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Abstract: Accurate data on gross domestic product (GDP) at pixel level are needed to understand the
dynamics of regional economies. GDP spatialization is the basis of quantitative analysis on economic
diversities of different administrative divisions and areas with different natural or humanistic
attributes. Data from the Visible Infrared Imaging Radiometer Suite (VIIRS), carried by the Suomi
National Polar-orbiting Partnership (NPP) satellite, are capable of estimating GDP, but few studies
have been conducted for mapping GDP at pixel level and further pattern analysis of economic
differences in different regions using the VIIRS data. This paper produced a pixel-level (500 m ×
500 m) GDP map for South China in 2014 and quantitatively analyzed economic differences among
diverse geomorphological types. Based on a regression analysis, the total nighttime light (TNL)
of corrected VIIRS data were found to exhibit R2 values of 0.8935 and 0.9243 for prefecture GDP
and county GDP, respectively. This demonstrated that TNL showed a more significant capability
in reflecting economic status (R2 > 0.88) than other nighttime light indices (R2 < 0.52), and showed
quadratic polynomial relationships with GDP rather than simple linear correlations at both prefecture
and county levels. The corrected NPP-VIIRS data showed a better fit than the original data, and
the estimation at the county level was better than at the prefecture level. The pixel-level GDP map
indicated that: (a) economic development in coastal areas was higher than that in inland areas; (b) low
altitude plains were the most developed areas, followed by low altitude platforms and low altitude
hills; and (c) economic development in middle altitude areas, and low altitude hills and mountains
remained to be strengthened.
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1. Introduction

Gross domestic product (GDP) is an important indicator of the economic performance of a country
or region. With the accelerating process of urbanization, development patterns of different regions
present more prominent regional differences. However, there are many problems to measure GDP
using socioeconomic statistics, such as the inconsistency of statistical scales and the uniformity of
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data within the statistical unit, which make it difficult to reflect differences in regional economic
development at fine scales. There are also problems with inconsistent borders during overlay analysis
between the statistical data based on administrative units, and vegetation patterns and natural disaster
data based on geographic units. Identifying how to accurately measure GDP at fine scales is of great
importance to understanding the dynamic changes in regional economies and meeting the needs of
interdisciplinary research.

Compared with traditional socioeconomic census, remote sensing imagery has obvious
advantages in describing the spatial distribution of GDP. Nighttime light data are frequently used to
describe the intensity of economic activities on the earth surface, and have been widely used in the
estimation of socioeconomic parameters.

Previous studies have used the nighttime light data from the Defense Meteorological Satellite
Program-Operational Linescan System (DMSP-OLS) to investigate economic activities at different
scales. For example, Elvidge et al. [1] found a high correlation between the area lit and GDP for
21 counties in North America using the DMSP-OLS nighttime light data. Similar studies were
carried out in the European Union countries, China and the United States, revealing that the
regression coefficients of the total nighttime light (TNL) and GDP were in the range of 0.8 to 0.9 [2–4].
In addition, studies have produced maps of economic activity at 5 km and 1 km resolution based on
the relationships between economic parameters and nighttime radiance from DMSP-OLS nighttime
light data [5,6].

Despite the strong capacity of DMSP-OLS nighttime imagery to investigate economic activities at
both global and regional scales, the lack of on-board radiometric calibration and limited radiometric
detection capacity inevitably reduce the correlations between economic activities and detected
nighttime light [7,8]. A new generation of nighttime light data collected by the Visible Infrared
Imaging Radiometer Suite (VIIRS) carried by the Suomi National Polar-Orbiting Partnership (NPP)
satellite was released freely in 2013 [9,10]. The NPP-VIIRS data have a higher resolution (about 500 m)
than the 1 km-resolution DMSP-OLS data. Moreover, the wider radiometric detection range solves
over-saturation problems and the on-board radiometric calibration increases the data quality [10].
Several studies have suggested that the NPP-VIIRS data might be more indicative for economic
development than DMSP-OLS data at both provincial and city scales because of their more positive
responses to economic indicators [11–13]. At present, studies of GDP estimation using NPP-VIIRS
data are relatively new, and most focus on responses of nighttime light radiance to economic variables
at regional scales. However, studies using NPP-VIIRS data for the estimation of economic variables
at pixel-level scales are less common, and moreover, no analysis has been done on the regional
differentiation of economic maps simulated from NPP-VIIRS data.

Although previous studies utilized night light brightness for quantitatively estimating and
mapping socioeconomic activities differed slightly in their approaches and scopes, one common point
is that their focus is often confined to urbanization processes and anthropogenic activity intensities.
The land surface, which supports human life and production, however, has received less attention.
As a natural factor restricting the urban expansion and demographic dynamics, the role of topography
and geomorphology cannot be ignored. A fully understanding of spatial-temporal differences of
economic status among different terrain and geomorphological types is a first step in exploring the
complex interactions between landform and anthropogenic activities, and contributes to provide
decision-making for a region’s sustainable planning and development.

South China contains not only the highly-developed Pearl River Delta region, but also
southwestern poverty-stricken areas, reflecting large differences in regional economies. As the major
economic zone in the northern part of the South China Sea, fully understanding its economic status
can help to provide a basis for China’s development planning and policy formulation, and also offer
decision support for the 21st Century Maritime Silk Road. In this study, the spatial distribution of
GDP at 500 m × 500 m in South China in 2014 was simulated using NPP-VIIRS data, and the economic
differences among diverse geomorphological types were quantitatively analyzed. Firstly, a method
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was proposed to correct the original NPP-VIIRS data. Secondly, four nighttime light indices from the
corrected data over South China at both prefecture and county levels were calculated. They were
subsequently applied in the regression analysis between nighttime light indices and GDP. Thirdly,
the best regression model was selected to simulate the pixel-level GDP and the final GDP map was
produced using a GDP linear calibration model. Finally, by overlaying with the basic geomorphological
types in South China, the total GDP and GDP intensity among different geomorphological units in
South China were quantitatively calculated to analyze the intensity of economic activities in different
geomorphological types.

