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Abstract: Object segmentation of remotely-sensed aerial (or very-high resolution, VHS) images
and satellite (or high-resolution, HR) images, has been applied to many application domains,
especially in road extraction in which the segmented objects are served as a mandatory layer
in geospatial databases. Several attempts at applying the deep convolutional neural network
(DCNN) to extract roads from remote sensing images have been made; however, the accuracy
is still limited. In this paper, we present an enhanced DCNN framework specifically tailored for road
extraction of remote sensing images by applying landscape metrics (LMs) and conditional random
fields (CRFs). To improve the DCNN, a modern activation function called the exponential linear
unit (ELU), is employed in our network, resulting in a higher number of, and yet more accurate,
extracted roads. To further reduce falsely classified road objects, a solution based on an adoption
of LMs is proposed. Finally, to sharpen the extracted roads, a CRF method is added to our
framework. The experiments were conducted on Massachusetts road aerial imagery as well
as the Thailand Earth Observation System (THEOS) satellite imagery data sets. The results showed
that our proposed framework outperformed Segnet, a state-of-the-art object segmentation technique,
on any kinds of remote sensing imagery, in most of the cases in terms of precision, recall, and F1.

Keywords: deep convolutional neural networks; road segmentation; conditional random fields;
satellite images; aerial images; THEOS

1. Introduction

Extraction of terrestrial objects such as buildings and roads, from remotely-sensed images has
been employed in many applications in various areas, e.g., urban planning, map updates, route
optimization, and navigation. For road extraction, most primary research is based on unsupervised
learning, such as graph cut and global optimization techniques [1]. These unsupervised methods,
however; have one common limitation, color-sensitivity, since they rely on only the color features.
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That is, the segmentation algorithms will not perform well if the road colors presented in the suburban
remotely-sensed images contain more than one color (e.g., yellowish brown roads in the countryside
regions and cement-grayed roads in the suburban regions). This, in fact, has become a motivation of
this work, that is, to overcome the color sensitivity issues.

Deep learning, a large convolutional neural network with performance that can be scaled
depending on the size of training data and model complexity as well as processing power, has shown
significant improvements in object segmentation from images as seen in many recent works [2–13].
Unlike unsupervised learning, more than one feature—other than color—can be extracted: line, shape,
and texture, among others. The traditional deep learning methods such as the deep convolutional
neural network (DCNN) [3,14], deep deconvolutional neural network (DeCNN) [5], recurrent neural
network, namely reSeg [15], and fully convolutional networks [4]; however all suffer from accuracy
performance issues.

A deep convolutional encoder-decoder (DCED) architecture, one of the most efficient newly
developed neural networks, has been proposed for object segmentation. The DCED network is
designed to be a core segmentation engine for pixel-wise semantic segmentation, and has shown good
performance in the experiments tested using PASCAL VOC 2012 data—a well-known benchmark data
set for image segmentation research [6,8,16]. In this architecture, the rectified linear unit (ReLU) is
employed as an activation function.

In the road extraction task, there are many issues that can cause limited detection performance.
First, based on [6,8], although the most recent DCED approach for object segmentation (or SegNet)
showed promising detection performance on overall classes, the result for road objects is still limited
as it fails to detect many road objects. This could be caused by the rectified linear unit (ReLU) which
is sensitive to the gradient vanishing problem. Second, even when we apply Gaussian smoothing at
the last step to connect detected roads together, this still yields excessive detected road objects (false
road objects).

In this paper, we present an improved deep convolutional encoder-decoder network (DCED)
for segmenting road objects from aerial and satellite images. Several aspects of the proposed method
are enhanced, including incorporation of exponential linear units (ELUs), as opposed to ReLUs that
typically outperform ELU in most object classification cases; adoption of landscape metrics (LMs) to
further improve the overall quality of results by removing falsely detected road objects; and lastly,
combination with the traditional fully-connected conditional random field (CRF) algorithms used in
semantic segmentation problems. Although the ELU-SegNet-LM network may suffer a performance
issue due to the loss of spatial accuracy, it can be alleviated by the conditional random fields algorithm,
which takes into account the low-level information captured by the local interactions of pixels and
edges [17–19]. The experiments were conducted using well-known aerial imagery, a Massachusetts
roads data set (Mass. Roads), which is publicly available, and satellite imagery (from the Thailand
Earth Observation System (THEOS) satellite) which is provided by GISTDA. The results showed
that our method outperforms all of the baselines including SegNet in terms of precision, recall, and
F1 scores. The paper is organized as follows. Related work is discussed in Section 2. Section 3
describes our proposed methodology. Experimental data sets and evaluations are described in Section
4. Experimental results and discussions are presented in Section 5. Finally, we conclude our work
and discuss future work in Section 6.

