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Abstract:



The knowledge of spatial and temporal variability of soil water content and others soil-vegetation variables (leaf area index, fractional cover) assumes high importance in crop management. Where and when the cloudiness limits the use of optical and thermal remote sensing techniques, synthetic aperture radar (SAR) imagery has proven to have several advantages (cloud penetration, day/night acquisitions and high spatial resolution). However, measured backscattering is controlled by several factors including SAR configuration (acquisition geometry, frequency and polarization), and target dielectric and geometric properties. Thus, uncertainties arise about the more suitable configuration to be used. With the launch of the ALOS Palsar, Cosmo-Skymed and Sentinel 1 sensors, a dataset of multi-frequency (X, C, L) and multi-polarization (co- and cross-polarizations) images are now available from a virtual constellation; thus, significant issues concerning the retrieval of soil-vegetation variables using SAR are: (i) identifying the more suitable SAR configuration; (ii) understanding the affordability of a multi-frequency approach. In 2006, a vast dataset of both remotely sensed images (SAR and optical/thermal) and in situ data was collected in the framework of the AgriSAR 2006 project funded by ESA and DLR. Flights and sampling have taken place weekly from April to August. In situ data included soil water content, soil roughness, fractional coverage and Leaf Area Index (LAI). SAR airborne data consisted of multi-frequency and multi-polarized SAR images (X, C and L frequencies and HH, HV, VH and VV polarizations). By exploiting this very wide dataset, this paper, explores the capabilities of SAR in describing four of the main soil-vegetation variables (SVV). As a first attempt, backscattering and SVV temporal behaviors are compared (dynamic analysis) and single-channel regressions between backscattering and SVV are analyzed. Remarkably, no significant correlations were found between backscattering and soil roughness (over both bare and vegetated plots), whereas it has been noticed that the contributions of water content of soil underlying the vegetation often did not influence the backscattering (depending on canopy structure and SAR configuration). Most significant regressions were found between backscattering and SVV characterizing the vegetation biomass (fractional cover and LAI). Secondly, the effect of SVV changes on the spatial correlation among SAR channels (accounting for different polarization and/or frequencies) was explored. An inter-channel spatial/temporal correlation analysis is proposed by temporally correlating two-channel spatial correlation and SVV. This novel approach allowed a widening in the number of significant correlations and their strengths by also encompassing the use of SAR data acquired at two different frequencies.
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1. Introduction


A positive impact on hydrology as well as on modern agricultural practices can be achieved by monitoring spatial and temporal dynamics of some land surface variables such as soil water content, mv, and vegetation. Despite the fact that synthetic aperture radar (SAR) allows acquiring in all weather conditions, unassessed strengthenings of the relations among backscattering, σ°, at different frequencies and polarizations and soil-vegetation variables (SVV) are limiting the operational application of SAR. Indeed, SAR configuration controls the wave-target interactions [1,2] and, thus, affects models’ assessments depending on its frequency, polarization and acquisition geometry.



The dependence of bare soils σ°, σ°S, on both water content and surface roughness was modeled by several authors [1,2,3,4,5]. However, the need of a prior knowledge of the soil surface roughness could reduce the feasibility of SAR techniques [4,6,7,8]. Indeed, reliable roughness measures are hardly achievable: (i) in situ measurements with contact methods (e.g., grid board [9]) are point based and usually not representative at plot scale; (ii) innovative methodologies (e.g., non-contact ultrasonic profiling) are capable of describing wide areas but still economically expensive (i.e., requiring airborne acquisitions).



Over vegetated areas an additional σ° contribution, σ°V, needs to be taken into account. Several authors, investigated σ°V by setting up theoretical models [10,11,12] schematizing the vegetation as simple targets of known geometry (such as plates and cylinders). Simple empirical models, avoiding a rigorous mathematical and geometrical simulation of the canopy, are often based on ratios of bands acquired at different polarizations [13,14,15,16]. The need of a priori characterization of vegetation structure (hardly achievable through in situ campaigns) reduces the operational use of SAR in agriculture.



In recent years, several researches focused on mv quantification (over both bare, B, and vegetated, V, soils) explored different SAR configurations and approaches by testing (Table 1): (i) the use of temporal indices; (ii) the integration of passive microwaves and in situ data; (iii) different σ° models; (iv) the conjunct use of complex statistical models (such as Bayesian approach); (v) empirical fitting and ratio methods (refer to the Appendix A for symbols and acronyms). There were several approaches: empirical, EA; semi-empirical, SEA; theoretical, TA; polarimetric, PA; statistical SA, these latter employing Neural Networks, polarimetric indices or, channels ratio. Some authors calibrated σ° models such as: IEM (Integral Equation Model [4]), WC (Water-Cloud model [17]); GO (Geometrical Optics [4]); Dubois [1]; Oh [2,3]; RTM (Radiative Transfer Model); MIMICS (Michigan Microwave Canopy Scattering model [18]). Several authors separated soil and vegetation contributions by exploiting more than two polarizations (single frequency), by parameterizing the WC through in situ data.



Table 1. mv retrieval using SAR: overview table on previous studies. Accuracy is reported in terms of: determination coefficient, r2; correlation, r; root mean square error, rmse; average absolute deviation, aad; and mean square error, mse. For detailed notes please refer to Appendix A.
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All these approaches are usually based on regression analyses among σ° and SVV (i.e., soil roughness, water content, fractional cover and leaf area index). It is well known that SAR configuration (acquisition geometry, frequency and polarization) plays a fundamental role in the σ° vs. SVV relationship; thus it is expected that modifications of some SVV change also the spatial correlation between data acquired with different configurations.



Based on this evidence, this paper firstly aims to quantify the strength of the relation among σ° and four SVV (dynamic and single regression analyses) over bare and vegetated soils, over a wide range of cultivars and for different SAR configurations. These first sections are tailored to address: (i) frequencies and polarizations showing the highest sensitivities of σ° to the dynamic of the selected SVV; (ii) SAR configurations suitable to estimate SVV changes; (iii) frequencies and polarizations carrying redundant information.



Afterwards, the paper shows the effect of SVV changes on the spatial correlation among SAR channels and proposes, as novel approach, the use of temporal regressions of two-channel spatial correlations vs. SVV to explore any improvement achievable compared to the single-channel regression approach.




2. Study Area


In situ and SAR data have been collected on the 24 km2 DEMMIN (Durable Environmental Multidisciplinary Monitoring Information Network) test site (Figure 1). The site is hosted by a farm located in Mecklenburg-Western Pomerania in North-Eastern Germany (Görmin farm, 53°59′33′′N–13°16′40′′E, EPSG 4326).


Figure 1. LHV diachronic composition of the DEMMIN test-area (R: 24 May; G: 21 June; B: 26 July). Labels indicating crop IDs and cultivars are over-imposed.
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Nine crops were monitored over one or more plots (the plot identifier is reported between brackets): wheat (IDs 230 and 250), rape (IDs 101 and 140), barley (IDs 440 and 450), maize (ID 222) and sugar beet (IDs 102, 460). Sowing and harvesting dates are reported in Table 2. Noticeable, these cultivars are characterized by different vegetation architecture. Main soil textures in the Görrmin area were loamy sand and sandy loam. Within this area, the 9 monitored plots are characterized by loamy sand texture. In particular, the soil texture of plots 222, 450 and 140 is predominantly loamy sand; plot 460 is characterized by loamy sand and slightly loamy sand soil; whereas the other plots are characterized by both loamy sand and strong loamy sand soils.



Table 2. Sowing and harvesting dates for main crops during the investigation period; plots IDs are reported within brackets.







	
Crop (ID)

	
Sowing Dates

	
Harvest Dates






	
Wheat (230, 250)

	
5 September–31 October

	
15–31 August




	
Barley (440, 450)

	
12–25 September

	
15–25 July




	
Rape (101, 140)

	
8 August–5 September

	
28 July–10 August




	
Maize (222)

	
20 April–5 May

	
25 September–10 October




	
Sugar beet (102, 460)

	
25 March–20 April

	
25 September–31 October











3. Materials


Data have been collected between April and August 2006 in the framework of the AgriSAR 2006 project (funded by the European Space Agency, ESA) primarily planned to address programmatic needs of Sentinel-1 two-satellite constellation. AgriSAR 2006 campaign was specifically tailored to investigate σ° dynamic throughout the crop-growing season. The dataset includes weekly in situ measures and airborne SAR and optical images.



In particular, in situ data have been collected by the Leibnitz-Zentrum für Agrarlandschaftsforschung (ZALF) and the University of Kiel (Christian-Albrechts-Universität, Department of Geography) almost simultaneously to SAR and optical flights. Measurements of mv (at 0–5 and 5–10 cm below ground level, b.g.l.), soil surface roughness, fractional cover, Fv, and LAI were acquired by the research teams along 16 campaigns. In situ LAI and mv were measured using a LICOR-2000 and a portable IMKO TRIME-FM TDR respectively, root mean square of roughness height, h’, was characterized with a laser profiler and a Rollei d7 metric digital stereoscopic system [48]. A TDR probe (IMKO TRIME-ES, theoretical accuracy of ±0.01–±0.03 m3m−3) was installed from the Ludwig-Maximilians Universitat München (LMU) and the University of Kiel on fields 102 (sugar beet) and 250 (wheat) providing measures of mv at 5 depths (5, 9, 15, 25 and 47 cm b.g.l.) with a temporal resolution of half an hour. Approximately 1150 measurements were executed, equally spread among plots and acquisition times. In particular, ~24 measurements were carried out for each in situ campaign; for each plot, always the same locations were taken into account; ~36 measurements per plot was carried out during the whole in situ campaign for each SVV. The sugar beet field was completely bare from the first campaign in 19 April until 11 May (Fv reached 10% in 7 June); maize field was completely bare until the end of May. Other fields were vegetated until July; rape and barley were harvested during the airborne SAR campaign (Figure 2).