2. Case Study Area and Data

2.1. Case Study Area

South China (104◦25′E–117◦20′E, 18◦9′N–26◦24′N) is one of the seven geographical divisions
in China with a total area of 447,881 km2 (Figure 1). It is located in the southern part of China
and consists of three provinces (Guangdong, Guangxi and Hainan), including 38 prefecture-level
cities, and 286 county-level cities, districts or counties. Because not all statistical data at the level of
county administrative units can be obtained, some districts were consolidated to generate several new
county-level units for analysis in this study.
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Figure 1. An overview of the South China study area.

2.2. Data Collection

2.2.1. Visible Infrared Imaging Radiometer Suite (VIIRS) Nighttime Light Data

The version 1 series of global VIIRS nighttime light images for the year 2014 were provided by
the Earth Observation Group, National Geophysical Data Center (NGDC) at the National Oceanic
and Atmospheric Administration (NOAA) (downloaded from https://www.ngdc.noaa.gov/eog/
viirs/download_monthly.html). The VIIRS Day/Night Band cloud free composites data are produced
monthly, and contain spatially gridded nocturnal radiance values across human settlements at a spatial
resolution of 15 arc-seconds spanning the latitudinal zones of 65◦S–75◦N. In this study, the monthly
nighttime light images for China were extracted and projected to an Albers equal area conic projection
with a spatial resolution of 500 m. Then, the VIIRS nighttime light images for South China, spanning
months 1–12 for the year 2014, were extracted. A composite VIIRS nighttime light image for South
China was generated by averaging pixel brightness from the 12 images, and formed the original VIIRS
data for South China in this study (Figure 2a).

https://www.ngdc.noaa.gov/eog/viirs/download_monthly.html
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2.2.2. Defense Meteorological Satellite Program (DMSP) Nighttime Light Data

The version 4 composite DMSP-OLS stable nighttime light data, derived from NOAA/NGDC,
are grid-based annual data composites spanning 1992–2012 with a digital number (DN) between 0 and
63 and a 30 arc-second (approximately 1 km at the equator) spatial resolution for pixels. To reduce the
yearly variations and response differences among sensors, a second order regression model [14,15]
was used to empirically calibrate the annual nighttime light products, which were matched with the
composite of F12 in 1999. As the corrected data in 2013 had not been available, the closest available
corrected data were used for this research. Thus, the imagery for China in 2012 was projected into the
Albers equal area conic projection and resampled to a spatial resolution of 500 m × 500 m. The DMSP
imagery for South China in this study was extracted from processed DMSP-OLS data for China
(Figure 2b).
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Polar-Orbiting Partnership-Visible Infrared Imaging Radiometer Suite (NPP-VIIRS) nighttime light
brightness in 2014; and (b) the corrected Defense Meteorological Satellite Program-Operational Linescan
System (DMSP-OLS) nighttime light brightness in 2012.

2.2.3. Statistical Economic Data

Applications of nighttime light data for quantitatively estimating socioeconomic parameters have
been well documented in previous studies using statistical data [5,16]. To investigate the quantitative
relationships between VIIRS nighttime light signals and GDP for South China in 2014, the statistical
GDP data for prefecture- and county-level units in South China were collected from the 2015 China
City Statistical Yearbook, 2015 Guangdong Statistical Yearbook, 2015 Guangxi Statistical Yearbook, and
2015 Hainan Statistical Yearbook. It is noted that the 2015 China City Statistical Yearbook records all
prefecture-level GDP and certain county-level GDP in 2014, whereas the provincial statistical yearbooks
record the GDP for most of the county-level administrative units in provinces of Guangdong, Guangxi
and Hainan in 2014. One unavoidable problem was the incompleteness and inconsistency of the
statistical data from different sources, which made the work of data collation more critical. In this
study, the prefecture-level GDP was obtained from the China City Statistical Yearbook, whereas the
county-level GDP was mainly collected from provincial statistical yearbooks. For several county-level
units with no data, county-level units belonging to the same prefecture-level unit were amalgamated
and the total GDP of the newly merged units was calculated through subtraction. Based on this
criterion, 38 prefecture-level and 190 county-level GDPs were summarized (Table A1). Boundaries
for some county-level units were also merged to achieve spatial consistency with the corresponding
statistical data.

2.2.4. Geomorphological Data

Geomorphological data were derived from 1:1,000,000 digital geomorphological database of
China. The digital geomorphological data were obtained with visual interpretation from Landsat
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TM/ETM images, SRTM-DEM, and geology data [17]. The database contains seven data hierarchies,
including basic morphology, genesis, sub-genesis, morphology, micro-morphology, slope and aspect,
material composition and lithology [18]. Basic morphological types were created using two controlling
factors: altitude and relief, and have been widely used in research on land cover change [19,20],
urbanization [21–23] and cultivated land evaluation [24,25]. In this study, data of basic morphological
types for South China were extracted. Their classification standard and spatial distribution are shown
in Table 1 and Figure 3.

Table 1. Characteristics of the basic geomorphological types in South China.

Basic Geomorphological Types Type Abbreviation Altitude Relief

Low altitude plain LAP <1000 m <30 m
Middle altitude plain MAP 1000 m–3500 m <30 m
Low altitude platform LAPF <1000 m >30 m

Low altitude hill LAH <1000 m <200 m
Middle altitude hill MAH 1000 m–3500 m <200 m

Low-relief low altitude mountain LRLAM <1000 m 200 m–500 m
Low-relief middle altitude mountain LRMAM <1000 m 200 m–500 m
Middle-relief low altitude mountain MRLAM 1000 m–3500 m 500 m–1000 m

Middle-relief middle altitude mountain MRMAM 1000 m–3500 m 500 m–1000 m
High-relief middle altitude mountain HRMAM 1000 m–3500 m 1000 m–2500 m
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3. Methods

3.1. Correction of the VIIRS Nighttime Light Data

The NPP-VIIRS data are preliminary product, which have not been filtered to screen out lights
from auroras, fires, gas flares, volcanoes, and background noise [10,26]. These confounding factors are
irrelevant to economic activities, and can limit the accuracy and reliability in GDP estimation.