2. Related Work

Deep learning is one of the fast-growing fields in machine learning which has been successfully
applied to remotely-sensed data analysis, notably land cover mapping on urban areas [20]. It has
increasingly become a promising tool for accelerating image recognition process with high accuracy
results [4], [6], [21]; new architectures are proposed constantly on a weekly basis. This related work
is divided into three subsections: we first discuss deep learning concepts for semantic segmentation,
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followed by a set of road object segmentation techniques using deep learning, and finally activation
functions and post processing technique of deep learning are discussed.

Note that this paper only focuses on approaches built around deep learning techniques. Therefore,
prior attempts at semantic segmentation [22,23] are not included and compared here since they are not
based on a deep learning approach.

2.1. Deep Learning for Semantic Segmentation

Semantic segmentation algorithms are often formulated to solve structured pixel-wise labeling
problems based on the deep convolutional neural network (DCNN), and are state-of-the-art
supervised learning algorithms for modeling and extracting latent feature hierarchies. Noh et
al. [5] proposed a novel semantic segmentation technique utilizing a deconvolutional neural
network (DeCNN) and the top layer from DCNN adopted from VGG16 [24]. The DeCNN structure
is composed of upsampling layers and deconvolution layers, describing pixel-wise class labels
and predicting segmentation masks, respectively. Their proposed deep learning methods yield high
performance in the PASCAL VOC 2012 data set [16], with a 72.5% accuracy in the best case scenario
(this was the highest accuracy—at the time of writing this paper—compared to other methods that
were trained without requiring additional or external data). Long et al. [4] proposed an adapted
contemporary classification network incorporating Alex, VGG and Google networks into a full
DCNN. In this method, some of the pooling layers were skipped: layer 3 (FCN-8s), layer 4 (FCN-16s),
and layer 5 (FCN-32s). The skip architecture reduces the potential over-fitting problem and has shown
improvements in performance ranging from 20 to 62.2% in the experiments tested using PASCAL VOC
2012 data. Ronneberger et al. [12] proposed U-Net, a DCNN for biomedical image segmentation. The
architecture consists of a contracting path and a symmetric expanding path that capture context and
consequently, enable precise localization. The proposed network claimed to be capable of learning
despite the limited number of training images, and performed better than the prior best method
(a sliding-window DCNN) on the ISBI challenge for segmentation of neuronal structures in electron
microscopic stacks. In this work, VGG16 is selected as our baseline architecture since it is the most
popular architecture used in various networks for object recognition. Furthermore, we will investigate
the effect of the skipped layer technique, especially FCN-8s, since it is the top-ranking architecture
as shown in Long et al. [4].

There is a new research area called "instance-aware semantic segmentation" which is slightly
different from "semantic segmentation." Instead of labeling all pixels, it focuses on the target objects
and labels only pixels of those objects. FCIS [25] is a technique developed based on fully convolutional
networks (FCN). Mask R-CNN [26] is also created on top of FCN but incorporates with a proposed
joint formulation. Even though their results are promising, they are not directly related to our scope on
"semantic segmentation." In the future, we can extend these works and compare them to our proposed
technique.

2.2. Deep Learning for Road Segmentation

There are many approaches to road network extraction in very-high-resolution (VHR) aerial and
satellite imagery literature. Wand et al. [14] proposed a DCNN and finite state machine (FSM)-based
framework to extract road networks from aerial and satellite images. DCNN recognizes patterns
from a sophisticated and arbitrary environment while FSM translates the recognized patterns to
states such that their tracking behaviors can be captured. The results showed that their approach
is more accurate compared to the traditional methods. The extension of the method for automatic
road point initialization was left for future work. DCNN for multiple object extraction from aerial
imagery was proposed in [3] by Saito et al. Both features (extractors and classifiers) of DCNN
were automated in that a new technique to train a single DCNN for extracting multiple kinds of
objects simultaneously was developed. Two objects were extracted: buildings and roads, thus a
label image consists of three channels: buildings, roads, and background. Finally, the results showed
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that the proposed technique not only improved the prediction performance but also outperformed
the cutting-edge method tested on a publicly available aerial imagery data set. Muruganandham
et al. [2] designed an automated framework to extract semantic maps of roads and highways, so
the urban growth of cities from remote sensing images could be tracked. They used the VGG16
model—a simplistic architecture with homogeneous 3 × 3 convolution kernels and 2 × 2 max pooling
throughout the pipeline—as a baseline for a fixed feature extractor. The experimental results showed
that their proposed technique for the prediction performance was improved with F1 scores of 0.76 on
the Mass. Roads data set.