Figure 2. Temporal photo sequence of some Görmin’s fields. Pictures were collected during the investigation periods by ZALF and LMU institutes; the white gridded panel (1 m × 1 m size, 10 cm × 10 cm grid resolution) allows estimating the vegetation height evolution.
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During the investigation three drying periods occurred; mv varies in the range [0.34–0.06 m3m−3] with some differences among fields. In maize crop, mv was higher than in other fields, probably only due to the root-zone water dynamics of this cultivar (the soil texture was similar to the other monitored plots); mv in barley, wheat, sugar beet and rape fields behaves similarly during the whole period. Finally, temporal trends of h’ over barley, rape and wheat fields are quite similar; whereas h’ exhibits higher values and different temporal behavior over maize and sugar beet (Figure 3).


Figure 3. Temporal dynamic of spatially averaged mv, h’, Fv and LAI. Blue bars mark mv peaks separating consecutive drying periods occurred at all crops except for maize in which the second drying period was shorter (see the dashed bar).
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The SAR dataset includes 120 images acquired in X, C and L bands (central wavelengths: 2, 5, and 21 cm respectively) in dual polarization (HH and VV for X band) and in quad-polarization (HH, VV, VH and HV for C and L bands). Flights were weekly carried out from the 9th of April to the 2nd of August by an airborne E-SAR (Experimental SAR), operated by the German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt—DLR). The E-SAR sensor was on board a Do228 aircraft; although a total of 16 radar flights were executed during the AgriSAR 2006 campaign, the 12 performed in the E-W direction were considered in this research. The deployment of corner reflectors of 20 cm × 20 cm during one of the in situ campaigns allowed obtaining multi-look, geo-coded and calibrated σ° products at a raw spatial resolution, RS, of 2 m.



During the airborne SAR acquisitions, high variability of mv, Fv and LAI occurred over both bare and vegetated soils, including different cultivars. Thus, AgriSAR 2006 dataset allows investigating (i) how σ° is controlled by changes of SVV and, (ii) how SAR configuration (acquisition geometry, frequency and polarization) rules the relationships between σ° and SVV.




4. Methods


For bare soils, h’ and mv were included in the analysis; whereas, over vegetation the behavior of σ° was assessed under a wide range of mv for different cultivars with varying h’, LAI, and Fv.



Different data analyses were carried out: (i) dynamic analysis of both σ° and SVV over all fields and over a selected plot; (ii) single regressions between σ° and SVV; (iii) single regression analysis between inter-channel spatial correlation and SVV at plot scale.



4.1. Data Aggregation


As a preliminary step, images were spatially averaged to reduce the speckle. Although several filters have been proposed to this aim [49,50,51,52,53] a simple spatial averaging technique was preferred. Indeed, the spatial aggregation limits inaccuracies in the comparison between σ° and in situ data due to georeferencing errors and GPS positioning uncertainties, respectively. The more appropriated RS was selected based on the values assumed by the Moran index IM [54] and the speckle index, IS [55].




4.2. Dynamic Analyses


This section is focused on the investigation of σ° temporal behavior. In the first subsection, σ° dynamic was evaluated at different frequencies and polarizations during the whole period for varying SVV. Subsequently, the σ° temporal dynamic is qualitatively compared to SVV changes for two selected plots.



4.2.1. Dynamic Analysis: All Plots


Firstly, it was analyzed the σ° dynamic at different frequencies and polarizations (hereinafter referred to as channel) during the whole period, in which variations of mv, h’, LAI and Fv occurred.



For each plot the σ° range of variability, ∆σ°plot, was evaluated. Then, for each channel, metrics such us the average of ∆σ°plot, ∆σ°avg, and standard deviation of ∆σ°plot, ∆σ°stdev, were quantified. The higher ∆σ°avg the more the channel sensitivity to SVV changes, the higher ∆σ°stdev the more heterogeneity among plots. The corresponding metrics computed on ∆h’, ∆mv, ∆Fv and ∆LAI are discussed within the corresponding result Section 5.2.1. Backscattering varies with the dielectric and geometric properties of the soil-vegetation system. In particular, dielectric properties are ruled by mv (for the soil layer) and canopy water content; whereas, the geometric properties are ruled by h’ (for the soil layer) and by both vegetation biomass (Fv and LAI) and canopy structure (this latter has not been parameterized during the campaign).




4.2.2. Dynamic Analysis: Two Selected Plots


This analysis was performed for two selected plots: the first displayed soil drying over both bare and vegetated stages (plot 460, sugar beet); the second (plot 450, barley) was fully vegetated from April to July, then, it was harvested and thus, was bare during the last two SAR acquisitions. The analysis allows understanding how σ° behaves with mv over changing SVV. Outcomes over the first plot allow evaluating which channels have the higher sensitivity to vegetation growth. The dynamic of σ° over the second selected plot allows evaluating which channels have higher sensitivity to mv when the soil is beneath a vegetation canopy.





4.3. Temporal Single Regression Analysis


Because of the speckle noise affecting SAR images at raw resolution, operational applications are to be preferred using spatially aggregated images by averaging both in situ measures and the corresponding aggregated σ° values. Thus, temporal single regressions among σ° and SVV were analyzed to address the application of semi-empirical models over bare and vegetated plots; mv and h’ were analyzed over bare soil, whereas, Fv and LAI were also explored over vegetated areas.




4.4. Inter-Channel Spatial/Temporal Correlation


A target is expected exhibiting different dielectric and geometrical properties if sensed with distinct SAR configurations. Thus, a pixel based spatial correlation image, rsp, was evaluated for each plot using a moving kernel. A plot representative spatial correlation, rs, was obtained by averaging values of rsp co-localized to in situ measures. The calculation is extended to all available channel pairs and acquisition times, thus, generating an rs domain cube. Because the moving kernel is applied on spatially aggregated images, a minimum kernel size (3 × 3) was chosen to avoid exceeding plots’ dimensions. A total of 45 channel pairs were analyzed; the rs cube was evaluated for each of the 9 monitored plots.



The dynamic between rs and SVV was analyzed via a single regression over 9 selected pairs of channels. The analysis determines in what extent rs could be useful to assess SVV changes; thus, results are shown in terms of plot temporal correlation coefficients, rt, out-coming from the rs vs. SVV regressions (Figure 4).


Figure 4. Flow-chart of the inter-channel spatial/temporal correlation analysis. The flow-chart is applied to each plot and for all four SVV (mv, h’, LAI and Fv). The 9 selected channel pairs are bounded in red within the rs domain cube.
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Finally, errors associated to best regressions (both σ° vs. SVV and rs vs. SVV) are computed in terms of mean absolute errors (MAE).





5. Results


5.1. Data Aggregation


The IM first derivative suggests almost the same aggregation level for co-polarized, σ°pp, and cross-polarized, σ°pq, channels. Whereas, RS suggested by the IS analysis are higher at σ°pp than those at σ°pq with highest values shown by XHH, and lowest value exhibited by LHV. The RS equal to 20 m, as suggested by IS analysis, although even coarser then the value suggested by IM analysis (≈10 m), remains suitable to characterize the average plot size (~280 m).




5.2. Dynamic Analyses


5.2.1. Dynamic Analysis: All Plots


L bands show the highest ∆σ°avg values especially at cross-polarized channels. This suggests that σ° at L band could be highly influenced by SVV dynamics. The higher values of ∆σ°stdev also highlight that σ° is influenced by SVV depending on the cultivar; contrarily, lower ∆σ°stdev exhibited by Xpp and Cpp bands implies a weaker influence of the cultivar (Figure 5, left panel).


Figure 5. Observed ∆σ°avg and corresponding ∆σ°stdev (dashed lines) for all available channels are shown on the left panel; ∆mv,avg, ∆Fv,avg (dark-grey vertical bars, primary axis), ∆LAIavg and ∆h’avg (bright-grey vertical bars, secondary axis), and corresponding ∆SSVstdev (dashed lines) are shown on the right panel.
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Numerically, the highest dynamic (∆σ°avg = 12 dB and ∆σ°stdev = 3.2 dB) is exhibited by LHV whereas the lowest is observed for CHH (∆σ°avg = 6.4 dB and ∆σ°stdev = 1.2 dB). SVV variations are responsible of changes of dielectric and geometric properties of the soil-vegetation system (Figure 5, right panel). The variations of mv was on average ≈0.2 m3m−3 (with standard deviation ∆mv,stdev = 0.03 m3m−3), whereas ∆Fv,avg = 0.64 (∆Fv,stdev = 0.17), ∆LAIavg = 3.42 m3m−2 (∆LAIstdev = 0.92 m3m−2) and ∆h’avg = 0.7 cm (∆h’stdev = 0.6 cm). To describe the differences observed in distinct channels as resulting from SVV changes, the dynamic analysis was applied to bare plots (plots 460 and 222).



Bare soils exhibited lower ∆σ°avg (particularly at L frequency) compared with those observable during the whole investigation period (where both bare and vegetated conditions occurred).



Over vegetation, the highest ∆σ°avg at L frequency was found for sugar beet, which is characterized by a broad-leaf structure; whereas X channels exhibited highest ∆σ°avg for barley and wheat; finally C channels exhibited highest ∆σ°avg for rape, barley and wheat. These differences confirm that vegetation structure determines the geometric properties of the target.




5.2.2. Dynamic Analysis: Two Selected Plots


The dynamic analysis for the plot 460 revealed that σ°pq exhibits lower values if compared to σ°pp at the same frequency. Peaks of σ° occur contextually to mv maxima (Figure 6, drying period I). As expected, σ° over bare soil (until the 11th of May) is linearly correlated to mv at all channels. With the growth of the vegetation two different σ° behaviors were observed: σ° at L (both σ°pp and σ°pq) and C (σ°pq only) is highly related to mv until Fv is lower than 3%. Whereas σ°pp at X and C frequencies were still influenced by mv dynamics until Fv is lower than 10% (Figure 6, drying period II).


Figure 6. SVV (mv and Fv) and σ° temporal dynamics for the plot 460 (sugar beet); co-polarized σ° are shown in the upper left panel, whereas cross-polarized σ° are in the upper right panel. Vertical blue bars mark mv peaks separating three consecutive drying periods; the green vertical bar marks the time in which the increase of Fv began.
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The difference between σ° collected on 19 April and 21 June is prevalently a measure of the vegetation biomass change; indeed, σ° at these two times were acquired at almost similar h’ and mv conditions. It is noticeable that high positive σ° differences occur at cross-polarization, thus confirming outcomes of several other studies (e.g., [56]).