In this study, a sequence of preprocessing procedures was employed to reduce these interference
factors in the original NPP-VIIRS data. Based on the hypothesis noted in previous studies that lit
areas in the DMSP-OLS are the same as those in the NPP-VIIRS data in adjacent years [11,13,27], it is
appropriate to assign same lit areas in similar years. Compared with the VIIRS data in 2014, the closest
corrected DMSP-OLS data were available for the year 2012. Accordingly, the 2012 corrected DMSP-OLS
data were used for lighting correction of VIIRS nighttime light data in 2014. The processing procedures
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are shown in Figure 4. Firstly, a mask with all pixels with DN value of 0 from the DMSP-OLS data
in 2012 was generated to get the dark background of DMSP-OLS data in 2012. Next, lit areas in the
potentially dark background of VIIRS data in 2014 were generated by extraction analysis. Based
on that, Google Earth images were applied to extract the corresponding urban built area by visual
interpretation. The real dark background of VIIRS data in 2014 was obtained by removing the urban
regions of lit areas in the potential background. Lastly, we assigned the values of pixels that fell within
the real dark background to 0, leaving the initial corrected VIIRS data without the background noise.
The initial corrected data could provide a fair performance for GDP estimation, but a few outliers
which were probably caused by stable lights from fires of oil or gas also needed to be corrected. Cities
of Shenzhen, Zhuhai and Guangzhou in Guangdong province, Liuzhou and Nanning in Guangxi
province, and Haikou and Sanya in Hainan province are the most developed cities in each province.
Therefore, pixel values of other areas should not exceed values of these cities theoretically. The highest
DN value across these cities in each province was used as a threshold to detect outliers in each province.
Pixels whose DN value were larger than the threshold were assigned to the maximum DN value
within the pixel’s immediate eight neighbors. If the maximum DN value was also larger than the
threshold, the values of pixels of its eight-neighborhood area were selected for a second comparison.
After this process, the final corrected VIIRS data were generated with all pixels in each province less
than the threshold.
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3.2. Calculation of Nighttime Light Indices

Nighttime light indices have been used to reflect socioeconomic level, such as total nighttime
light (TNL), average nighttime light intensity (I), proportion of intensely lit area (S), and compounded
nighttime light index (CNLI). TNL refers to the sum of the DN value of lighting within an
administrative unit [12,13,27]. I is the ratio of TNL to the maximum nighttime light within an
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administrative unit [28,29]. S is defined as the ratio of the lit pixel area to the area of administrative
unit [12,29]. CNLI is identified as the product of average light intensity and proportion of intensely lit
area [30]. These nighttime light indices are calculated using following equations:

VTNL = ∑(DNi × ni), (1)

VI = VTNL/(DNmax × NL), (2)

VS = AN/A, (3)

VCNLI = VI ×VS, (4)

where VTNL, VI, VS, VCNLI denote the value of TNL, I, S, and CNLI, respectively; DNi and ni denote
the pixel value of the i level lighting and its corresponding pixel number within an administrative unit,
respectively; DNmax and NL denote the maximum value of lighting and the total pixel number of lit
area within an administrative unit, respectively; and AN and A denote the area of lit pixels within an
administrative unit and the total area of the administrative unit, respectively.

3.3. Regression Model and Simulation of GDP

To date, many regression models have been used for delineating the quantitative relationships
between socioeconomic variables and VIIRS nighttime light signals [12,13,27,28,31,32]. Because lighting
variables and socioeconomic parameters are different for diverse research scales, a single regression
model may not be able to estimate the GDP accurately at different levels of administrative unit.
To make the simulated GDP at the pixel level closer to the statistical data, four regression models
(linear model, quadratic polynomial model, power function, and exponential function), together with
the four commonly used light indices mentioned above, were selected to evaluate the quantitative
relationships between VIIRS light indices and GDP in both prefectural-level and county-level units.
Based on these regression analyses, the optimal regression model and light index was used to simulate
GDP. A relative error was used to evaluate the capacity of the best light index to predict GDP.

e = (g′ − g)/g, (5)

where g denotes the real GDP and g’ denotes the calculated GDP.

3.4. GDP Spatialization: Correction of Simulated GDP

To map the spatial distribution of GDP (GDP spatialization), GDP at the administrative unit
scale needs to be disaggregated to the pixel scale. However, high deviations may occur because the
simulated GDP at pixel level based on the optimal regression model was calculated directly using
the light pixel value rather than the total nighttime light value [11,13,27]. Therefore, it is necessary
to make corrections of the simulated GDP for each pixel in the administrative unit. The equation for
correcting the simulated GDP at pixel level is shown below [33]:

GDPP = (GDPt/GDPs)× GDPi, (6)

where GDPP represents the corrected GDP of a pixel, GDPt is the statistical GDP of each administrative
unit, GDPs is the sum of corresponding simulated GDP at pixel level by the optimal regression model,
and GDPi is the simulated GDP of a pixel.