2.3. Recent Techniques in Deep Learning

Activation function is an important factor for the accuracy of DCNN. While the most popular
activation function for neural networks is the rectified linear unit (ReLU), Clevert et al. [21] have
just proposed the exponential linear unit (ELU), which can speed up the learning process in DCNN
and therefore lead to higher classification accuracies as well as overcoming the previously unsolvable
problem, i.e., the vanishing gradient problem. Compared to other methods with different activation
functions, ELU has greatly improved many of the learning characteristics. In the experiments, ELUs
enable fast learning as well as more effective generalization performance than the ReLUs and the leaky
rectified linear units (LReLUs) in networks with five layers or more. In ImageNet, ELU networks
substantially increased the learning time compared to ReLU networks with the identical architecture;
less than 10% classification error was presented for a single crop, model network.

Recently, there have been some efforts to enhance the performance of DCNN by combining
it with other classifier as a post-processing step. Conditional random fields (CRFs) has been reported
successful in increasing the accuracy of DCNN, especially in the image segmentation domain.
CRFs have been employed to smooth maps [7,17–19]. Typically these models contain energy
terms that couple neighboring nodes, favoring same-label assignments to spatially proximal pixels.
Qualitatively, the primary function of these short-range CRFs has been used to clean up the spurious
predictions of weak classifiers built on top of local hand-engineered features.

3. Proposed Methodology

In this section, we propose an enhanced, improved DCED network (or SegNet) to efficiently
segment road objects from aerial and satellite images. Three aspects of the proposed method are
enhanced: (1) modification of DCED architecture; (2) incorporation of landscape metrics (LMs); and (3)
adoption of conditional random fields (CRFs). An overview of our proposed method is shown
in Figure 1.

Figure 1. A process in our proposed framework.

3.1. Data Preprocessing

Data preparation is required when working with neural network and deep learning models.
In addition, data augmentation is often required in more complex object recognition tasks. Thus, we
increased the size of our data sets to improve the method efficiency by rotating them incrementally
with eight different angles. All images on Massachusetts road data sets are standardized and cropped
into 1500 × 1500 pixels with a resolution of 1 m2/pixel. The data sets consist of 1108 training images,
49 test images, and 14 validation images. The original training images were further extended to 8864
training images.
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On the THEOS data sets, we also increased the size of data sets in a similar fashion. Each image
has 1500 × 1500 pixels with a resolution of 2 m2/pixel.

3.2. Object Segmentation (ELU-SegNet)

SegNet, one of the deep convolutional encoder-decoder architectures, consists of two main
networks encoder and decoder, and some outer layers. The two outer layers of the decoder
network are responsible for feature extraction task, the results of which are transmitted to the next
layer adjacent to the last layer of the decoder network. This layer is responsible for pixel-wise
classification (determining which pixel belongs to which class). There is no fully connected layer
in between feature extraction layers. In the upsampling layer of decoder, pool indices from encoder
are distributed to the decoder where the kernel will be trained in each epoch (training round) at
the convolution layer. In the last layer (classification), softmax is used as a classifier for pixel-wise
classification. The encoder network consists of convolution layer and pooling layer. A technique, called
batch normalization (proposed by Ioffe and Szegedy [27]), is used to speed up the learning process
of the DCNN by reducing internal covariate shift. In the encoder network, the number of layers
is reduced to 13 (VGG16) by removing the last three layers (fully connected layers) [6,8,28,29] for
the following two reasons: to maintain the high-resolution feature maps in the encoder network,
and to minimize the countless number of parameters from 134 million features to 14.7 million
features compared to the traditional deep learning networks such as DCNN [4] and DeCNN [5],
where the fully connected layer remains intact. In the activation function of feature extraction, ReLU,
max-pooling, and 7 × 7 kernels are used in both encoder and decoder networks. For training images,
three-channel images (RGB) are used. The exponential linear unit (ELU) was introduced in [21],
which can speed up learning in deep neural networks, offer higher classification accuracies, and give
better generalization performance than ReLUs and LReLUs on networks. In SegNet architecture, to
perform optimization for training networks,the stochastic gradient descent (SGD) [30] with a fixed
learning rate of 0.1 and momentum of 0.9 is used. In each training round (epoch), a mini-batch (a set
of 12 images) is chosen such that each image is used once. The model with the best performance
on the validation data set in each epoch will be selected. Our architecture (see Figure 2) is enhanced
from SegNet, consisting of two main networks responsible for feature extraction. In each network,
there are 13 layers, with the last layer being the classification based on softmax supporting pixel-wise
classification.

In our work, an activation function called ELU is used as opposed to ReLU based
on its performances. For the network training optimization, stochastic gradient descent (SGD) is
used and configured with a fixed learning rate of 0.001 and momentum of 0.9 to delay the convergence
time and so, can avoid local optimization trap.