The dynamic analysis for the plot 450 (barley) revealed that all σ° at L frequency behave similarly to mv; σ° at C and X frequencies is less influenced by mv dynamics, thus highlighting that σ° at L frequency partially penetrated the canopy cover (Figure 7, drying periods I to III). In particular, σ°L,HH vs. mv was characterized by r2 ≈ 0.27, whereas lower r2 characterized regressions with other frequencies (r2 ~ 10−4 for both σ°C,HH and σ°X,HH vs. mv). Conversely, L frequencies were not linked to Fv (r2 ~ 0.05); whereas, slightly higher r2 (~0.15) characterized σ° vs. Fv at C frequency; finally, X channels were completely uncorrelated with Fv (r2 ~ 10−6).


Figure 7. SVV (mv and Fv) and σ° temporal dynamics for the plot 450 (barley); co-polarized σ° are shown in the upper left panel, whereas cross-polarized σ° are in the upper right panel. Vertical blue bars mark mv peaks separating three consecutive drying periods.
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5.3. Temporal Single Regression Analysis


A first analysis was applied on bare soils having different h’. Single regressions among σ° vs. mv and h’ were calculated separately for two plots (IDs 460 and 222) that remained bare until the first week of May; h’ values ranged between 0.93–1.77 and 1.42–2.05 cm, for plots 460 and 222 respectively (Table 3). Correlations, r, are classified according to Evans, 1996 [57]; slopes, m, and intercepts, q, values could be employed to apply empirical or semi-empirical models (e.g., the WC model [17]). No significant correlations characterized the σ° vs. h’ regressions (not shown).



Table 3. σ° vs. mv over bare soil for plot 460 (left panel) and plot 222 (right panel). Significant and very strong correlations (i.e., p-value less than 0.05 and r > 0.8) are highlighted in dark-grey with values in bold: quasi-significant correlations (i.e., 0.05 < p-value < 0.1) are underlined.







	
σ° vs. mv

	
r

	
m

	
q

	
p-Value

	
σ° vs. mv

	
r

	
m

	
q

	
p-Value






	
XHH

	
0.79

	
1.00

	
−30.12

	
6.0 × 10−2

	
XHH

	
0.62

	
0.46

	
−22.89

	
2.6 × 10−1




	
XVV

	
0.83

	
1.01

	
−29.98

	
4.0 × 10−2

	
XVV

	
0.61

	
0.43

	
−22.40

	
2.8 × 10−1




	
CHH

	
0.60

	
0.59

	
−24.29

	
2.1 × 10−1

	
CHH

	
0.83

	
0.56

	
−25.79

	
8.0 × 10−2




	
CHV

	
0.63

	
0.94

	
−41.30

	
1.8 × 10−1

	
CHV

	
0.71

	
0.54

	
−34.42

	
1.8 × 10−1




	
CVV

	
0.71

	
0.91

	
−29.61

	
1.2 × 10−1

	
CVV

	
0.77

	
0.52

	
−24.14

	
1.3 × 10−1




	
LHH

	
0.46

	
0.67

	
−37.84

	
3.6 × 10−1

	
LHH

	
0.99

	
1.12

	
−51.45

	
6.2 × 10−4




	
LHV

	
0.65

	
0.78

	
−48.88

	
1.6 × 10−1

	
LHV

	
0.99

	
0.98

	
−54.99

	
2.8 × 10−4




	
LVV

	
0.74

	
1.20

	
−46.16

	
9.6 × 10−2

	
LVV

	
0.99

	
1.34

	
−56.59

	
4.2 × 10−4










Noticeable, very strong and significant σ° vs. mv correlations were found for XVV (plot 460), CHH and for L frequencies (plot 222); while, strong (i.e., 0.6 < r < 0.8) correlations were not significant (p-value > 0.1).



For plot 460 two quasi-significant correlations were found at XHH and LVV, respectively. The highest σ° vs. mv correlations were found at L frequency (≈0.99).



A second analysis was applied on vegetated plots (Table 4). Noticeable, σ° vs. h’ returned no significant correlations (not shown). Regarding σ° vs. mv, only moderate to strong correlations (0.4 < r < 0.8) were found as the capability of the signal of perceiving the mv is attenuated by the vegetation cover. Most significant σ° vs. mv correlations were found at L frequency, highlighting that the longer the wave the better the canopy penetration. A limited number of quasi- and significant correlations were found at C and X frequencies even if these were characterized by lower r values.



Table 4. r of σ° vs. mv for plots covered by vegetation. Quasi-significant correlations (i.e., 0.05 < p-value < 0.1) are outlined; significant correlations (i.e., p-value < 0.05) are highlighted in light-grey; strong and significant correlations are also bolded; very weak correlations (r < 0.19) are not reported.







	
σ° vs. mv

	
Sugar

	
Barley

	
Maize

	
Rape

	
Wheat




	
r

	
p-Value

	
r

	
p-Value

	
r

	
p-Value

	
r

	
p-Value

	
r

	
p-Value






	
XHH

	
0.32

	
5.9 × 10−1

	
-

	
-

	
0.54

	
2.7 × 10−1

	
0.37

	
8.4 × 10−2

	
0.25

	
2.6 × 10−1




	
XVV

	
0.34

	
5.7 × 10−1

	
-

	
-

	
0.55

	
2.6 × 10−1

	
0.46

	
2.7 × 10−2

	
-

	
-




	
CHH

	
0.23

	
7.2 × 10−1

	
0.38

	
7.4 × 10−2

	
0.39

	
4.4 × 10−1

	
0.19

	
4.0 × 10−1

	
0.32

	
1.3 × 10−1




	
CHV

	
-

	
-

	
0.35

	
9.8 × 10−2

	
-

	
-

	
-

	
-

	
0.46

	
2.6 × 10−2




	
CVV

	
-

	
-

	
-

	
-

	
0.59

	
2.1 × 10−1

	
0.27

	
2.1 × 10−1

	
-

	
-




	
LHH

	
-

	
-

	
0.46

	
2.8 × 10−2

	
0.75

	
8.4 × 10−2

	
0.46

	
2.6 × 10−2

	
0.51

	
1.3 × 10−2




	
LHV

	
-0.52

	
3.7 × 10−1

	
0.52

	
1.2 × 10−2

	
0.72

	
1.1 × 10−1

	
0.39

	
6.6 × 10−2

	
0.66

	
6.6 × 10−4




	
LVV

	
-

	
-

	
0.53

	
9.4 × 10−3

	
0.28

	
5.9 × 10−1

	
0.40

	
5.0 × 10−2

	
0.55

	
7.0 × 10−3










Several very strong and significant σ° vs. Fv correlations (Table 5) were found over maize (at CHV, LHH and LHV) and sugar (all channels except LHH and LHV). These plants are both characterized by bigger leaf dimensions compared to those characterizing other cultivars. Noticeable, σ° vs. Fv regressions showed higher r than those characterizing σ° vs. mv (best r ~ 0.95 for σ° vs. Fv at LHV over maize plot), thus confirming that: (i) σ° is mainly controlled by geometric and dielectric properties of the vegetation; (ii) the canopy limits the assessment of the properties of the underlying soil. Although several significant correlations were found for other cultivars, these were characterized by weak (0.2 < r < 0.4) or moderate (0.4 < r < 0.6) r values.



Table 5. r of σ° vs. Fv for plots covered by vegetation. Quasi-significant correlations are outlined; significant correlations are highlighted in light-grey; very strong and significant correlations are highlighted in dark-gray with values in bold; very weak correlations are not reported.







	
σ° vs. Fv

	
Sugar

	
Barley

	
Maize

	
Rape

	
Wheat




	
r

	
p-Value

	
r

	
p-Value

	
r

	
p-Value

	
r

	
p-Value

	
r

	
p-Value






	
XHH

	
0.90

	
3.8 × 10−2

	
0.19

	
3.9 × 10−1

	
0.30

	
6.3 × 10−1

	
0.39

	
7.2 × 10−2

	
-

	
-




	
XVV

	
0.85

	
7.0 × 10−2

	
0.27

	
2.2 × 10−1

	
0.22

	
7.3 × 10−1

	
0.32

	
1.5 × 10−1

	
-

	
-




	
CHH

	
0.87

	
5.0 × 10−2

	
-

	
-

	
0.52

	
3.7 × 10−1

	
0.33

	
1.3 × 10−1

	
-

	
-




	
CHV

	
0.90

	
3.7 × 10−2

	
-

	
-

	
0.81

	
9.6 × 10−2

	
-

	
-

	
-

	
-




	
CVV

	
0.87

	
5.8 × 10−2

	
-

	
-

	
0.21

	
7.3 × 10−1

	
0.37

	
9.3 × 10−2

	
0.29

	
1.9 × 10−1




	
LHH

	
0.79

	
1.1 × 10−1

	
-

	
-

	
0.87

	
5.0 × 10−2

	
0.39

	
7.6 × 10−2

	
0.28

	
2.1 × 10−1




	
LHV

	
0.53

	
3.6 × 10−1

	
-

	
-

	
0.95

	
1.2 × 10−2

	
0.48

	
2.3 × 10−2

	
0.33

	
1.3 × 10−1




	
LVV

	
0.90

	
3.9 × 10−2

	
-

	
-

	
0.69

	
1.9 × 10−1

	
0.54

	
9.3 × 10−3

	
-

	
-










The highest and significant σ° vs. LAI correlations were found again for sugar beet and maize; whereas, no significant correlations were found at X and CHH channels. Several significant correlations were found for other cultivars; diversely than σ° vs. Fv, most of these exhibited a strong correlation (Table 6). For some channels, σ° resulted significantly correlated with both LAI and Fv. Although σ° at LHH resulted also correlated to mv the higher p-value indicates a weaker significance of this correlation.



Table 6. r of σ° vs. LAI for plots covered by vegetation. Significant correlations are highlighted in light-grey; strong and significant correlations are also bolded; very strong and significant correlations are highlighted in dark-grey with values in bold; very weak correlations are not reported.







