpful to reduce uncertainties in phenology modeling [42].

Ecosystem-scale WUE response to nitrogen availability is not considered in our present work.
It is reported that photosynthetic rates and stomatal conductance to water vapor may be stimulated by
increased deposition of reactive nitrogen (e.g., resulting from human activities) in nitrogen-limited
ecosystems [64–66]. Although little contribution of nitrogen deposition to the variability of seasonal
WUE was reported [4], it is helpful to take effects of nitrogen deposition into account in further studies
to improve on the present analysis.

Agricultural ecosystem is included in our analysis. However, it is worth noting that although there
are not clear differences in WUE response to phenology between agricultural and other ecosystems,
some uncertainties in the results may be caused by data quality [67] and human management
(e.g., anomaly in phenology due to planting and harvesting, as well as that in carbon and water
flux due to fertilization and irrigation). Hence, more detailed investigations into agricultural WUE
response to phenology will be needed.

5. Conclusions

Our study investigated interannual relationships between ecosystem-scale WUE during the
different seasons and the photosynthetic phenological factors in summer-active ecosystems of the
Northern Hemisphere, and identified patterns of WUE response to phenology as well as dominant
control on WUE. We find that the WUE during spring and autumn closely relates to the start and
end dates of growing season, respectively, over most of the study area. Meanwhile, the main pattern
of WUE response to phenology suggests that during spring (or autumn), an increasing WUE with
an advancing SOS (or a delaying EOS) is mainly attributed to a steeper increase in GPP relative to
increase in ET, because of the higher phenological sensitivity of GPP relative to ET. However, summer
WUE was weakly related to SOS during the study period. In summary, we argue that phenology plays
an important role in the regulation of terrestrial ecosystem water-use efficiency, and it is necessary
to take into account phenological factors when explaining and predicting patterns of the coupled
carbon-water cycle of territorial ecosystems.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/9/7/664/s1,
Table S1: Info of the valid FLUXNET sites in this study, Table S2: Variations in seasonal WUE with the phenological
factors for each PFT through the panel analysis.
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