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Abstract: When mosaicking orthoimages, especially in urban areas with various obvious ground
objects like buildings, roads, cars or trees, the detection of optimal seamlines is one of the key
technologies for creating seamless and pleasant image mosaics. In this paper, we propose a new
approach to detect optimal seamlines for orthoimage mosaicking with the use of deep convolutional
neural network (CNN) and graph cuts. Deep CNNs have been widely used in many fields of
computer vision and photogrammetry in recent years, and graph cuts is one of the most widely
used energy optimization frameworks. We first propose a deep CNN for land cover semantic
segmentation in overlap regions between two adjacent images. Then, the energy cost of each pixel
in the overlap regions is defined based on the classification probabilities of belonging to each of
the specified classes. To find the optimal seamlines globally, we fuse the CNN-classified energy
costs of all pixels into the graph cuts energy minimization framework. The main advantage of our
proposed method is that the pixel similarity energy costs between two images are defined using the
classification results of the CNN based semantic segmentation instead of using the image informations
of color, gradient or texture as traditional methods do. Another advantage of our proposed method
is that the semantic informations are fully used to guide the process of optimal seamline detection,
which is more reasonable than only using the hand designed features defined to represent the image
differences. Finally, the experimental results on several groups of challenging orthoimages show
that the proposed method is capable of finding high-quality seamlines among urban and non-urban
orthoimages, and outperforms the state-of-the-art algorithms and the commercial software based
on the visual comparison, statistical evaluation and quantitative evaluation based on the structural
similarity (SSIM) index.

Keywords: image mosaicking; seamline detection; graph cuts; convolutional neural network;
fully convolutional network

1. Introduction

Digital orthophoto map (DOM) is one of the most popularly used products in the field of
photogrammetry, and it can provide both pleasant textures and accurate geometric properties of
maps. However, to produce a large-scale orthophoto, we need to stitch a large set of orthoimages
into the single composite image due to fact that the covered region of a single orthoimage is limited.
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Therefore, image mosaicking is one of the key technologies to generate a large-scale DOM. It also is
an important and classical problem in the fields of photogrammetry [1–5], remote sensing [6,7] and
computer vision [8–10], which is used to merge a set of geometrically aligned images into a single
composite image as seamlessly as possible. In an ideally static scene in which both the photometric
inconsistencies and the geometric misalignments are not existing or not obviously visible in overlap
regions, the mosaicked image always looks perfect only when the geometric distance criterion is used.
However, in some cases, there exist photometric inconsistencies to different extents in overlap regions
between images due to illumination variations and different exposure settings. This problem can
be solved well by a series of color correction and image blending approaches [11,12]. In addition,
in orthoimages, the geometric positions of corresponding pixels on obvious ground objects from
different images may be different if they are not included in the digital terrain model (DTM) or
wrongly modeled [6]. Therefore, the visible seams in those object regions may appear if the seamlines
cross them. The effective way to solve this problem is to detect the optimal seamlines to avoid crossing
majority of visually obvious objects and most of the overlap regions with low image similarity and
large object dislocation. In this paper, our work focuses on detecting the optimal seamlines between
overlapped images to eliminate the influences of geometric misalignments.

Optimal seamline detection methods search for the seamlines in overlap regions between adjacent
images where their intensity or gradient differences are minimal, especially avoiding crossing the
obvious ground objects like buildings and cars. Most of the optimal seamline detection methods
formulated it as an energy minimization problem. Generally, those methods can be implemented
in two stages. In the first stage, the cost images are defined to represent the differences between
the original images. In the second stage, the optimal seamlines are further found based on the cost
images via different optimization algorithms, e.g., snake model [13], Dijkstra’s algorithm [14], dynamic
programming [15], and graph cuts [16]. The major issues of optimal seamline detection focus on
how to define the cost images more reasonably and how to find the seamlines more efficiently and
effectively. According to the used optimization algorithms, we simply review recently proposed
seamline detection approaches in the following.