4. Results

4.1. Correction Results for the VIIRS Nighttime Light Data

Figure 5a shows the corrected NPP-VIIRS data for South China in 2014. Figure 5b illustrates the
difference between the lighting value of the corrected and original imagery. The region bounded by
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the rectangle in Figure 5a was magnified in Figures 5c and 5d. As can be seen in Figure 5, the proposed
lighting correction method could correct some lit areas with weak light and abnormally strong light,
as well as pixels with negative DN values in the original NPP-VIIRS data. The range of difference
between the corrected lighting and the original lighting was from −106.703 to 0.052, and 1,791,484
pixels were corrected. Sampling area No. 1 in Figure 5 was located in Hechi city, Guangxi Province.
Some bright areas located in the northwest of Dahua County (Figure 5c) became dimmer in the
corrected data (Figure 5d). The lit area No. 1 indicated by the red circle and yellow arrow in Figure 5c
was the Yantan Reservoir. Lights before correction might be caused by vessels working at night. The
sampling area No. 2 in Figure 5 was in Nanning city, Guangxi Province. The lit area No. 2 indicated
by the red circle and yellow arrow was a state road across the southeast of Mashan county, which
was removed in the corrected imagery (Figure 5d). The lit area of reservoir and state road in Figure 5
were located in suburb area, where light from vessels and vehicles were not persistent. Comparison
results show that our correction method can remove the background noise and short-time lighting
from VIIRS data. The corrected VIIRS data we used were focused on simulation of stable GDP and
therefore might ignore that of non-persistent GDP. Because all raster were processed using a unified
standard, the corrected VIIRS data should be relatively reliable for GDP estimation.
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Figure 5. (a) The corrected VIIRS nighttime light data for South China in 2014. The region bounded by
the red rectangle is the sampling area. (b) The difference between the corrected and original lighting.
The red shaded area is the lit area where the lighting value is not modified. (c) The original; and
(d) corrected imagery of sampling region are Hechi (area No. 1) and Nanning (area No. 2). The two
example lit areas that were removed during correction are indicated by red circles and yellow arrows.

4.2. Regression Results

For the corrected NPP-VIIRS data, obvious quadratic polynomial relationships between the
GDP and four light indices at the prefecture level were found (Figure 6). At the prefecture level, the
R2 value of the TNL from corrected NPP-VIIRS data and GDP was 0.8935 (Figure 6a), whereas that of
other indices were much lower with R2 of 0.4192, 0.3125 and 0.4289 for I, S and CNLI, respectively
(Figure 6b–d). Clearly, the most significant statistical relationship between the TNL and the GDP
was found at the prefectural-level scale in South China, indicating that this index is suitable for
GDP estimation.
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Figure 6. Statistical relationships between GDP and four light indices for corrected VIIRS data at
the prefecture level: (a) the total nighttime light (TNL); (b) average nighttime light intensity (I);
(c) proportion of intensely lit area (S); and (d) compounded nighttime light index (CNLI).

The regression results at the county level revealed various relationships between GDP and the
four light indices (Figure 7). The quantitative relationship between GDP and TNL (R2 = 0.9243) was
portrayed by a quadratic polynomial model (Figure 7a), whereas that between GDP and the other
light indices showed weak correlations. I value showed a much weaker response to GDP (R2 = 0.1921),
using a quadratic polynomial model (Figure 7b). Figure 7c represented a weak exponential relationship
between GDP and S with an R2 value of 0.5122 under the best simulation. The quantitative relationship
between GDP and CNLI (R2 = 0.5062) was simulated by a power function (Figure 7d). Similar to
regression results at the prefecture scale, TNL was the best light index for simulating GDP at the
county-level scale. Moreover, a more significant quadratic polynomial relationship between GDP
and TNL at the county-level scale was found than that at the prefectural-level scale in South China
(R2 = 0.9243 vs. R2 = 0.8935). The outlier in Figure 6b,d represented processed results for Guangzhou
city in Guangdong province. The extremely low I and CNLI values for Guangzhou might be caused
by the high value of maximum nighttime light and the large proportion of lit areas of Guangzhou in
2014 based on a combined analysis with Equations (2) and (4).

Apart from the regression analysis for the corrected NPP-VIIRS data, the TNL-GDP relationships
at the prefecture and county level from the original NPP-VIIRS data were also evaluated (Figure 8).
At the prefecture level, the R2 value of the TNL from the original NPP-VIIRS data and GDP was
0.8813, which was a little lower than that from the corrected data (R2 = 0.8935). Similarly, at the
county level, the R2 value of the TNL from the original NPP-VIIRS data and GDP was lower than
that from the corrected data (R2 = 0.9140 vs. R2 = 0.9243). In addition, a more significant quadratic
polynomial relationship between the GDP and TNL at the county-level scale was found than that at
the prefecture-level scale in South China (R2 = 0.9140 vs. R2 = 0.8813).
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county level: (a) total nighttime light (TNL); (b) average nighttime light intensity (I); (c) proportion of
intensely lit area (S); and (d) compounded nighttime light index (CNLI).
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Figure 8. Statistical relationships between GDP and the total nighttime light (TNL) for the original
VIIRS data at: (a) prefecture level; and (b) county level.

The absolute relative error (ARE) denotes the absolute value of relative error and has been
widely used to further assess the capacity of the corrected and original NPP-VIIRS data in simulating
GDP [11,13,27]. For ease of display, we divided the ARE into three classes: 0–25% for high accuracy,
25–50% for moderate accuracy and >50% for inaccuracy. The predictability for the corrected and
original NPP-VIIRS imagery was quantified with the three indices listed in Table 2. Overall, the ARE
values of the corrected VIIRS data were much lower than those of the original NPP-VIIRS data. At the
prefecture level, there were 24 prefecture units with high accuracy in 38 regions (63.16%) when GDP
was predicted from the corrected NPP-VIIRS data, but only 22 prefecture units with high accuracy
when GDP was predicted from the original data. The ratios of the inaccurate predictions from both
the corrected and original NPP-VIIRS data were the same (7.89%). At the county level, the corrected
NPP-VIIRS data also showed a better capacity in simulating GDP, with 49.47% of higher accuracy
compared to 46.31% from the original data. The percentage of inaccurate simulation of GDP using the
corrected NPP-VIIRS data and that using the original data were the same (24.74%). Considering that
the calculated ARE was based on different scales, the difference between values of the prefecture units
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and county units was trivial. In summary, the comparative analysis of R2 values and ARE confirmed
that the corrected NPP-VIIRS data in this study were more reliable in simulating GDP at both the
prefecture and county level than the original NPP-VIIRS data.

Table 2. Accuracy at different levels of the simulated GDP.