	
σ° vs. LAI

	
Sugar

	
Barley

	
Maize

	
Rape

	
Wheat




	
r

	
p-Value

	
r

	
p-Value

	
r

	
p-Value

	
r

	
p-Value

	
r

	
p-Value






	
XHH

	
0.72

	
0.17

	
0.63

	
4.7 × 10−3

	
-

	
-

	
-

	
-

	
0.50

	
2.5 × 10−2




	
XVV

	
0.70

	
0.19

	
0.61

	
6.7 × 10−3

	
-

	
-

	
-

	
-

	
0.51

	
2.2 × 10−2




	
CHH

	
0.80

	
1.0 × 10−1

	
0.32

	
1.9 × 10−1

	
0.31

	
6.2 × 10−1

	
0.31

	
1.8 × 10−1

	
0.64

	
2.4 × 10−3




	
CHV

	
0.91

	
3.1 × 10−2

	
-

	
-

	
0.64

	
2.5 × 10−1

	
-

	
-

	
0.49

	
2.7 × 10−2




	
CVV

	
0.80

	
1.0 × 10−1

	
0.19

	
4.5 × 10−1

	
-

	
-

	
0.21

	
3.8 × 10−1

	
0.19

	
4.3 × 10−1




	
LHH

	
0.98

	
2.7 × 10−3

	
0.53

	
2.2 × 10−2

	
0.94

	
1.9 × 10−2

	
0.44

	
5.0 × 10−2

	
0.38

	
9.8 × 10−2




	
LHV

	
0.93

	
2.1 × 10−2

	
0.60

	
7.9 × 10−3

	
0.95

	
1.2 × 10−2

	
0.60

	
4.7 × 10−3

	
0.25

	
3.0 × 10−1




	
LVV

	
0.89

	
4.5 × 10−2

	
0.32

	
1.9 × 10−1

	
0.59

	
2.9 × 10−1

	
0.28

	
2.3 × 10−1

	
-

	
-











5.4. Inter-Channel Spatial/Temporal Correlation at Plot Scale


This section discusses and analyzes rs domains for the two selected plots (see Section 4.2.2 and Section 5.2.2). For the plot 460, rs domains were analyzed for increasing vegetation cover (for bare to vegetated) and decreasing mv (Figure 8). In particular, three different dates were selected: (i) 19 April, when field was bare and mv ~ 0.21 m3m−3; (ii) 7 June, when field was slightly vegetated (Fv ~ 0.1) and mv decreased to ~0.16 m3m−3; and, (iii) 26 July, when Fv increased up to (~0.35) and the mv decreased to ~0.02 m3m−3.


Figure 8. rs domain for plot 460 at three selected dates: 19 April (left panel), 7 June (central panel) and 26 July (right panel). The dichromatic color ramp describes very strong negative to very strong positive correlations (from blue to grey). Values of rs rounded to first decimal place are also reported.
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On 19 April the rs domain highlights that strong to very strong correlation occurred among σ° at L and X channels, weak to very strong correlations were observed among σ° at C channels. On 7 June, when mv slightly decreased and sugar beet started growing (Fv ~ 0.1); rs between σ° at some channels slightly increased (e.g., σ° at CHH and CVV). Finally, on the 26th of July σ° of most of the bands were strongly correlated (rs > 0.8). Whereas, lower correlations were observed among some σ° at CHV and σ°pq at L frequency (rs ~ 0.8). The decreasing of mv caused a noticeable increasing of rs for all channel pairs.



For the field 450 (Figure 9) rs domains were analyzed at three selected times: (i) on 13 June, when Fv ~ 0.9 and mv ~ 0.06 m3m−3; (ii) on 21 June, when Fv slightly increased (Fv ~ 0.95) and mv considerably increased to ~0.22 m3m−3; and, (iii) on 26 July, when both Fv and mv considerably decreased to ~0.3 and ~0.06 m3m−3 respectively.


Figure 9. rs domain for plot 450 three selected times: 13 June (left panel); 21 June (center panel) and 26 July (right panel). The dichromatic color ramp describes very strong negative to very strong positive correlations (from blue to grey). Values of rs rounded to first decimal place are also reported.
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On 13 June, the higher correlations among channels of the same frequency are observable. More specifically, moderate to very strong correlations occur among X, C and L frequency channels. Conversely, very weak to weak correlations characterized inter-frequency channels (e.g., C vs. L frequencies). On 21 June, mv considerably increased (with almost constant Fv) causing a radical change in the C vs. L region; indeed, positive weak became negative weak correlations. On 26 July the mv and Fv decreased to their minimum values causing the considerably increase of all rs values.



Based on the above mentioned evidences, it could be hypnotized that rs and SVV time series are correlated (temporal).



Thus, for 9 selected channel pairs the rs vs. SVV were computed over both bare soil (Table 7) and vegetated plots (Table 8, Table 9, Table 10 and Table 11) to explore the determinability of SVV through rs. Results are shown in terms of correlation coefficients, rt.



Table 7. rt, over bare soils occurring during the study period; quasi-significant correlations (i.e., characterized by 0.05 < p-value < 0.1) are outlined; very weak correlations (r < 0.19) are not reported.







	
rs

	
rt (-)




	
rs vs. mv

	
rs vs. h'




	
Sugar Crop

	
Maize Crop

	
Sugar Crop

	
Maize Crop




	
r

	
p-Value

	
r

	
p-Value

	
r

	
p-Value

	
r

	
p-Value






	
σ°X,HH vs. σ°X,VV

	
−0.22

	
7.2 × 10−1

	
0.65

	
2.4 × 10−1

	
0.88

	
5.1 × 10−2

	
-

	
-




	
σ°C,HH vs. σ°C,VV

	
−0.57

	
3.2 × 10−1

	
−0.51

	
3.8 × 10−1

	
0.65

	
2.4 × 10−1

	
0.29

	
7.1 × 10−1




	
σ°L,HH vs. σ°L,VV

	
−0.64

	
2.5 × 10−1

	
−0.66

	
2.2 × 10−1

	
0.56

	
3.2 × 10−1

	
-

	
-




	
σ°C,HH vs. σ°C,HV

	
−0.33

	
5.9 × 10−1

	
-

	
-

	
−0.62

	
2.6 × 10−1

	
-

	
-




	
σ°L,HH vs. σ°L,HV

	
0.77

	
1.3 × 10−1

	
−0.27

	
6.7 × 10−1

	
−0.21

	
7.3 × 10−1

	
0.49

	
5.1 × 10−1




	
σ°X,HH vs. σ°C,HH

	
0.78

	
1.2 × 10−1

	
0.78

	
1.2 × 10−1

	
0.29

	
6.4 × 10−1

	
−0.78

	
2.2 × 10−1




	
σ°C,HH vs. σ°L,HH

	
-

	
-

	
0.24

	
7.0 × 10−1

	
−0.85

	
6.8 × 10−2

	
−0.32

	
6.8 × 10−1




	
σ°X,HH vs. σ°L,HH

	
-

	
-

	
-

	
-

	
−0.83

	
8.0 × 10−2

	
−0.32

	
6.8 × 10−1




	
σ°C,HV vs. σ°L,HV

	
−0.35

	
5.6 × 10−1

	
0.58

	
3.1 × 10−1

	
−0.80

	
1.1 × 10−1

	
−0.29

	
7.0 × 10−1










Table 8. rt vs. h’ temporal correlations, rt, over the whole period for different crops; significant strong correlations (p-value < 0.05, 0.6 < r < 0.8) are in light-gray highlighted with values in bold; quasi-significant correlations (0.05 < p-value < 0.1) are outlined; very weak correlations (r < 0.19) are not reported.







	
rs

	
rt between rs and h'




	
Sugar Beet

	
Barley

	
Maize

	
Rape

	
Wheat




	
r

	
p-Value

	
r

	
p-Value

	
r

	
p-Value

	
r

	
p-Value

	
r

	
p-Value






	
σ°X,HH vs. σ°X,VV

	
−0.35

	
6.5 × 10−1

	
0.26

	
4.6 × 10−1

	
0.56

	
2.4 × 10−1

	
0.27

	
4.2 × 10−1

	
-

	
-




	
σ°C,HH vs. σ°C,VV

	
−0.88

	
1.2 × 10−1

	
-

	
-

	
0.29

	
5.8 × 10−1

	
0.34

	
3.1 × 10−1

	
0.47

	
2.1 × 10−1




	
σ°L,HH vs. σ°L,VV

	
0.31

	
6.9 × 10−1

	
0.55

	
1.0 × 10−1

	
-

	
-

	
−0.35

	
2.9 × 10−1

	
-

	
-




	
σ°C,HH vs. σ°C,HV

	
−0.70

	
3.0 × 10−1

	
0.51

	
1.3 × 10−1

	
0.48

	
3.4 × 10−1

	
0.49

	
1.2 × 10−1

	
0.52

	
1.5 × 10−1




	
σ°L,HH vs. σ°L,HV

	
0.55

	
4.5 × 10−1

	
−0.49

	
1.5 × 10−1

	
0.28

	
6.0 × 10−1

	
−0.35

	
2.9 × 10−1

	
0.53

	
1.4 × 10−1




	
σ°X,HH vs. σ°C,HH

	
−0.70

	
3.0 × 10−1

	
-

	
-

	
0.25

	
6.4 × 10−1

	
0.44

	
1.7 × 10−1

	
0.45

	
2.2 × 10−1




	
σ°C,HH vs. σ°L,HH

	
−0.66

	
3.4 × 10−1

	
0.54

	
1.1 × 10−1

	
−0.24

	
6.5 × 10−1

	
-

	
-

	
0.69

	
3.9 × 10−2




	
σ°X,HH vs. σ°L,HH

	
0.32

	
6.8 × 10−1

	
−0.68

	
3.1 × 10−2

	
-

	
-

	
0.43

	
1.9 × 10−1

	
0.45

	
2.2 × 10−1




	
σ°C,HV vs. σ°L,HV

	
−0.91

	
9.4 × 10−2

	
-

	
-

	
−0.31

	
5.5 × 10−1

	
−0.31

	
3.5 × 10−1

	
0.28

	
4.5 × 10−1










Table 9. rt vs. mv temporal correlations, rt, over the whole period for different crops; significant correlations (p-value < 0.05) are in light-gray highlighted; strong (0.6 < r < 0.8) significant correlations are also bolded; very strong (r > 0.8) significant correlations are also highlighted in dark-gray; quasi-significant correlations (0.05 < p-value < 0.1) are outlined; very weak correlations (r < 0.19) are not reported.