Kerschner [6] proposed an automated seamline detection method using twin snake based on
the energy function defined on the similarity of color and texture. The energy optimization started
from two snakes on the opposite borders of the overlap region, which moved closer during the
energy minimization process, and the optimal seamline was found when two twin snakes coincided.
However, this algorithm requires a high computation cost and cannot overcome the local minimum
problem. Wang et al. [17] proposed an improved snake model to detect the seamline. In this algorithm,
the sum of the mismatched values on the seamline was defined as the energy function, and then the
seamline with the lowest energy was regarded as the final optimal seamline. This improved snake
model solves the local optimum problem existed in the snake model to some extent, but not completely.

Besides the snake model, the Dijkstra’s algorithm is also popularly used for detecting the optimal
seamlines. Chon et al. [1] designed a novel objective function to evaluate the mismatching between two
images based on the normalized cross correlation (NCC). Their proposed method first determined the
desired level of maximum difference along the seamline and then applied the Dijkstra’s algorithm to find
the best seamline with the minimal objective function. Compared with the simple Dijkstra’s algorithm, their
method could find a longer seamline with less pixels with high energy costs. Pan et al. [4] proposed a new
method for seamline detection based on segmentation. It first determined the preferred regions based
on the spans of segments generated by the meanshift algorithm. Then, the last pixel-level seamline
was detected by using the Dijkstra’s algorithm on the cost image defined by intensity differences.
After that, several object-based algorithms [18,19] were proposed to detect high-quality seamlines.
In addition, Chen et al. [20] proposed a new automatic seamline selection algorithm by using the digital
surface model (DSM). It found the optimal seamline via the Dijkstra’s algorithm under the guide of
the elevation information extracted from DSM. Similarly, Pang et al. [21] guided the seamline with the
corresponding pixel-wise disparity generated by a semi-global matching (SGM) algorithm. Similar
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with the Dijkstra’s algorithm, the Floyd–Warshall shortest path algorithm [22] can also be used to find
the optimal seamline. Wan et al. [3] proposed a vector road-based seamline determination algorithm
ensuring that the seamline follows the centerlines of wide streets and avoids crossing foreground
objects. This algorithm firstly built a weighted graph by overlapping the extracted skeleton of the
overlap regions and vector roads, and then found the lowest cost path between two intersections of
adjacent image polygons by applying the Floyd–Warshall algorithm.

The dynamic-programming-based optimal seamline detection strategy can also be used for optimal
seamline detection, which is less time-consuming than the Dijkstra’s algorithm. Yu et al. [2] proposed to
combine the pixel-based similarity defined by color, edge and texture informations with the region-based
saliency map based on the human attention model to guide the optimal seamline searching process of
the dynamic programming (DP) algorithm. Zeng et al. [23] proposed a new optimal searching criterion
that combines the gradient difference and the edge-enhanced weighting intensity one, which provides
an effective mechanism for avoiding problems caused by moving objects and geometric misalignments.
Then, this algorithm applied dynamic programming to find the optimal seamline.

In addition, graph cuts has also been popularly applied to find the optimal seamlines.
Graph cuts [16] is an efficient energy optimization algorithm to solve labeling problems and has
been widely utilized in many applications of image processing and computer vision, such as image
segmentation, stereo matching, and image blending [5,9,10,24]. The basic idea of graph cuts is to first
construct a weighted graph where each edge weight cost represents the corresponding cost energy
value, and then to find the minimum cut in this graph based on the max-flow or min-cut algorithm [25].
To some extent, the optimal seamline detection problem can be regarded as the inverse process of
image segmentation. The aim of image segmentation is to separate the segments in the positions with
large differences between adjacent pixels. In contrast, the optimal seamline locates on the positions
with small differences between adjacent images. Therefore, the optimal seamline can be detected via
graph cuts as image segmentation does. Kwatra et al. [24] first applied the graph cuts algorithm to
find the seamline for image and video synthesis. Their proposed method defined an energy function
based on the difference of color intensities and gradient magnitudes along horizontal and vertical
directions and then applied graph cuts to find optimal seamlines. Agarwala et al. [10] provided a
framework to easily create a single composite image using graph cuts to choose good seamlines within
the constituent images, which needs an intuitive human–computer interaction for defining local and
global objectives. Gracias et al. [9] combined the watershed segmentation and the graph cuts algorithm
to detect the optimal seamlines. Their algorithm began with creating a set of watershed segments on
the difference image of overlap regions followed by finding the solution via graph cuts between those
segments instead of the entire set of pixels. Li et al. [5] first defined the cost image by combining the
informations of image color, gradient and texture complexity, and then found the optimal seamline via
graph cuts.