Region and Data
Percent of Relative Error of the Simulated GDP (%)

High Accuracy Moderate Accuracy Inaccuracy

Prefectural level
Corrected NPP-VIIRS data 63.16 28.95 7.89
Original NPP-VIIRS data 57.89 34.22 7.89

County level Corrected NPP-VIIRS data 49.47 25.79 24.74
Original NPP-VIIRS data 46.31 28.95 24.74

4.3. Spatialization Results

Based on the GDP spatialization model in Section 3.4, a spatial GDP map for South China in
2014 was produced using the corrected NPP-VIIRS data and the regression model at the county
level. Figure 9 shows the pixel-level (500 m × 500 m) GDP map, which was simulated from the
regression model firstly at county-level units and then corrected by formula (6). The high GDPs
were concentrated in capital cities and developed cities for each province. The cities of Guangzhou,
Foshan, Shenzhen, Dongguan and Zhongshan in Guangdong province; Nanning, Liuzhou and Guilin
in Guangxi province; and Haikou in Hainan province all have different areas of high GDP regions
(red regions), where high levels of urbanization and socioeconomic development were agglomerated.
At the county level, the distribution of pixel-level GDP for South China in 2014 showed a certain
spatial variability. County-level units with higher GDP levels were generally located in the southeast
coastal areas, while those with lower GDP levels were distributed in western and northern inland
areas. Each county-level unit had at least two different GDP levels, and administrative units with
higher GDPs showed a more pronounced spatial heterogeneity. Moreover, GDPs in coastal regions of
the Pearl River Delta were extremely high. Combined with the reality, county-level units with higher
GDP levels were usually the localities of city districts, and those owing lower GDP levels far away
from the red or orange areas were non-city districts.
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Comparing Figures 3 and 9, there seemed to be some correlation between GDP and
geomorphological features. GDP values were generally high in regions with simple landforms.
Figure 10 revealed the distribution characteristics of GDP within different geomorphological types in
South China in the year of 2014. Both the total GDP and its intensity in the low altitude regions showed
higher values than those in the middle altitude ones. The low altitude plain of South China had the
largest GDP value and GDP intensity in 2014 with up to nearly 5,000,000 million Yuan and 66 million
Yuan per square kilometer, respectively. Compared with GDPs in the low altitude plain, total GDP and
its intensity were a bit lower in the units of other low altitude geomorphological types (low altitude
platform, low altitude hill, low-relief low altitude mountain, and middle-relief low altitude mountain),
and reflected a gradually declining trend. In the middle altitude regions, GDP intensity in the middle
altitude plain areas was relative high, followed by middle altitude hills. In summary, during the
year of 2014, the low altitude plain had the most active economic activities in South China, and low
altitude regions were more economically developed than middle altitude regions. Moreover, plains
and platforms were the main economic zones in South China, and the GDPs of mountainous areas
remained to be developed. These results for the economic differences in different geomorphological
types are consistent with our general understanding, which helps to verify the accuracy of pixel-level
GDP in this study from another angle.
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5. Discussion

In this study, the relationships between nighttime indices and GDP at the prefecture and county
level for South China in 2014 were quantitatively assessed. Since the fit between TNL and GDP at the
county level proved to be more reliable, each county-level GDP was disaggregated to an individual
pixel based on pixel values of corrected NPP-VIIRS data and then a linear correction method was used
for GDP spatialization. Spatial variations of GDP were clearly exhibited by the GDP map. Based on
this, the difference between the spatialized GDP and statistical GDP within a prefecture unit ranged
from −24,000 Yuan to 35,000Yuan, and that within a county-level unit ranged from −34,000 Yuan to
80,000 Yuan. From the regression analysis (Figure 11), we can determine that the spatialized GDP from
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the corrected NPP-VIIRS data in 2014 basically coincided with the GDP from the statistical yearbooks,
again verifying that the pixel-level GDP could accurately reflect the real status of the economy in South
China in 2014.Remote Sens. 2017, 9, 673; doi:10.3390/rs9070673 13 of 20 
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Although the corrected NPP-VIIRS nighttime light data improved the accuracy of GDP estimation,
results of spatialized GDP still contained some uncertainties, caused by following factors. Firstly, the
reliability of statistical data directly affects the accuracy of regression models and spatialized results
since the statistical data are the basis for the regression analysis. Secondly, despite the preprocessing
procedures used in this study to reduce the background noise from the original NPP-VIIRS data, the
corrected NPP-VIIRS data still inevitably contain some noises, which may affect the GDP estimation.
Thirdly, missing statistics at county-level units may also affect the accuracy of the results. For example,
during the process of statistical collection and consolidation, statistical data of a few county-level
units within the same prefecture-level units were missing. To match the available statistical GDP to
the boundaries of administrative units as closely as possible, county-level units with missing data,
located in the same prefecture-level unit, were merged to generate a new county-level unit. Thus,
the total GDP of the new unit was calculated by the total GDP of prefecture-level unit and the GDPs
of county-level units, which may cause the confusion of data scale. Fourthly, using VIIRS single
data, it is difficult to fully and accurately express the spatial heterogeneity of GDP distribution, and
may lead to an overestimation or underestimation of GDP at the local area. For areas where steel
and thermal power generation are the main industries, the local high lighting may lead to a GDP
overvaluation, while for areas dominated by industries of coal and iron ore, lighting cannot fully
reflect GDP output, resulting in a lower estimation of GDP. In summary, it is likely to enhance the
accuracy of GDP estimation by improving the availability and quality of statistical data and NPP-VIIRS
data, introducing multi-source data and optimizing the methods of nighttime light data correction.
In addition, responses of NPP-VIIRS nighttime light data to economic activities vary across study
areas, scales and periods. Understanding how to quantify the diverse relationships between light
brightness and economic parameters and build a common model for all cases may be the key issue for
the evaluation of regional GDP in a quick and reliable way.