Figure 2. A proposed network architecture for object segmentation (exponential linear unit
(ELU)-SegNet).
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3.3. Gaussian Smoothing

Gaussian smoothing [31] is a 2-D convolution operator that is used to ‘blur’ images and remove
unnecessary details and noises by utilizing the Gaussian function. The Gaussian function is used
to determine the transformation needed for each pixel, resulting in a more complete extended road
objects. We applied the Gaussian function first in the post-processing step in order to expand
and prepare objects that are close to each other to be combined into components in the next step
(as we shall see in Section 3.4).

The 1-D and 2-D Gaussian functions are described in Equations (1) and (2), respectively.

G(x) =
1

2πσ2 e−
x2

2σ2 (1)

G(x) =
1

2πσ2 e
−x2−y2

2σ2 (2)

where x represents the distance from the origin in the X-axis, y represents the distance from the origin
in the Y-axis, and σ represent the standard deviation of the Gaussian distribution.

3.4. Connected Component Labeling (CCL)

In connected components labeling (CCL) [31], all pixels are scanned and adjacent pixels
with similar connectivity values are combined. Eight neighbors of each pixel were considered when
analyzing connected components.

The expanded and overlapped objects from the Gaussian smoothing were actually grouped
together in this step. The labeled objects will be further calculated using geometric attributes (e.g., area
and perimeter) based on landscape metrics (LMs) as described in the next section.

3.5. False Road Object Removal (LMs)

After smoothing and labeling the objects, we compute the shape complexity of the objects through
the shape index (as seen in Equation (3)), one of the landscape metrics for measuring arrangement
and composition property of spatial objects. The resulting objects along with their shape scores
are shown in Figure 3. As seen in Figure 3, the geometrical characteristics of roads were captured
and differentiated from other spatial objects in the given image. Other geometry metrics can also be
used such as rectangular degree, aspect ratio, etc. More information on other landscape metrics can be
found in [32,33].

shape index =
e(i)

4x
√

A(i)
(3)

where e(i) and A(i) denote the perimeter and area for object i, respectively.

3.6. Road Object Sharpening (CRFs)

Conditional random fields (CRFs) have traditionally been implemented to sharpen noisy
segmentation maps [18]. These models are generally composed of energy terms comprising nodes
in the neighborhood, causing false assignments of pixels that are in close proximity. To resolve these
spatial limitations of short-range CRFs, the fully connected CRFs are integrated into our system [19].
Equation (4) expresses the energy function of the dense CRFs.

In the last step, we extended the ELU-SegNet-LMs model to ELU-SegNet-LMs-CRFs to enhance
the network performance by adding explicit dependencies among the neural network outputs.
Particularly, we added smoothness terms between neighboring pixels to our model, which can
eliminate the need to learn smoothness from remotely-sensed images. Using the resulting models
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as part of the post-processing significantly increases the overall performance of the network over
unstructured deep neural networks.

E(x) = ∑
i

θi(xi) + ∑
ij

θij(xi, xj) (4)

where x denotes the label assignment for pixels. A unary potential used is θi(xi)) = −logP(xi), while
P(xi) denotes the label assignment probability at pixel i as computed by a DCNN.

Figure 3. Illustration of shape index scores on each extracted road object. Any objects with shape index
score lower than 1.25 are considered as noises and subsequently removed.

The inference can be efficiently established in the pair-wise potentials when using
the fully connected graph. We treated the unary potential as local classifiers which are defined
by the output of the ELU-SegNet-LMs model, which is a probability map for each class in each of the
pixels. The pairwise potentials depict the interaction of pixels in the neighborhood and are influenced
by the color similarity. In the DeepLab CRF model [19], the dense CRFs (instead of neighboring
information) are used as a means to identify relationships between pixels. Furthermore, they define
the following pairwise potentials as shown in Equation (5).

θij(xi, xj) = µ(xi, xj)[w1 exp(−
‖ pi − pj ‖

2σ2
α

2

−
‖ Ii − Ij ‖

2σ2
β

2

) + w2 exp(−
‖ pi − pj ‖2

2σ2
γ

)] (5)

where µ(xi, xj) = 1 i f xi 6= xj and zero otherwise, which, as in the Potts model, means that only
nodes with distinct labels are penalized. The remaining expression uses two Gaussian kernels
in different feature spaces; the first, ’bilateral’ kernel depends on both pixel positions (denoted as p)
and red-green-blue (RGB) color (denoted as I), and the second kernel only depends on pixel positions.
The hyperparameters σα, σβ and σγ control the scale of Gaussian kernels. The first kernel forces pixels
to similar color and position to have similar labels, while the second kernel only considers spatial
proximity when enforcing smoothness.