By the review of the above-mentioned optimal seamline detection methods, we can find that many
features (intensity, color, gradient, texture, road vector, saliency, segments, disparity and DSM, and so on)
have been used to guide the optimal seamline searching process. However, those features cannot
completely describe the differences between overlapped images independently, and it is also difficult
to find the best combination of several features to represent the differences. Therefore, in this paper,
we propose a new optimal seamline detection method based on the scene semantic segmentation using
convolutional neural network (CNN). The energy costs are defined based on the classification results
of CNN, instead of combining many different hand-designed features. The workflow of our method is
presented in Figure 1. Firstly, we manually label the remote sensing image data into several most cover
classes as the training data, which is then used to train our proposed fully convolutional network for
semantic segmentation. Secondly, the overlap regions of the left and right images are classified via the
trained network independently, and we can obtain the probabilities of each pixel belonging to each
of the specified classes. Finally, we define the energy costs based on those classification probabilities,
and find the optimal seamlines via graph cuts. In addition, the detected seamlines are evaluated
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quantitatively based on the defined quality measurements. The main contributions of our proposed
approach are summarized as follows:

• We design a novel energy function to guide the searching process of optimal seamlines between
two input geometrical aligned images. This energy function is defined by using the semantic
segmentation results generated by CNN. Thus, we do not need to design the features for optimal
seamline detection anymore. The experiments proved that this energy function performs well in
avoiding crossing obvious objects because it can distinguish the whole regions of obvious objects
from the images.

• We fuse the defined energy function into the graph cuts optimization framework to find the
optimal seamlines with minimum energy cost, and we propose using the structural similarity
(SSIM) index to quantitatively evaluate the qualities of detected seamlines. We test our proposed
approach in several groups of images captured from different places and prove that our proposed
approach outperforms the state-of-the-art approaches and commercial software.

Right Image 

Semantic  Segmentation 

via CNN 

Seamline Detection via 

Graph cuts 

Left Image 

Semantic  Segmentation 

via CNN 

CNN-based Energy Cost 

Definition 

Figure 1. The overview of our proposed optimal seamline detection approach.

The remaining part of this paper is organized as follows. Section 2 introduces the training data
and the convolutional neural network for semantic image segmentation used in our paper. Section 3
introduces the graph cuts energy minimization framework for finding the optimal seamline between
two images based on the CNN-based energy costs, and the method for quality assessment of mosaicked
images is presented in Section 4. Experimental results on several groups of challenging orthoimages
are presented in Section 5 followed by the conclusions drawn in Section 6.

2. Semantic Image Segmentation

In our proposed seamline detection method, the energy cost of each pixel is defined based on its
classification results with the deep CNN for semantic image segmentation. In this section, we will
give detailed description about the semantic image segmentation network used in this paper. We first
describe the used pixel-to-pixel architecture, which allows us to obtain dense semantic segmentation.
Then, we will illustrate the network training process and related strategies, including data preparation,
model parameters, class balancing and loss function.

2.1. Model Architecture

Inspired by the Fully Convolutional networks (FCN) architecture [26], we also design an architecture
that allows the end-to-end learning of the pixel-to-pixel semantic segmentation. Therefore, for each pixel, we
can obtain the probabilities of belonging to each of the special classes, which are used to define the energy
costs for seamline detection. Our architecture fuses hierarchical features acquired from multiple layers to
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predict the last segmentation, as shown in Figure 2. We use the 13 convolutional layers that correspond
to the first 13 convolutional layers in the VGG-16 net [27], which is designed for object classification.
Each convolutional layer consists of 3× 3 convolution, batch normalization [28] and Rectified Linear
Unit (ReLU) [29], and each set separated by the max-pooling layer. The max-pooling is performed over
a 2 × 2 pixel window with a stride of two pixels (non-overlapping window). The side-output layer is
generated by performing over a convolutional layer with a kernel size of 1 and a number of output K
(the number of classes, K = 6 used in our application). Except the first side-output layer, other side-output
layers are followed by deconvolutional layers, which are applied to upsample the plane size of the
feature maps back to the original image size. Here, all upsamplings are fixed to bilinear interpolation.
Then, all side-output feature maps are concatenated into one feature map by using a concat layer,
followed by a convolutional layer to reduce the dimension of the feature map and the softmax layer
to predict the results of segmentation. In this way, the training network can learn multi-scale and
multi-level features. This can improve the robustness of our training network. The output of the
softmax layer is a K-channel probability map. Each channel of this map represents the probability of
belongings to the corresponding class.