	
rs

	
rt between rs and mv




	
Sugar Beet

	
Barley

	
Maize

	
Rape

	
Wheat




	
r

	
p-Value

	
r

	
p-Value

	
r

	
p-Value

	
r

	
p-Value

	
r

	
p-Value






	
σ°X,HH vs. σ°X,VV

	
0.24

	
7.6 × 10−1

	
-

	
-

	
-

	
-

	
-

	
-

	
−0.65

	
2.0 × 10−3




	
σ°C,HH vs. σ°C,VV

	
-

	
-

	
-

	
-

	
0.31

	
5.5 × 10−1

	
-

	
-

	
-

	
-




	
σ°L,HH vs. σ°L,VV

	
−0.98

	
2.1 × 10−2

	
-

	
-

	
0.61

	
2.0 × 10−1

	
−0.26

	
2.4 × 10−1

	
−0.38

	
9.7 × 10−2




	
σ°C,HH vs. σ°C,HV

	
-

	
-

	
−0.48

	
3.2 × 10−2

	
−0.50

	
3.1 × 10−1

	
−0.23

	
2.9 × 10−1

	
-

	
-




	
σ°L,HH vs. σ°L,HV

	
−0.97

	
2.9 × 10−2

	
−0.27

	
2.5 × 10−1

	
−0.67

	
1.5 × 10−1

	
−0.36

	
1.0 × 10−1

	
−0.33

	
1.5 × 10−1




	
σ°X,HH vs. σ°C,HH

	
-

	
-

	
0.26

	
2.7 × 10−1

	
−0.19

	
7.3 × 10−1

	
−0.20

	
3.6 × 10−1

	
-

	
-




	
σ°C,HH vs. σ°L,HH

	
−0.33

	
6.7 × 10−1

	
-

	
-

	
−0.67

	
1.5 × 10−1

	
0.20

	
3.8 × 10−1

	
-

	
-




	
σ°X,HH vs. σ°L,HH

	
−0.88

	
1.2 × 10−1

	
−0.23

	
3.3 × 10−1

	
−0.67

	
1.5 × 10−1

	
-

	
-

	
−0.49

	
2.8 × 10−2




	
σ°C,HV vs. σ°L,HV

	
-

	
-

	
−0.28

	
2.3 × 10−1

	
−0.68

	
1.4 × 10−1

	
0.24

	
2.8 × 10−1

	
−0.53

	
1.6 × 10−2










Table 10. rt vs. Fv temporal correlations, rt, over the whole period for different crops; significant correlations (p-value < 0.05) are in light-gray highlighted; strong (0.6 < r < 0.8) significant correlations are also bolded; very strong (r > 0.8) significant correlations are also highlighted in dark-gray; quasi-significant correlations (0.05 < p-value < 0.1) are outlined; very weak correlations (r < 0.19) are not reported.







	
rs

	
rt between rs and Fv




	
Sugar Beet

	
Barley

	
Maize

	
Rape

	
Wheat




	
r

	
p-Value

	
r

	
p-Value

	
r

	
p-Value

	
r

	
p-Value

	
r

	
p-Value






	
σ°X,HH vs. σ°X,VV

	
0.72

	
1.7 × 10−1

	
−0.41

	
7.3 × 10−2

	
−0.83

	
4.2 × 10−2

	
−0.21

	
3.5 × 10−1

	
-

	
-




	
σ°C,HH vs. σ°C,VV

	
−0.44

	
4.6 × 10−1

	
−0.41

	
7.0 × 10−2

	
−0.91

	
1.3 × 10−2

	
−0.33

	
1.3 × 10−1

	
0.78

	
4.4 × 10−5




	
σ°L,HH vs. σ°L,VV

	
−0.55

	
3.3 × 10−1

	
0.28

	
2.4 × 10−1

	
−0.83

	
4.1 × 10−2

	
−0.46

	
2.9 × 10−2

	
-

	
-




	
σ°C,HH vs. σ°C,HV

	
−0.65

	
2.3 × 10−1

	
-

	
-

	
−0.20

	
7.1 × 10−1

	
0.23

	
3.0 × 10−1

	
0.79

	
3.6 × 10−5




	
σ°L,HH vs. σ°L,HV

	
−0.66

	
2.2 × 10−1

	
-

	
-

	
0.42

	
4.1 × 10−1

	
-

	
-

	
-

	
-




	
σ°X,HH vs. σ°C,HH

	
0.30

	
6.2 × 10−1

	
−0.76

	
1.1 × 10−4

	
−0.57

	
2.4 × 10−1

	
−0.41

	
6.0 × 10−2

	
0.74

	
2.1 × 10−4




	
σ°C,HH vs. σ°L,HH

	
−0.46

	
4.3 × 10−1

	
-

	
-

	
0.29

	
5.8 × 10−1

	
−0.36

	
9.8 × 10−2

	
0.45

	
4.5 × 10−2




	
σ°X,HH vs. σ°L,HH

	
-

	
-

	
-

	
-

	
0.31

	
5.5 × 10−1

	
−0.35

	
1.1 × 10−1

	
-

	
-




	
σ°C,HV vs. σ°L,HV

	
0.32

	
5.9 × 10−1

	
-

	
-

	
-

	
-

	
−0.25

	
2.6 × 10−1

	
0.25

	
2.9 × 10−1










Table 11. rt vs. LAI temporal correlations, rt, over the whole period for different crops; significant correlations (p-value < 0.05) are in light-gray highlighted; strong (0.6 < r < 0.8) significant correlations are also bolded; quasi-significant correlations (0.05 < p-value < 0.1) are outlined; very weak correlations (r < 0.19) are not reported.







	
rs

	
rt between rs and LAI




	
Sugar Beet

	
Barley

	
Maize

	
Rape

	
Wheat




	
r

	
p-Value

	
r

	
p-Value

	
r

	
p-Value

	
r

	
p-Value

	
r

	
p-Value






	
σ°X,HH vs. σ°X,VV

	
0.55

	
3.3 × 10−1

	
0.52

	
2.6 × 10−2

	
−0.49

	
4.0 × 10−1

	
-

	
-

	
0.76

	
2.4 × 10−4




	
σ°C,HH vs. σ°C,VV

	
−0.83

	
8.2 × 10−2

	
−0.26

	
2.9 × 10−1

	
−0.81

	
1.0 × 10−1

	
-

	
-

	
-

	
-




	
σ°L,HH vs. σ°L,VV

	
-

	
-

	
−0.57

	
1.3 × 10−2

	
−0.83

	
8.2 × 10−2

	
-

	
-

	
-

	
-




	
σ°C,HH vs. σ°C,HV

	
−0.86

	
6.1 × 10−2

	
0.42

	
8.3 × 10−2

	
0.27

	
6.6 × 10−1

	
0.32

	
1.7 × 10−1

	
0.25

	
3.2 × 10−1




	
σ°L,HH vs. σ°L,HV

	
-

	
-

	
−0.48

	
4.2 × 10−2

	
0.84

	
7.3 × 10−2

	
-

	
-

	
−0.30

	
2.3 × 10−1




	
σ°X,HH vs. σ°C,HH

	
-

	
-

	
0.39

	
1.1 × 10−1

	
-

	
-

	
-

	
-

	
0.21

	
4.0 × 10−1




	
σ°C,HH vs. σ°L,HH

	
−0.54

	
3.5 × 10−1

	
−0.69

	
1.4 × 10−3

	
0.20

	
7.5 × 10−1

	
0.19

	
4.1 × 10−1

	
-

	
-




	
σ°X,HH vs. σ°L,HH

	
0.40

	
5.1 × 10−1

	
−0.24

	
3.3 × 10−1

	
0.25

	
6.9 × 10−1

	
-

	
-

	
-

	
-




	
σ°C,HV vs. σ°L,HV

	
−0.74

	
1.5 × 10−1

	
−0.22

	
3.9 × 10−1

	
-

	
-

	
0.46

	
3.9 × 10−2

	
0.42

	
8.3 × 10−2










Over bare soils, a total of 36 correlations (9 band pairs, 2 soil variables, 2 crops) were evaluated. Only 13 (≈30%) rt are moderate (>|0.6|); most of them (6 cases) involve multi-frequency pairs. Conversely to the single regression approach, the inter-channel spatial/temporal correlation analysis pointed out three quasi-significant and very strong rs vs. h’ correlations (involving XHH-XVV, CHH-LHH, XHH-LHH pairs). Best correlations will be further analyzed within the discussion section (Table 12 and Table 13).



Table 12. Best results achieved through the dynamic and correlation analyses; significant correlations are highlighted in light-grey, quasi-significant correlations are underlined; other correlations are not reported; for each correlation MAE is also reported.







	
Channel

	
σ° Dynamic Analysis—∆σ° (dB)

	
σ° vs. SVV Analysis




	
Whole Dataset

	
Bare Soils

	
Vegetated




	
σ° vs. h'

	
σ° vs. mv

	
σ° vs. h'

	
σ° vs. mv

	
σ° vs. Fv

	
σ° vs. LAI




	
Varying h', mv, Fv and LAI (∆σ°avg)

	
Varying LAI (∆σ°)

	
r (-)

	
MAE (dB)

	
r (-)

	
MAE (dB)

	
r (-)

	
MAE (dB)

	
r (-)

	
MAE (dB)

	
r (-)

	
MAE (dB)

	
r (-)

	
MAE (dB)






	
XHH

	
7.50

	
6.99

	
-

	
-

	
0.79

	
0.81

	
-

	
-

	
0.37

	
1.03

	
0.90

	
0.54

	
0.63

	
1.28




	
XVV

	
7.20

	
6.16

	
-

	
-

	
0.82

	
0.66

	
-

	
-

	
0.46

	
1.05

	
0.85

	
0.74

	
0.62

	
1.48




	
CHH

	
6.40

	
5.79

	
-

	
-

	
0.83

	
0.71

	
-

	
-

	
0.38

	
1.22

	
0.87

	
0.75

	
0.64

	
0.90




	
CHV

	
10.00

	
10.39

	
-

	
-

	
-

	
-

	
-

	
-

	
0.46

	
1.41

	
0.90

	
0.62

	
0.91

	
0.54




	
CVV

	
7.80

	
5.02

	
-

	
-

	
-

	
-

	
-

	
-

	
-

	
-

	
0.87

	
0.61

	
-

	
-




	
LHH

	
11.40

	
11.72

	
-

	
-

	
0.99

	
0.24

	
-

	
-

	
0.51

	
2.44

	
0.87

	
0.76

	
0.98

	
0.29




	
LHV

	
12.10

	
13.96

	
-

	
-

	
0.99

	
0.15

	
-

	
-

	
0.66

	
1.79

	
0.95

	
0.67

	
0.95

	
0.83




	
LVV

	
11.30

	
10.95

	
-

	
-

	
0.99

	
0.22

	
-

	
-

	
0.55

	
1.61

	
0.90

	
0.83

	
0.89

	
0.88










Table 13. Best results achieved through the inter-channel correlation analysis. Additionally, to the key legend of Table 12, improvements, with respect to the single regression approach, are highlighted in blue; bolded blue values refer to improvements achieved through the multi-frequency approach.