In summary, the first term of pairwise potentials depends on both pixel positions and color
intensities whereas the second term depends solely on the pixel positions [18,19]. Although the dense
CRFs can have billions of edges (which is technically infeasible to solve), it was recently found that the
inference/maximum posterior can be approximated by the mean-field algorithm.

4. Experimental Data Sets and Evaluation

In our experiments, two types of data sets are used: aerial images and satellite images.
Table 1 shows one aerial data set (Massachusetts) and five satellite data sets (Nakhonpathom,
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Chonburi, Songkhla, Surin, and Ubonratchathani). All experiments are evaluated based on precision,
recall, and F1.

Table 1. Numbers of training, validation, and testing sets.

Training Set Validation Set Testing Set

Massachusetts 1108 14 49
Nakhonpathom 200 14 49

Chonburi 100 14 49
Songkhla 100 14 49

Surin 70 14 49
Ubonratchathani 70 14 49

4.1. Massachusetts Road Data Set (Aerial Imagery)

This data set (made publicly available by [7]) consists of 1171 aerial images of the state
of Massachusetts. Each image is 1500 × 1500 pixels in size, covering an area of 2.25 square kilometers.
We randomly split the data into a training set of 1108 images, a validation set of 14 images and a testing
set of 49 images. The samples of this data set are shown in Figure 4. The data set covers a wide variety
of urban, suburban, and rural regions with a total area of over 2600 square kilometers. With our test
set alone, it covers more than 110 square kilometers which is by far the largest and most challenging
aerial image labeling data set.

(a) (b)

Figure 4. Two sample aerial images from the Massachusetts road corpus, where a row refers to each
image (a) Aerial image and (b) Binary map, which is a ground truth image denoting the location of
roads.
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4.2. THEOS Data Sets (Satellite Imagery)

In this type of data, the satellite images were separated into five data sets—one for
each province. The datasets were obtained from the Thailand Earth Observation System
(THEOS), also known as Thaichote, an Earth observation satellite of Thailand developed by EADS
Astrium SAS, France. This data set consists of 855 satellite images covering five provinces:
263 images of Nakhonpathom, 163 images of Chonburi, 163 images of Songkhla, 133 images of Surin,
and 133 images of Ubonratchathani. Some samples of these images are shown in Figure 5.
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Figure 5. Sample satellite images from five provinces of our data sets; each row refers to a single
sample image from one province (Nakhonpathom, Chonburi, Songkhla, Surin, and Ubonratchathani)
in a satellite image format (a) and in a binary map (b), which is served as a ground truth image denoting
the location of roads.

4.3. Evaluation

The road extraction task can be considered as binary classification, where road pixels are
positives and the remaining non-road pixels are negatives. Let TP denote the number of true
positives (the number of correctly classified road pixels), TN denote the number of true negatives
(the number of correctly classified non-road pixels), FP denote the number of false positives
(the number of mistakenly classified road pixels), and FN denote the number of false negatives
(the number of mistakenly classified non-road pixels).

The performance measures used are precision, recall, and F1 as shown in Equations (6)–(8).
Precision is the percentage of correctly classified road pixels among all predicted pixels by the classifier.
Recall is the percentage of correctly classified road pixels among all actual road pixels. F1 is
a combination of precision and recall.

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

F1 =
2×Precision×Recall

Precison + Recall
(8)

5. Experimental Results and Discussions

This section illustrates details of our experiments. The proposed deep learning network is based
on SegNet with three improvements: (1) it employs the ELU activation function; (2) it uses LMs to
filter incorrect detected roads; and (3) it applies CRFs to sharpen broad roads. Thus, there are three
variations of the proposed methods as shown in Table 2.

Table 2. Variations of our proposed deep learning methods. LM: landscape metric; CRF: conditional
random field.

Abbreviation Description

ELU-SegNet SegNet + ELU activation
ELU-SegNet-LMs SegNet + ELU activation + Landscape Metrics

ELU-SegNet-LMs-CRFs SegNet + ELU activation + Landscape Metrics + CRFs

For the experimental setup, there are three experiments on two remotely-sensed data sets: the
Massachusetts road data set and THEOS data sets (details in Section 4). The experiments aim to
illustrate that each proposed strategy can really improve the performance. First, ELU-SegNet is
compared to SegNet for the ELU strategy. Second, ELU-Segnet-LMs is compared to ELU-SegNet
for the LM strategy. Third, the full proposed technique (ELU-Segnet-LMs-CRFs) is compared
to existing methods for the CRF technique.