The major contributions of this study are twofold. Firstly, previous studies have used linear or
log-linear models to statistically fit the relationships between the locally average or total nighttime
light radiance and corresponding socioeconomic variables across the county-level, prefecture-level and
province-level scales, whereas this research calculated common nighttime light indices of statistical
units at different scales and explored the best fitting model for each case. Accordingly, the notable
advantage of TNL in predicting GDP was verified and the quadratic polynomial model was proved to
be more suitable in fitting the relationships between locally TNL and GDP rather than the simple linear
relationship used in previous studies. Secondly, although the utility of NPP-VIIRS nighttime light
data for assessing economic activities has been extensively verified through the significant correlations
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of nighttime light brightness and corresponding economic variables, no research has reported the
ability of NPP-VIIRS data to estimate pixel-level GDP. The spatialized GDP in this study was obtained
through linear correction, which greatly reduced the deviation of pixel-level GDP simulated by the
pixel value of light brightness. The spatialization of GDP provides more accurate and efficient data
sources for GDP statistics at pixel-level scales, which will benefit a comprehensive understanding of
the dynamics of local economies and the decision making for sustainable economic development.

When analyzing the economic spatial distribution of South China, we mainly focused on
the economic differences among diverse geomorphological types. Compared to the influence
of anthropogenic factors, that of topography and geomorphology on economic development has
gradually declined. However, no previous study has clearly demonstrated that the role of landform
can be ignored. Although it seems that we did not find any new findings from the quantitative
results in 2014, with the accelerated urbanization and industrial transformation, analysis on long-term
spatial-temporal differences of economic status among different geomorphological types would help
to obtain valuable findings, which is of great significance for regional sustainable development.

Since statistical data in 2015 were not available at the beginning of this experiment, the statistical
data and monthly NPP-VIIRS nighttime light images in 2014 were selected to study the latest
economic pattern of South China. Currently, a series of NPP-VIIRS data are available including
monthly composites from April 2012 to November 2016. As NOAA/NGDC is working to produce
more NPP-VIIRS data with higher quality, further research can be focused on multi-temporal
image analysis for revealing the spatiotemporal patterns of GDP. In addition, other types of data,
including geomorphological data, land cover data, population data, disaster data, and ecological
data shall be applied to study economic development and its impact on the ecological environment
and human activities, and to explore the coupled mechanism between economic development and
ecological environment.

6. Conclusions

GDP is an important indicator for reflecting the intensity of economic activities, and the
spatialization of GDP can provide an important basis for the overlay analysis of natural and human
factors. In this study, composite annual NPP-VIIRS data were obtained by averaging the pixel
brightness of monthly NPP-VIIRS nighttime light data. As the composite NPP-VIIRS data are
a preliminary product, a sequence of correction procedures were employed to reduce the background
noises and high-value anomalies. Based on the corrected NPP-VIIRS data, optimal regression models
between the nighttime light indices and corresponding GDP statistical data at both the prefecture and
county level were established. Through the analysis of estimated results, the best regression model
was selected to spatialize the GDP, and the spatial distribution of GDP was produced based on a pixel
size of 500 m × 500 m in South China in 2014. Finally, using the basic geomorphological types in South
China, we analyzed the spatial characteristics of GDP within different geomorphological units in South
China to explore the intensity of economic activities under different geomorphological environments.

The TNL brightness was found to exhibit a strong capacity in reflecting the real status of the
regional economy. Quadratic polynomial relationships were found between the TNL brightness of
NPP-VIIRS data and the corresponding GDP at both prefecture level and county level in the case study
for South China, among which the corrected NPP-VIIRS nighttime light data showed a better fit than
the original data, and the county-level fit was better than the prefecture-level fit.

The linearized correction of the simulated GDP greatly improved the accuracy of GDP estimation,
resulting in a more realistic and detailed reflection of the spatial distribution of GDP in South China in
2014. The GDP of coastal areas was generally higher than that of inland areas, and the economy of the
Pearl River Delta region was extremely active.

The total GDP and its intensity in the low altitude region of South China were significantly
higher than those in the middle altitude region. Compared with platforms, hills and mountains, the
economy in plains was more active, especially plains in the low altitude region. The low altitude plain
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was the most economically developed area in South China, followed by low altitude platforms and
low altitude hills. Economic development in the middle altitude region and low altitude hills and
mountains remained to be strengthened. These results are consistent with our general understandings,
and will contribute to verifying the accuracy of pixel-level GDP from another angle.
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Appendix A

Table A1. A list of the prefecture-level and county-level administrative units for South China. The
county-level units we used are in the last column.

Province Prefecture-Level Unit Original County-Level Unit Final County-Level Unit

Guangdong Guangzhou Guangzhou Municipality Guangzhou and Zengcheng and
ConghuaGuangdong Guangzhou Zengcheng Municipality