	

	
Channel Pairs

	
rs vs. SVV Analysis




	
Bare

	
Vegetated




	
rs vs. h'

	
MAE (-)

	
rs vs. mv

	
MAE (-)

	
rs vs. h'

	
MAE (-)

	
rs vs. mv

	
MAE (-)

	
rs vs. Fv

	
MAE (-)

	
rs vs. LAI

	
MAE (-)






	
rs single Freq.

	
XHH vs. XVV

	
0.88

	
0.02

	
-

	
-

	
-

	
-

	
−0.65

	
0.05

	
−0.83

	
0.02

	
0.76

	
0.04




	
CHH vs. CVV

	
-

	
-

	
-

	
-

	
-

	
-

	
-

	
-

	
−0.91

	
0.02

	
−0.83

	
0.03




	
LHH vs. LVV

	
-

	
-

	
-

	
-

	
-

	
-

	
−0.98

	
0.01

	
−0.83

	
0.03

	
−0.57

	
0.13




	
CHH vs. CHV

	
-

	
-

	
-

	
-

	
-

	
-

	
−0.48

	
0.05

	
0.79

	
0.07

	
−0.86

	
0.07




	
LHH vs. LHV

	
-

	
-

	
-

	
-

	
-

	
-

	
−0.97

	
0.04

	
-

	
-

	
−0.48

	
0.18




	
rs dual Freq.

	
XHH vs. CHH

	
-

	
-

	
-

	
-

	
-

	
-

	
-

	
-

	
−0.76

	
0.08

	
-

	
-




	
CHH vs. LHH

	
−0.85

	
0.05

	
-

	
-

	
0.69

	
0.09

	
-

	
-

	
0.45

	
0.13

	
−0.69

	
0.18




	
XHH vs. LHH

	
−0.83

	
0.08

	
-

	
-

	
−0.68

	
0.07

	
−0.49

	
0.16

	
-

	
-

	
-

	
-




	
CHV vs. LHV

	
-

	
-

	
-

	
-

	
−0.91

	
0.07

	
−0.53

	
0.09

	
-

	
-

	
0.46

	
0.10










Over vegetated areas, among 180 correlations (9 band couples, 4 soil-vegetation variables, 5 crops), only 34 (≈18%) rt were higher than |0.6|; 14 are strong and very strong significant correlations and 5 of these involve multi-frequency combinations (Table 8, Table 9, Table 10 and Table 11).



Over vegetated areas, rs vs. h’ produces the lowest number of significant correlations as, in this case, σ° is mainly ruled by canopy dielectric (plant water content) and geometric properties (LAI, Fv and vegetation structure).



However, conversely to the single regression analysis, the dual-frequencies inter-channel spatial/temporal approach pointed out some strong significant correlations. Despite rt were computed over vegetated plots, some negative strong and very strong significant rt were observed between rs and mv for pairs of σ° at L and X frequencies. These results partially confirm the suitability of dual frequency approach to quantify mv and biomass (Fv particularly), as already reported by other authors [16,58]; further discussion about the improvements achievable through the multi-channel approach and the multi-frequency correlation will be provided in the next section.





6. Discussion on Best Results Achieved


This section summarizes best results achieved from the dynamic and single regression analyses (Table 12). Due to the reciprocity property of cross-polarizations, only outcomes achieved by using σ°HV and σ°pp channels are further discussed. In addition, this part will be focused on the quasi- and significant correlations only.



The dynamic analysis highlighted that ∆σ° at CHV and L frequency generally showed the highest ∆σ° (≈10–12 dB); however, individual contributions of h’, mv, Fv and LAI were not definitely distinguishable.



By observing ∆σ° due to vegetation variations (i.e., changes in LAI and Fv) ∆σ°pq are higher at L (~14 dB) rather than at C frequency (~10 dB); this is probably due to the structure of sugar beet characterized by very large leaves. Moreover, as confirmed by other studies, σ°HV and σ°VH (not shown here) behave quite similarly according to the reciprocity principle, which for most natural media assumes a symmetric scattering matrix [59].



The correlation analysis highlights that over bare soils, σ° vs. mv are significant and characterized by high r at all channels with exceptions of CHV and CVV. The highest r and the lowest MAE were found at L frequency. Whereas no significant σ° vs. h’ correlations were achieved.



Over vegetated areas, since h’ was measured below canopy, no significant r values have been found as σ° over dense vegetation is mainly ruled by: (i) surface water contents (mv and canopy water content) and (ii) surface roughness (correlated with biomass variables, including LAI and Fv, and vegetation structure). Quasi-significant and significant moderate to strong correlations (i.e., 0.4 < r < 0.8) characterized σ° vs. mv at all channels with the exception of CVV. The highest r values were found at L frequency probably due to the higher ability of longer waves to penetrate the canopy layer.



Very strong correlations (i.e., r > 0.8) were found for σ° vs. Fv at all frequencies and polarizations; highest r characterized σ° vs. Fv at XHH, CHV and LHV comparisons. Strong to very strong r characterized σ° vs. LAI comparisons with the highest values at CHV and L frequencies.



All these results highlight that, on the average, σ° at L bands are more suitable than others to infer SVV over both bare and vegetated areas.



It has been observed that, usually, correlations showing the highest r were also characterized by the lower MAE (although this is not a general rule). Over bare soils and for all channels, lower MAE were found for σ° vs. mv (MAE was ≈0.6 dB on average) with respect to the vegetated soils (≈1.3 dB). Lower MAE characterized both σ° vs. Fv and σ° vs. LAI (on average ≈0.7 dB and ≈1 dB, respectively) if compared to σ° vs. mv. Finally, lowest MAE were found at L frequency for σ° vs. mv (bare soils) and for σ° vs. Fv and σ° vs. LAI (vegetated plots).



Over bare soils, the inter-channel correlation analysis (Table 13) revealed three quasi-significant and very strong rs vs. h’ correlations; thus, it was observed a remarkable improvement with respect to the single frequency approach. However, no significant rs vs. mv correlations were found, meaning that all channel pairs were useless to assess mv by means of this approach.



Improvements with regards to the single regression approach (Table 13, highlighted in red) were observed in several cases; the dual-frequency approach allowed pointing out higher correlations (Table 13, bolded red values) if compared to the single-frequency approach. Remarkably, rs seems to be negatively correlated with SVV with some exceptions (see Table 7, Table 8, Table 9, Table 10 and Table 11). These exceptions are probably linked to the vegetation structure (as most of them were found for Fv and LAI for the wheat plot); however, further analyses are required to corroborate this hypothesis. Further investigations could be carried out by employing multi-mission satellite data (e.g., using nowadays imagery acquired by Cosmo-SkyMed, TerraSAR-X, Palsar and Sentinel 1).



Over vegetated plots in particular, the more suitable band pairs to assess mv were LHH-LVV and LHH-LHV (rt > |0.97|); however, the inter-channel approach opens the possibility to assess mv for all pairs except CHH-CVV, XHH-CHH and CHH-LHH.



As for the mv, several channel pairs are suitable to assess Fv (strong to very strong significant correlations) with the exception of the CHH-LHH pair. Channel pairs more suitable to assess LAI are: XHH-XVV, CHH-LHH, CHV-LHV.




7. Conclusions


The paper reports a detailed analysis on the influence of main SVV on σ°. Statistical analyses have been carried out to define suitable frequencies/polarimetry configuration to characterize the main SVV over bare and vegetated plots. Dataset includes X, C and L SAR bands with HH, VV, VH and HV polarizations and in situ measurements.



The dynamic and correlation analyses investigate the behavior of single bands with changing SVV. The inter-channel correlation analysis explores the behavior of band pairs with SVV changing over time.



The dynamic analysis revealed that cross-polarized channels exhibit higher sensitiveness to SVV, in particular to LAI and Fv.



The single correlation analysis revealed that: (i) over bare soil, σ° vs. mv exhibits strong and very strong correlation at all channels; best r characterizes σ° vs. mv at L channels (r ~ 1); (ii) over vegetated areas, highest r characterizes σ° vs. Fv and σ° vs. LAI with best suitable channels at L frequency.



The inter-channel correlation (using a single frequency) displayed significant rs vs. h’ correlations over both bare and vegetated plots (unachievable by means of the single regression approach). The inter-channel spatial/temporal regression analysis is more suitable than the single channel approach in several cases. Thus, the inter-channel correlation analyses promise to retrieve other SVV with good accuracies even over vegetated plots. In some cases, best correlations are found by adopting the dual frequency approach compared to the use of a single frequency.



Despite all the analyses confirming that L bands are more suitable than others to infer SVV over both bare and vegetated plots, few satellite sensors provide SAR data at L frequency (PALSAR 1 and 2); as a consequence, in the past, most of the models (see Table 1) have been implemented on C and X bands only (widely available). In addition, the NASA JPL’s Soil Moisture Active Passive (SMAP), a mission launched at the end of 2015, partially failed after collecting just two months of data because of the malfunctioning of the SAR (LVV, LHH, and LHV).