The implementation is based on a deep learning framework, called “Lasagne”, which is extended
from Theano. All experiments were conducted on a server with Intel Core i5-4590S Processor (6M
Cache, up to 3.70 GHz), 32 GB of memory, Nvidia GeForce GTX 960 (4 GB), and Nvidia GeForce GTX
1080 (8 GB). Instead of using the whole image (1500 × 1500 pixels) to train the network, we randomly
cropped all images to be 224 × 224 as inputs of each epoch.
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5.1. Results on Aerial Imagery (Massachusetts Data Set)

In this sub-section, the experiment was conducted on the Massachusetts aerial corpus. To achieve
the highest accuracy, the network must be configured and trained many epochs until all parameters
in the network are converged. Figure 6a illustrates that the proposed network has been properly
set and trained until it really is converged. Furthermore, Figure 6b shows that the higher number
of epochs tends to show a better F1-score. Thus, the number of chosen epochs based on the validation
data is 29 (the best model for this data set).

(a) (b)

Figure 6. Iteration plot on Massachusetts aerial corpus of the proposed technique,
ELU-SegNet-LMs-CRFs; x refers to epochs and y refers to different measures. (a) Plot of model
loss (cross entropy) on training and validation data sets, and (b) Performance plot on the validation
data set.

The result is shown in Table 3 by comparing between baselines and variations of the proposed
techniques. It shows that our network with all strategies (ELU-SegNet-LMs-CRFs) outperforms
other methods. More details will be discussed to show that each of the proposed techniques
can really improve an accuracy. Only in this experiment, there are four baselines, including
Basic-model, FCN-no-skip, FCN-8s, and SegNet. Note that SegNet has been implemented and tested
on the experimental data set, while the results of other three baselines are carried from the original
paper [2].

Table 3. Results on the testing data of Massachusetts aerial corpus between four baselines and three
variations of our proposed techniques in terms of precision, recall, and F1. FCN: fully convolutional
network.

Model Precsion Recall F1

Baselines

Basic-model [2] 0.657 0.657 0.657
FCN-no-skip [2] 0.742 0.742 0.742

FCN-8s [2] 0.762 0.762 0.762
SegNet 0.773 0.765 0.768

Proposed Method
ELU-SegNet 0.852 0.733 0.788

ELU-SegNet-LMs 0.854 0.861 0.857
ELU-SegNet-LMs-CRFs 0.858 0.894 0.876

5.1.1. Results of Enhanced SegNet (ELU-SegNet)

Our first strategy aims to increase an accuracy of the network by using ELU as an activation
function (ELU-SegNet) rather than the traditional one, ReLU (SegNet). Details are shown in Section 3.2.
From Table 3, F1 of ELU-SegNet (0.788) outperforms that of SegNet (0.768); this yields higher F1
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at 2.6%. The main reason is due to higher precision, but slightly lower recall. This can imply that ELU
is more robust than ReLU to detect road pixels.

5.1.2. Results of Enhanced SegNet with Landscape Metrics (ELU-SegNet-LMs)

Our second mechanism focuses on applying LMs (details in Section 3.5) on top
of ELU-SegNet to filter false road objects. From Table 3, the F1 of ELU-SegNet-LMs (0.857) is superior
to that of ELU-SegNet (0.788) and SegNet (0.768); this yields higher F1 at 6.9% and 8.9%, consecutively.
Although LM is specifically designed to increase precision, the result shows that it can increase
both precision (0.854) and recall (0.861). It is interesting that recall is also improved since all noises
in the training images have been removed by the LMs filtering technique resulting in a better quality
of the training data set.

5.1.3. Results of All Modules (ELU-SegNet-LMs-CRFs)

Our last strategy aims to sharpen road objects (details in Section 3.6) by integrating CRFs into our
deep learning network. From Table 3, F1 of ELU-SegNet-LMs-CRFs (0.876) is the winner; it clearly
outperforms not only the baselines, but also all previous generations. Its F1 is higher than SegNet
(0.768) at 10.8%. Also, the result illustrates that CRFs can enhance both precision (0.858) and recall
(0.894).

Figure 7 shows two sample results from the proposed method. By applying all strategies,
the images in the last column (Figure 7e) look very close to the ground truths (Figure 7b). Furthermore,
F1-results are improved for each strategy we added to the network as shown in Figure 7c–e.

(a) (b) (c) (d) (e)

Figure 7. Two sample input and output aerial images on Massachusetts corpus, where rows refer
different images. (a) Original input image; (b) Target road map (ground truth); (c) Output of
ELU-SegNet; (d) Output of ELU-SegNet-LMs; and (e) Output of ELU-SegNet-LMs-CRFs.