Guangdong Guangzhou Conghua Municipality
Guangdong Shaoguan Shaoguan Municipality Shaoguan and Qujiang
Guangdong Shaoguan Qujiang County
Guangdong Shaoguan Shixing County Shixing County
Guangdong Shaoguan Renhua County Renhua County
Guangdong Shaoguan Wengyuan County Wengyuan County
Guangdong Shaoguan Ruyuan Yao A.C. Ruyuan Yao A.C.
Guangdong Shaoguan Xinfeng County Xinfeng County
Guangdong Shaoguan Lechang Municipality Lechang Municipality
Guangdong Shaoguan Nanxiong Municipality Nanxiong Municipality
Guangdong Shenzhen Shenzhen Municipality Shenzhen Municipality
Guangdong Zhuhai Zhuhai Municipality Zhuihai Municipality
Guangdong Shantou Shantou Municipality Shantou Municipality
Guangdong Shantou Nan’ao County Nan’ao County
Guangdong Foshan Foshan Municipality Foshan Municipality
Guangdong Jiangmen Jiangmen Municipality Jiangmen Municipality
Guangdong Jiangmen Taishan Municipality Taishan Municipality
Guangdong Jiangmen Kaiping Municipality Kaiping Municipality
Guangdong Jiangmen Heshan Municipality Heshan Municipality
Guangdong Jiangmen Enping Municipality Enping Municipality
Guangdong Zhanjiang Zhanjiang Municipality Zhanjiang Municipality
Guangdong Zhanjiang Suixi County Suixi County
Guangdong Zhanjiang Xuwen County Xuwen County
Guangdong Zhanjiang Lianjiang Municipality Lianjiang Municipality
Guangdong Zhanjiang Leizhou Municipality Leizhou Municipality
Guangdong Zhanjiang Wuchuan Municipality Wuchuan Municipality
Guangdong Maoming Maoming Municipality Maoming and Dianbai
Guangdong Maoming Dianbai County
Guangdong Maoming Gaozhou Municipality Gaozhou Municipality
Guangdong Maoming Huazhou Municipality Huazhou Municipality
Guangdong Maoming Xinyi Municipality Xinyi Municipality
Guangdong Zhaoqing Zhaoqing Municipality Zhaoqing Municipality
Guangdong Zhaoqing Guangning County Guangning County
Guangdong Zhaoqing Huaiji County Huaiji County
Guangdong Zhaoqing Fengkai County Fengkai County
Guangdong Zhaoqing Deqing County Deqing County
Guangdong Zhaoqing Gaoyao Municipality Gaoyao Municipality
Guangdong Zhaoqing Sihui Municipality Sihui Municipality
Guangdong Huizhou Huizhou Municipality Huizhou Municipality
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Table A1. Cont.

Province Prefecture-Level Unit Original County-Level Unit Final County-Level Unit

Guangdong Huizhou Boluo County Boluo County
Guangdong Huizhou Huidong County Huidong County
Guangdong Huizhou Longmen County Longmen County
Guangdong Meizhou Meizhou Municipality

Meizhou and MeiGuangdong Meizhou Mei County
Guangdong Meizhou Dapu County Dapu County
Guangdong Meizhou Fengshun County Fengshun County
Guangdong Meizhou Wuhua County Wuhua County
Guangdong Meizhou Pingyuan County Pingyuan County
Guangdong Meizhou Jiaoling County Jiaoling County
Guangdong Meizhou Xingning Municipality Xingning Municipality
Guangdong Shanwei Shanwei Municipality Shanwei Municipality
Guangdong Shanwei Haifeng County Haifeng County
Guangdong Shanwei Luhe County Luhe County
Guangdong Shanwei Lufeng Municipality Lufeng Municipality
Guangdong Heyuan Heyuan Municipality Heyuan Municipality
Guangdong Heyuan Zijin County Zijin County
Guangdong Heyuan Longchuan County Longchuan County
Guangdong Heyuan Lianping County Lianping County
Guangdong Heyuan Heping County Heping County
Guangdong Heyuan DongYuan County DongYuan County
Guangdong Yangjiang Yangjiang Municipality Yangjiang and Yangdong
Guangdong Yangjiang Yangdong County
Guangdong Yangjiang Yangxi County Yangxi County
Guangdong Yangjiang Yangchun Municipality Yangchun Municipality
Guangdong Qingyuan Qingyuan Municipality Qiangyuan and Qingxin
Guangdong Qingyuan Qingxin County
Guangdong Qingyuan Fogang County Fogang County
Guangdong Qingyuan Yangshan County Yangshan County

Guangdong Qingyuan Lianshan Zhuang and Yao
A.C. Lianshan Zhuang and Yao A.C.

Guangdong Qingyuan Liannan Yao A.C. Liannan Yao A.C.
Guangdong Qingyuan Yingde Municipality Yingde Municipality
Guangdong Qingyuan Lianzhou Municipality Lianzhou Municipality
Guangdong Dongguan Dongguan Municipality Dongguan Municipality
Guangdong Zhongshan Zhongshan Municipality Zhongshan Municipality
Guangdong Chaozhou Chaozhou Municipality

Chaozhou and ChaoanGuangdong Chaozhou Chaoan County
Guangdong Chaozhou Raoping County Raoping County
Guangdong Jieyang Jieyang Municipality Jieyang and Jiedong
Guangdong Jieyang Jiedong County
Guangdong Jieyang Jiexi County Jiexi County
Guangdong Jieyang Huilai County Huilai County
Guangdong Jieyang Puning Municipality Puning Municipality
Guangdong Yunfu Yunfu Municipality

Yunfu and Yun’anGuangdong Yunfu Yun’an County
Guangdong Yunfu Xinxing County Xinxing County
Guangdong Yunfu Yu’nan County Yu’nan County
Guangdong Yunfu Luoding Municipality Luoding Municipality
Guangxi Nanning Nanning Municipality Nanning Municipality
Guangxi Nanning Yongning County Yongning County
Guangxi Nanning Wuming County Wuming County
Guangxi Nanning Longan County Longan County
Guangxi Nanning Mashan County Mashan County
Guangxi Nanning Shanglin County Shanglin County
Guangxi Nanning Binyang County Binyang County
Guangxi Nanning Heng County Heng County
Guangxi Liuzhou Liuzhou Municipality Liuzhou Municipality
Guangxi Liuzhou Liujiang County Liujiang County
Guangxi Liuzhou Liucheng County Liucheng County
Guangxi Liuzhou Luzhai County Luzai County
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Table A1. Cont.