Based on the results achieved by means of the inter-channel analysis, it could be interesting to perform further experiments exploiting data collected also by the near future SAR sensors; including: (i) SAOCOM-CONAE 1A/1B (Argentina) an L band two-satellite flying in constellation with COSMO-SkyMed; (ii) Tandem-L (DLR-Germany) a two formation-flying radar satellites operating in L band (planned to be launched at the end of 2022), and (iii) NISAR (NASA JPL-United States, 2020) that will include both L and S band polarimetry SAR sensors. These new experiments could be carried out coupling SAR to optical retrieved vegetation biomass (e.g., by means of Sentinel 2 or Landsat 8) and soil water content (e.g., through the use of passive microwave) maps. Thus, widening the study area these new researches could point out expected limitations in the relationship’s inversion.
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Abbreviations


The following abbreviations are used in this manuscript:



	i, j
	subscripts indicating generic bands



	pp, pq
	subscripts indicating like and cross polarizations



	ASAR
	Advanced Synthetic Aperture Radar



	AirSAR
	Airborne Synthetic Aperture Radar



	B, V
	bare or vegetated soils



	CSK
	COSMO-SkyMed-Constellation of Small Satellites for Mediterranean basin Observation



	DEMMIN
	Durable Environmental Multidisciplinary Monitoring Information Network



	DLR
	Deutsches Zentrum für Luft- und Raumfahrt



	EA, SEA
	empirical and semi-empirical approaches



	EO
	Earth Observation



	E-SAR
	Experimental SAR



	ERS-2
	European Remote Sensing 2



	GO
	Geometrical Optics model



	HH
	horizontal like polarization



	HV
	horizontal vertical cross polarization



	IEM
	Integral Equation Model



	MIMICS
	Michigan Microwave Canopy Scattering



	PALSAR
	Phased Array type L-band Synthetic Aperture Radar



	RTM
	Radiative Transfer Model



	SAR
	Synthetic Aperture Radar



	SIR-C
	Spaceborne Imaging Radar-C



	SVV
	Soil Vegetation Variables



	VV
	vertical-vertical like polarization



	VH
	vertical-horizontal cross polarization



	WC
	Water Cloud model



	X-SAR
	X-Band Synthetic Aperture Radar



	ZALF
	Leibnitz-Zentrum für Agrarlandschaftsforschung



	X
	SAR band at 2 cm wavelength



	XVV, XHH
	band X in VV and HH like polarizations



	C
	SAR band at 5 cm wavelength



	CHH, CVV
	C band in HH and VV like polarizations



	CHV, CVH
	C band in HV and VH cross polarizations



	L
	SAR band at 21 cm wavelength



	LHH, LVV
	L band in HH and VV like polarizations



	LHV, LVH
	L band in HV and VH cross polarizations







Symbols




	Symbol
	Meaning
	Unit



	σ°
	backscattering coefficient
	(dB)



	σ°min, σ°max
	plot minimum and maximum σ°
	(dB)



	σ°S, σ°V
	bare soil and vegetation σ°
	(dB)



	σ°VV
	σ° in VV like polarization
	(dB)



	σ°HH
	σ° in HH like polarization
	(dB)



	σ°HV
	σ° in HV cross-polarization
	(dB)



	σ°VH
	σ° in VH cross-polarization
	(dB)



	σ°X,HH, σ°X,VV
	σ° in X band HH and VV like polarizations
	(dB)



	σ°C,HH, σ°C,VV
	σ° in C band HH and VV like polarizations
	(dB)



	σ°C,HV, σ°C,VH
	σ° in C band HV and VH cross polarizations
	(dB)



	σ°L,HH, σ°L,VV
	σ° in L band HH and VV like polarizations
	(dB)



	σ°L,HV, σ°L,VH
	σ° in L band HV and VH cross polarizations
	(dB)



	σ°f,TR
	σ° at given frequency, f, and transmitted-received, TR, polarizations
	(dB)



	∆σ°
	σ° variation
	(dB)



	∆σ°plot
	σ° variation (max-min) at plot scale
	(dB)



	∆σ°avg
	average of the ∆σ°plot values computed for all plots
	(dB)



	∆σ°stdev
	standard deviation of the ∆σ°plot values computed for all plots
	(dB)



	IM
	Moran Index
	(-)



	IS
	Speckle Index
	(-)



	RS
	spatial resolution
	(m)



	h’
	roughness height
	(m)



	mv
	volumetric soil water content
	(m3m−3)



	LAI
	Leaf Area Index
	(m2 m−2)



	Fv
	Fractional cover
	(-)



	m, q
	slope and intercept of a linear regression line
	variable dependent



	r, r2
	Pearson correlation and determination coefficients
	(-)



	rmse, mse
	root mean square error or mean square error
	variable dependent



	rsp
	Spatial correlation image between two channels
	(-)



	rs
	For each plot is a representative spatial correlation value obtained by averaging pixels of rsp co-localized to in situ measures
	(-)



	rt
	Pearson correlation out coming from rs vs. SVV
	(-)








Appendix A


This appendix reports notes of Table 1.





	Note
	Description



	*
	performance not quantified;



	i
	σ° vs. in situ mv for incidence angles of 25° (a) and 50° (b);



	ii
	σ° vs. in situ mv in the HH polarization: (a,b) for mv measured with a Thetaprobe instrument at a depth of 5 cm, at 36° and 26° incidence; (c,d) for mv measured by gravimetric sampling at a depth of 2 cm, at 36° and 26° incidence;



	iii
	(a) linear regression model at low incidence angle; (b) linear regression model using low and high incidence angle;



	iv
	Environment Canada (EC) network measurements (a) and sampled fields measurements (b);



	v
	Retrieved using HH and HV polarizations;



	vi
	(a) bare soil: (b) vegetated soil. mv retrieved using L bands only; a sensitivity analysis using the full multi-frequency dataset is also presented;



	vii
	(a) Bayesian and (b) Neural network approaches;



	viii
	r between measured and extracted mv for (a) C band and (b) L band;



	ix
	In situ mv vs. and C band retrieved mv, obtained by the ratio method (a) and water cloud model (b);



	x
	bare soil (a) and vegetated soil (b);



	xi
	Best performances retrieved with multiple linear regression at C and L bands: (a) CHH and (b) LHV.
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Jacome, A.; Bernier, M.; Chokmani, K.; Gauthier, Y.; Poulin, J.; De Sève, D. Monitoring Volumetric Surface Soil Moisture Content at the La Grande Basin Boreal Wetland by Radar Multi Polarization Data. Remote Sens. 2013, 5, 4919–4941. [Google Scholar] [CrossRef]

	35. 
Paloscia, S.; Pettinato, S.; Santi, E.; Notarnicola, C.; Pasolli, L.; Reppucci, A. Soil moisture mapping using Sentinel-1 images: Algorithm and preliminary validation. Remote Sens. Environ. 2013, 134, 234–248. [Google Scholar] [CrossRef]

	36. 
Koyama, C.N.; Schneider, K. IEEE International. Soil moisture retrieval under vegetation using dual polarized PALSAR data. In Geoscience and Remote Sensing Symposium (IGARSS); IEEE Press: Piscataway, NJ, USA, 2011. [Google Scholar]

	37. 
Rodionova, N.V. A Combined Use of Decomposition and Empirical Model for Soil Moisture Estimation in Vegetated Areas from polarimetric SAR Data. In Proceedings of the 7th European Conference on Synthetic Aperture Radar (EUSAR), Friedrichshafen, Germany, 2–5 June 2008; IEEE Press: Piscataway, NJ, USA, 2008; pp. 1–4. [Google Scholar]

	38. 
Prakash, R.; Singh, D.; Pathak, N.P. A Fusion Approach to Retrieve Soil Moisture with SAR and Optical Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 196–206. [Google Scholar] [CrossRef]

	39. 
Koyama, C.N.; Sato, M. Soil Moisture and Biomass Retrieval using ALOS/PALSAR Data. Proceedings of Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Tsukuba, Japan, 23–27 September 2013; IEEE Press: Piscataway, NJ, USA, 2013; pp. 49–52. [Google Scholar]

	40. 
Capodici, F.; Maltese, A.; Ciraolo, G.; La Loggia, G.; D’Urso, G. Coupling two radar backscattering models to assess soil roughness and surface water content at farm scale. Hydrol. Sci. J. 2013, 58, 1677–1689. [Google Scholar] [CrossRef]

	41. 
Jagdhuber, T.; Hajnsek, I.; Papathanassiou, K.P. Refined Soil Moisture Estimation by means of L-Band Polarimetry. Proceedings of IEEE International Symposium on Geoscience and Remote Sensing (IGARSS), Beijing, China, 21–26 July 2013; IEEE Press: Piscataway, NJ, USA, 2013; pp. 2325–2328. [Google Scholar]

	42. 
Notarnicola, C.; Angiulli, M.; Posa, F. Soil moisture retrieval from remotely sensed data: Neural network approach versus Bayesian method. IEEE Trans. Geosci. Remote Sens. 2008, 46, 547–557. [Google Scholar] [CrossRef]

	43. 
Notarnicola, C.; Angiulli, M.; Posa, F. Use of radar and optical remotely sensed data for soil moisture retrieval over vegetated areas. IEEE Trans. Geosci. Remote Sens. 2006, 44, 925–935. [Google Scholar] [CrossRef]

	44. 
Joseph, A.T.; van der Velde, R.; O’Neill, P.E.; Lang, R.; Gish, T. Effects of corn on C-and L-band radar backscatter: A correction method for soil moisture retrieval. Remote Sens. Environ. 2010, 114, 2417–2430. [Google Scholar] [CrossRef]

	45. 
Bindlish, R.; Barros, A.P. Parameterization of vegetation backscatter in radar-based, soil moisture estimation. Remote Sens. Environ. 2001, 76, 130–137. [Google Scholar] [CrossRef]

	46. 
McNairn, H.; Duguay, C.; Brisco, B.; Pultz, T.J. The effect of soil and crop residue characteristics on polarimetric radar response. Remote Sens. Environ. 2002, 80, 308–320. [Google Scholar] [CrossRef]