5.2. Results for Satellite Imagery (THEOS Data Sets)

In this sub-section, the experiment was conducted on THEOS satellite images. There are five data
sets referring to different provinces: Nakhonpathom, Chonburin, Songkla, Surin, and Ubonratchathani;
therefore, there are five learning models. Figure 8 shows that each model is properly set up and trained
until it is converged and obtained the best F1. The best epochs (models) for each province are 25, 15,
30, 21, and 20, respectively.

The results are shown in Tables 4–6 for measures in terms of F1, precision, and recall, respectively.
It is interesting that the proposed network with all strategies (ELU-SegNet-LMs-CRFs) is the winner
showing the best performance on any measures and provinces. Also, an improvement in the
satellite images is higher than that in the aerial images. More details on each proposed strategy
will be discussed.
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Figure 8. Iteration plot on THEOS satellite data sets of the proposed technique, ELU-SegNet-LMs-CRFs.
x refers to epochs and y refers to different measures. Each row refers to different data set (province).
(a) Plot of model loss (cross entropy) on training and validation data sets; and (b) Performance plot
on the validation data set.
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Table 4. F1 on the testing data of the Thailand Earth Observation System (THEOS) satellite data sets
between baseline (SegNet) and three variations of our proposed techniques; columns refer to five
different provinces (data sets).

Model Nakhon. Chonburi Songkhla Surin Ubon. Avg.

Baseline SegNet 0.422 0.572 0.424 0.501 0.406 0.465

Proposed
Method

ELU-SegNet 0.463 0.690 0.497 0.591 0.534 0.555
ELU-SegNet-LMs 0.488 0.732 0.526 0.625 0.562 0.587

ELU-SegNet-LMs-CRFs 0.550 0.775 0.607 0.707 0.608 0.649

Table 5. precision on the testing data of THEOS satellite data sets between baseline (SegNet) and three
variations of our proposed techniques; columns refer to five different provinces (data sets).

Model Nakhon. Chonburi Songkhla Surin Ubon. Avg.

Baseline SegNet 0.435 0.668 0.456 0.598 0.601 0.552

Proposed
Method

ELU-SegNet 0.410 0.702 0.478 0.840 0.852 0.656
ELU-SegNet-LMs 0.494 0.852 0.557 0.770 0.867 0.708

ELU-SegNet-LMs-CRFs 0.535 0.909 0.650 0.786 0.871 0.751

Table 6. recall on the testing data of THEOS satellite data sets between baseline (SegNet) and three
variations of our proposed techniques; columns refer to five different provinces (data sets).

Model Nakhon. Chonburi Songkhla Surin Ubon. Avg.

Baseline SegNet 0.410 0.499 0.395 0.431 0.306 0.408

Proposed
Method

ELU-SegNet 0.532 0.678 0.517 0.456 0.389 0.515
ELU-SegNet-LMs 0.483 0.642 0.498 0.526 0.416 0.513

ELU-SegNet-LMs-CRFs 0.566 0.676 0.570 0.643 0.467 0.584

5.2.1. Results of Enhanced SegNet (ELU-SegNet)

The ELU activation function can increase the performance of the network. In terms of F1, Table 4
shows that ELU-SegNet outperforms the traditional network (SegNet) for all provinces. It performs
better than SegNet by 9.08% on average for all provinces, where Ubonratchathani and Chonburi show
the highest F1-improvement, at over 10%. For precision and recall, Tables 5 and 6 illustrate that almost
all data sets can be improved employing the ELU function with improvements of 10.48% and 10.68%
on average for all provinces, respectively, .

5.2.2. Results of Enhanced SegNet with Landscape Metrics (ELU-SegNet-LMs)

The LMs filtering strategy aims to remove all inaccurately extracted roads (false positives: FP)
resulting in higher precision and F1, but this might imply a slight loss in recall. Comparing to the
previous generation (ELU-SegNet), there are improvements by LMs on average for all provinces of
5.2% and 3.2% in terms of precision (Table 5) and F1 (Table 4), respectively, with a slight loss of −0.22%
in terms of recall (Table 6). Compared to the baseline, LMs outperforms SegNet on all performance
measures.

5.2.3. Results of All Modules (ELU-SegNet-LMs-CRFs)

To further improve the performance, CRFs is integrated into the network from the previous
section. This is considered to use all proposed modules: ELU, LMs, and CRFs. From Tables 4–6,
the results show that ELU-SegNet-LMs-CRFs is the winner compared the previous generations and
baseline (SegNet) on any of the measures (precision, recall, and F1). As of F1 average of all provinces,
it outperforms ELU-SegNet-LMs, ELU-SegNet, and SegNet by 6.28%, 9.44% and 18.44%, respectively.
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Figures 9–13 show sample results from the proposed method on five provinces. The results
of the last column look closest to the ground truth in the second column.