Province Prefecture-Level Unit Original County-Level Unit Final County-Level Unit

Guangxi Liuzhou Rongan County Rongan County
Guangxi Liuzhou Rongshui Miao A.C. Rongshui Miao A.C.
Guangxi Liuzhou Sanjiang Dong A.C. Sanjiang Dong A.C.
Guangxi Guilin Guilin Municipality Guilin Municipality
Guangxi Guilin Yangshuo County Yangshuo County
Guangxi Guilin Lingui County Lingui County
Guangxi Guilin Lingchuan County Lingchuan County
Guangxi Guilin Quanzhou County Quanzhou County
Guangxi Guilin Xing’an County Xing’an County
Guangxi Guilin Yongfu County Yongfu County
Guangxi Guilin Guanyang County Guanyang County
Guangxi Guilin Longsheng Ge A.C. Longsheng Ge A.C.
Guangxi Guilin Ziyuan County Ziyuan County
Guangxi Guilin Pingle County Pingle County
Guangxi Guilin Lipu County Lipu County
Guangxi Guilin Gongcheng Yao A.C. Gongcheng Yao A.C.
Guangxi Wuzhou Wuzhou Municipality Wuzhou Municipality
Guangxi Wuzhou Cangwu County Cangwu County
Guangxi Wuzhou Teng County Teng County
Guangxi Wuzhou Mengshan County Mengshan County
Guangxi Wuzhou Cenxi Municipality Cenxi Municipality
Guangxi Beihai Beihai Municipality Beihai Municipality
Guangxi Beihai Hepu County Hepu County
Guangxi Fangchenggang Fangchenggang Municipality Fangchenggang Municipality
Guangxi Fangchenggang Fangcheng District Fangcheng District
Guangxi Fangchenggang Shangsi County Shangsi County
Guangxi Fangchenggang Dongxing Municipality Dongxing Municipality
Guangxi Qinzhou Qinzhou Municipality Qinzhou Municipality
Guangxi Qinzhou Qinbei District Qinbei District
Guangxi Qinzhou Lingshan County Lingshan County
Guangxi Qinzhou Pubei County Pubei County
Guangxi Guigang Guigang Municipality Guigang Municipality
Guangxi Guigang Gangbei District Gangbei and Qintang
Guangxi Guigang Qintang District
Guangxi Guigang Pingnan County Pingnan County
Guangxi Guigang Guiping Municipality Guiping Municipality
Guangxi Yulin Yulin Municipality Yulin Municipality
Guangxi Yulin Rong County Rong County
Guangxi Yulin Luchuan County Luchuan County
Guangxi Yulin Bobai County Bobai County
Guangxi Yulin Xingye County Xingye County
Guangxi Yulin Beiliu Municipality Beiliu Municipality
Guangxi Baise Baise Municipality Baise Municipality
Guangxi Baise Tianyang County Tianyang County
Guangxi Baise Tiandong County Tiandong County
Guangxi Baise Pingguo County Pingguo County
Guangxi Baise Debao County Debao County
Guangxi Baise Jingxi County Jingxi County
Guangxi Baise Napo County Napo County
Guangxi Baise Lingyun County Lingyun County
Guangxi Baise Leye County Leye County
Guangxi Baise Tianlin County Tianlin County
Guangxi Baise Xilin County Xilin County
Guangxi Baise Longlin Ge A.C. Longlin Ge A.C.
Guangxi Hezhou Hezhou Municipality Hezhou Municipality
Guangxi Hezhou Zhaoping County Zhaoping County
Guangxi Hezhou Zhongshan County Zhongshan County
Guangxi Hezhou Fuchuan Yao A.C. Fuchuan Yao A.C.
Guangxi Hechi Hechi Municipality Hechi Municipality
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Table A1. Cont.

Province Prefecture-Level Unit Original County-Level Unit Final County-Level Unit

Guangxi Hechi Nandan County Nandan County
Guangxi Hechi Tiane County Tiane County
Guangxi Hechi Fengshan County Fengshan County
Guangxi Hechi Donglan County Donglan County
Guangxi Hechi Luocheng Mulao A.C. Luocheng Mulao A.C.
Guangxi Hechi Huanjiang Maonan A.C. Huangjiang Maonan A.C.
Guangxi Hechi Bama Yao A.C. Bama Yao A.C.
Guangxi Hechi Du’an Yao A.C. Du’an Yao A.C.
Guangxi Hechi Dahua Yao A.C. Dahua Yao A.C.
Guangxi Hechi Yizhou Municipality Yizhou Municipality
Guangxi Laibin Laibin Municipality Laibin Municipality
Guangxi Laibin Xincheng County Xincheng County
Guangxi Laibin Xiangzhou County Xiangzhou County
Guangxi Laibin Wuxuan County Wuxuan County
Guangxi Laibin Jinxiu Yao A.C. Jinxiu Yao A.C.
Guangxi Laibin Heshan Municipality Heshan Municipality
Guangxi Chongzuo Chongzuo Municipality Chongzuo Municipality
Guangxi Chongzuo Fusui County Fusui County
Guangxi Chongzuo Ningming County Ningming County
Guangxi Chongzuo Longzhou County Longzhou County
Guangxi Chongzuo Daxin County Daxin County
Guangxi Chongzuo Tiandeng County Tiandeng County
Guangxi Chongzuo Pingxiang Municipality Pingxiang Municipality
Hainan Haikou Haikou Municipality Haikou Municipality
Hainan Sanya Sanya Municipality Sanya Municipality
Hainan Provincial county Wuzhishan Municipality Wuzhishan Municipality
Hainan Provincial county Qionghai Municipality Qionghai Municipality
Hainan Provincial county Danzhou Municipality Danzhou Municipality
Hainan Provincial county Wenchang Municipality Wenchang Municipality
Hainan Provincial county Wanning Municipality Wanning Municipality
Hainan Provincial county Dongfang Municipality Dongfang Municipality
Hainan Provincial county Ding’an County Ding’an County
Hainan Provincial county Tunchang County Tunchang County
Hainan Provincial county Chengmai County Chengmai County
Hainan Provincial county Lingao County Lingao County
Hainan Provincial county Baisha Li A.C. Baisha Li A.C.
Hainan Provincial county Changjiang Li A.C. Changjiang Li A.C.
Hainan Provincial county Ledong Li A.C. Ledong Li A.C.
Hainan Provincial county Lingshui Li A.C. Lingshui Li A.C.
Hainan Provincial county Baoting Li and Miao A.C. Baoting Li and Miao A.C.
Hainan Provincial county Qiongzhong Li and Miao A.C. Qiongzhong Li and Miao A.C.

1 A.C. is the abbreviation of Autonomous County.
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