	47. 
Baghdadi, N.; Cerdan, O.; Zribi, M.; Auzet, V.; Darboux, F.; El Hajj, M.; Kheir, R.B. Operational performance of current synthetic aperture radar sensors in mapping soil surface characteristics in agricultural environments: Application to hydrological and erosion modelling. Hydrol. Process. 2008, 22, 9–20. [Google Scholar] [CrossRef]

	48. 
Marzahn, P.; Ludwig, R. On the derivation of soil surface roughness from multi parametric PolSAR data and its potential for hydrological modelling. Hydrol. Earth Syst. Sci. 2009, 13, 381–394. [Google Scholar] [CrossRef]

	49. 
Durand, J.M.; Gimonet, B.J.; Perbos, J.R. SAR Data Filtering for Classification. IEEE Trans. Geosci. Remote Sens. 1987, 25, 629–637. [Google Scholar] [CrossRef]

	50. 
Shi, Z.; Fung, K. A comparison of Digital Speckle filters. Int. Geosci. Remote Sens. Symp. 1994, 2129–2133. [Google Scholar] [CrossRef]

	51. 
Sheng, Y.; Xia, Z.G. A comprehensive Evaluation of Filters for Radar Speckle Suppression. Int. Geosci. Remote Sens. Symp. 1996, 1559–1561. [Google Scholar] [CrossRef]

	52. 
Hagg, W.; Sties, M. The EPOS speckle filter: A comparison with some well-Known speckle reduction techniques. In International Archives of Photogrammetry and Remote Sensing, XXXI (Part B2); ISPRS: Vienna, Austria, 1996. [Google Scholar]

	53. 
Lee, J.S. Refined filtering of image noise using local statistics. Comput. Graph. Image Process. 1981, 15, 380–389. [Google Scholar] [CrossRef]

	54. 
Moran, P.A.P. Notes on continuous stochastic phenomena. Biometrika 1950, 37, 17–23. [Google Scholar] [CrossRef] [PubMed]

	55. 
Huang, Y.; van Genderen, J.L. Evaluation of Several Speckle Filtering Techniques for ESR-1&2 Imagery. In International Archives of Photogrammetry and Remote Sensing, XXXI (Part B2); ISPRS: Vienna, Austria, 1996. [Google Scholar]

	56. 
Capodici, F.; D’Urso, G.; Maltese, A. Investigating the Relationship between X-Band SAR Data from COSMO-SkyMed Satellite and NDVI for LAI Detection. Remote Sens. 2013, 5, 1389–1404. [Google Scholar] [CrossRef]

	57. 
Evans, J.D. Straightforward Statistics for the Behavioral Sciences; Brooks/Cole Publishing: Pacific Grove, CA, USA, 1996. [Google Scholar]

	58. 
Naidoo, L.; Mathieu, R.; Main, R.; Kleynhans, W.; Wessels, K.; Asner, G.; Leblon, B. Savannah woody structure modelling and mapping using multi-frequency (X-, C- and L-band) Synthetic Aperture Radar data. ISPRS J. Photogramm. Remote Sens. 2015, 105, 234–250. [Google Scholar] [CrossRef]

	59. 
Yueh, S.H.; Nghiem, S.V.; Kwok, R. Symmetrization of cross-polarized responses in polarimetric radar images using reciprocity. IEEE Trans. Geosci. Remote Sens. 1993, 31, 1180–1185. [Google Scholar] [CrossRef]



















































© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).







media/file13.jpg
FEEEE

TIIIITIT]
o

PRt TN

srzsssaeeg

.,f,gf/fgf Ay o





media/file4.png
19-apr. | 3-may 10-may | 17-may | 24-may 7-june | 14-june | 21-june | S-july | 12-july

T

101
rape

.................

no picture EEESSENE R eSS
available HHHHH

102
sugar beet

no picture
available

4
Al

harvested

440
barley

no picture
available

bare soil

wheat





media/file18.png
-1.0 -0.8

XW XHH CW CVH CHV CHH LW LVH LHV LHH XW xHH CW CVH CHV CHH LW LVH LHV LHH XW XHH CW CVH CHV CHH I‘W I‘VH I‘HV I‘HH





media/file3.jpg
S N N N S e I R e
e ke
y q » :Fe
& ' Be 4 i
el sopianrs | -1 B i
S By
e P e e Z .
s
T i [—]
” sopicae
Ll available
— I






media/file7.jpg
I

3
3

SHHEEE

[prond






media/file10.png
() ”

san san

YV () *rpy

u - Lag' o o =

=
=
—
e

S o o o o
8.6420.
S < S

LAI

m,

ENEV Santa n\q aAnuEmEv Mai— wry

-

e o o o i g

Ul Bl ]

[EET LL]

LEE b

e——-—-

-IIl.lll—

] B

20

L
-

g > w =
- —

(gp) .ov

XHH XW CHH CHV

Lyv

Lgn Lvy Lav

CVH CVV





media/file19.png





media/file14.png
0.00

F, (%)

f f f f f f f f f f f 0.00 T T T T T T T T T T
dryving 1 drying 11 drving III i i i
5.00 - ying ying ying — drying I drying IT drying ITI
= %=-C-HV
-10.00 -10.00 = =« C-VH

__-15.00 - -15.00 - S Il\ —f— -HV

2 = e S, —=—LVH

= -20.00 - T .20.00 - L v Y,

IS 5 \”a—-ﬂ"" A"\.’..-h-...,,
-25.00 - -25.00 - 7 2
-30.00 - coodoes XCHH +ootess XWV -30.00 - !-*"\-/

_35-00 B -dP°C'HH -*‘C'W _35.00 a
== |-HH —&—L-VV

-40.00 -40.00
30.00 - - 100 30.00 -

¢ - 90 L
25.00 - . 80 25.00 -

[¢ C
20.00 - - 70 20.00 -

o - 60 <

‘oe = =

< 15.00 - ~s50 < 15.00 -

E L 40 m E
10.00 - . 30 10.00 -
5.00 - - 20 5.00 -
- 10
0.00 ; ; ; ; ; ; ; i ; ; Q@ 0 0.00 T T T T T T T T T T I
—o—mv £ A A A A & & . D D9
Q o‘\ 0* 'b* 0* O \)Q _oo -o\ 'o\ -& \)% ng U > > 3 ) > > N N N
> N LGN AN SR P& & & & AN 2N N @ a6 NP






media/file11.jpg
)

Eibitee

R RE]

AP LSFA SR T

A

P

AL EALR AR

o

55 8 5 EEEEEEREESS

AP APE LSRR T






media/file6.png
—e—Barley —o Maize -+ Wheat -®-SugarBeet -®-Rape

3.00
2.50
o 2.00
E %y i
g
e’
S 1.00
0.50
g B R F 0.00
LOO =TT T o
0.90 -
0.80 5.00
. N
o, Bie 1Y 4.00
S 0.60 =
ol (o]
= 050 = 3.00
=~ 0.40 ]
= 0.30 3 2.00
0.20 2 1-00
0.10 el I oo ¥ 4 :
0.00 +——u— . | 0.00 ——s—pwou—rd® l
1-Apr 1-May 1-Jun 1-Jul 1-Aug 1-Apr 1-May 1-Jun 1-Jul 1-Aug

time (d) time (d)





media/file15.jpg





nav.xhtml


  remotesensing-09-00677


  
    		
      remotesensing-09-00677
    


  




  





media/file16.png
-1.0 -0.8

Xw Xuw Cw Cww Cuv Cuw Lw Luw Luv Luw Xw Xuw Cw Cwi Cwyv Cuw Lw Lww Luv Luy





media/file2.png
P T S T

=

T -
e
NI

ae
- ..:",:-).
.

ot
.-

i
» x






media/file5.jpg
m, (mPm?)

F, (m*m?)

~e-Barley ~o Maize

—+ Wheat

—=-Sugar Beet

-=-Rape

036 300
030 250
024 720
g
018 s
0.12 = 100
006 050
o000 000
100 600
090
o8 500
om0 &
L a0
060 E
030 = 500
0.40 =
Foes 3 w0
020, 1.00
010
000 000
TApr 1May 1dun 1l lAug  Apr 1May 1dun  1dul i-Aug
ime (d) time (d)






media/file1.jpg





media/file12.png
0.00
-5.00
-10.00
-15.00
-20.00

o° (dB)

-25.00
-30.00
-35.00

0.00

AT A T B T N N N N S 2
€ E S S S
NN DA RN N A VA4
| | | T T | | T T |
wimes X-HH eosr e« X-VV
==<C-HH ==~-C-WV
—8—L-HH —&—LVV
- 60
dryingI drying I 1 drying ITI
¢ { - 50
- 40
302
L
- 20
- 10
l:l T T T T T T T T o
& &S >SS g T
Q’b"“o .Q.& & u‘° S o 5 A A AT 0 Ry

c” (dB)

m, (%)

0.00
-5.00
-10.00
-15.00
= -20.00
-25.00
-30.00
-35.00
-40.00
25.00

20.00

15.00

10.00

5.00

N AN AN A %
Ca <2 PGP ST S R S N S
[ S U N N\ S\ S \ L\ \ R \
o & " QT AT AV $T AT 4G ¥
T T T T T T T T I I
B -l
’/ ‘h ‘h-‘,
f“*&-aﬂ"
e ’
-*--ﬂ’
= =ty== C-HV
= =y== C-VH
M/ —e— L-HV
= L-VH
- 60
dryvingI drying IT [ drying ITI
- 50
- 40
- 30 £
'
- 20
- 10
I:I T T T T T T o
%‘\‘5\'3\'3" @.é‘@‘@@'o%—.—mv





media/file9.jpg
=

e e B T F

Soe
Fon
ey
Fom






media/file0.png





media/file8.png
SVv

SAR channel 1 SAR channel 2 r, domain cube
1 1 — - %,
T )
moving kernel moving kernel T ()
(3x3) (3x3)
J‘@ .
6@" L J
correlation correlation
assessment D D assessment
A
h PO
| SN rr |3 3 2|22 £ |z
3x3 kernel yk&‘ k. :l D |: Xin xl &) j. §] ><. _:!C _:E: -?. _J!:
. \& Xw 12| £ | & 2|2 |E|F | 2
%0 Xvv Xun Cvv Cun Chy Coun Lvw Lvn Ly L vaiuel > O -t () x - x O 15
e, rSP






media/file17.jpg