(a) (b) (c) (d) (e)

Figure 9. Two sample input and output THEOS satellite images on the Nakhonpathom data set,
where rows refer different images. (a) Original input image; (b) Target road map (ground truth);
(c) Output of ELU-SegNet; (d) Output of ELU-SegNet-LMs; and (e) Output of ELU-SegNet-LMs-CRFs.

(a) (b) (c) (d) (e)

Figure 10. Two sample input and output THEOS satellite images on the Chonburi data set, where rows
refer different images. (a) Original input image; (b) Target road map (ground truth); (c) Output of
ELU-SegNet; (d) Output of ELU-SegNet-LMs; and (e) Output of ELU-SegNet-LMs-CRFs.

(a) (b) (c) (d) (e)

Figure 11. Two sample input and output THEOS satellite images on the Songkhla data set, where rows
refer different images. (a) Original input image; (b) Target road map (ground truth); (c) Output of
ELU-SegNet; (d) Output of ELU-SegNet-LMs; and (e) Output of ELU-SegNet-LMs-CRFs.
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(a) (b) (c) (d) (e)

Figure 12. Two sample input and output THEOS satellite images on the Surin data set, where rows
refer different images. (a) Original input image; (b) Target road map (ground truth); (c) Output of
ELU-SegNet; (d) output of ELU-SegNet-LMs; and (e) Output of ELU-SegNet-LMs-CRFs.

(a) (b) (c) (d) (e)

Figure 13. Two sample input and output THEOS satellite images on Ubonratchathani data set,
where rows refer different images. (a) Original input image; (b) Target road map (ground truth);
(c) Output of ELU-SegNet; (d) Output of ELU-SegNet-LMs; and (e) Output of ELU-SegNet-LMs-CRFs.

5.3. Discussions

In terms of accuracy (F1-measure), the results have shown that our proposed framework with all
strategies (ELU-SegNet-LMs-CRFs) outperforms the state-of-the-art algorithm, SegNet. On the aerial
imagery, our F1 (0.876) is greater than SegNet’s F1 (0.768) by 10.8%. On the satellite imagery, our F1
(0.6494) is greater than SegNet’s F1 (0.465) by 18.44% on average for all five provinces. In terms of the
computational cost, our framework requires slightly additional training time compared to the baseline
approach, SegNet, by about 6.25% (2–3 h). In our experiment, SegNet’s training procedure took
approximately 48 h per data set, and finished after 200 epochs with 864 s per epoch. Our framework
is built on top of SegNet. There is no additional time required by changing an activation function
from ReLU to ELU. The LMs and CRF processes took around 1–2 h and 1 h, consecutively, so there are
approximately 2–3 additional hours required on top of SegNet (48 h).

Although our work does not solely rely on the color feature like previous attempts in road
extraction, it is recommended for application to high- and very-high resolution remotely-sensed
images. It is difficult to identify roads from low- and medium-resolution images, even by humans.

6. Conclusions and Future Work

In this study, we present a novel deep learning network framework to extract road
objects from both aerial and satellite images. The network is based on the deep convolutional
encoder–decoder network (DCED), called “SegNet”. To improve the network’s precision, we
incorporate the recent activation function, called the exponential linear unit (ELU), into our proposed
method. The method is also further improved to detect more road patterns by utilizing landscape
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metrics and conditional random fields. Excessive detected roads are then eliminated by applying
landscape metrics thresholding. Finally, we extend the SegNet network to ELU-SegNet-LMs-CRFs.
The experiments were conducted on a Massachusetts road data set as well as THEOS (Thailand)
road data sets, and compared to the existing techniques. The results show that our proposed
(ELU-SegNet-LMs-CRFs) outperforms the original method on both aerial and satellite imagery for F1
as well as for all other baselines.

In future work, more choices of image segmentation, optimization techniques and/or other
activation functions will be investigated and compared to obtain the best DCED-based framework
for semantic road segmentation.
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Abbreviations

The following abbreviations are used in this manuscript:

CCL connected component labeling
CNN convolutional neural network
CRFs conditional random fields
DCED deep convolutional encoder-decoder
DCNN deep convolutional neural network
DL deep learning
ELU exponential linear unit
FCIS fully convolutional instance-aware semantic segmentation
FCN fully convolutional network
FN false negative
FP false positive
GISTDA geo-informatics and apace technology development agency
HR high resolution
LMs landscape metrics
PASCAL VOC pascal visual object classes
R-CNN region-based convolutional neural network
ReLU rectified linear unit
RGB red-green-blue
SGD stochastic gradient descent
TN true negative
TP true positive
VGG visual geometry group
VHR very-high resolution
VOC visual object classes
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