Conv + Batch Normalization + ReLU Conv Deconv + Crop 

Pooling Concat Softmax Prediction 

Input 

RGB Image Output 

Segmentation 

Figure 2. An illustration of our proposed pixel-to-pixel architecture. There are no fully connected
layers in our architecture, only convolutional layers.

2.2. Data Preparation

The training data is constructed by a set of aerial images and the corresponding
manually-classified ground truth maps with multiple object classes such as building, car, tree, water,
etc. A typical training sample is shown in Figure 3. Due to the limitation of GPU memory, the network
will be trained in mini-batches on patches of 544× 384, and the image patches are extracted from
the input images with 50% overlap and are flipped (left to right and up to down). No other data
augmentation strategies are applied to increase the number of training data.

2.3. Model Parameters

The semantic segmentation network is trained by using the publicly available Caffe [30] library.
We use the Stochastic Gradient Descent (SGD) [31] method to optimize our model. The model
parameters used in this paper are listed as follows: the size of the input image (544 × 384 × 3), the
size of the ground truth (544 × 384 × 1), the learning rate (1e-4), the reduce learning rate (reduces by
20 percent every 5e4 iterations), the training iterations (4e5), the mini-batch (1), the loss weight α for
each side-output layer and the final fused layer (1.0), the momentum (0.9), and the weight decay (2e-4).
If not specifically stated in this paper, all experiments are conducted with this default settings.
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Figure 3. A demonstration of the training sample: (left) the original image; (right) the manually labeled
ground truth map in which different object classes are marked with different colors, e.g., buildings
with blue, cars with yellow, trees with green, low vegetation with cyan, water with red and impervious
surface with white.

2.4. Loss Function

As shown in Figure 4, each side-output layer is followed with a softmax layer in the process of
network training. Each side-output layer can generate a prediction map for semantic segmentation,
the corresponding loss function is denoted as Lj

side, j = 1, . . . , 5. All side-output layers are concatenated
into one layer to predict the last results of segmentation with the use of a softmax layer, and the loss
function used in this softmax layer is denoted as Lfuse, and the last overall loss function L is defined as
the sum of all side-output terms and fused loss term:

L = ∑j αjL
j
side + α fLfuse, (1)

where αj denotes the loss weight for j-th side-output term, and α f represents the loss weight for fused
loss term. In our model, all of those loss weights are set as 1.0 as described in Section 2.3, and we use
the cross-entropy classification loss [26,32] function to train our network. All loss functions Lj

side and
Lfuse are defined by using the cross-entropy classification loss. In this way, this loss function Lcross is
defined as:

Lcross = −
1
N

N

∑
n=1

log(x(c)n ), (2)

where N is the number of pixels in a mini-batch, and x(c)n denotes the probability of pixel xn belonging
to the ground truth class c.

Figure 4. An illustration of side-output predictions.
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2.5. Class Balancing

As presented in Section 2.4, we use the cross-entropy loss function to train our FCN-based
semantic segmentation network. However, because this loss is calculated by summing over all pixels,
it does not account well for imbalanced classes. For the classes with relatively less covered regions,
such as cars, according to the traditional cross-entropy loss function, those classes contribute little to
the last overall loss function. Therefore, to take the imbalanced classes into account, we need to weight
the losses to balance the influences among all classes, namely, class balancing [32]. We use the median
frequency balancing [33] to weight each class in the loss function. The median frequency balancing
weights the loss of classes by using the ratio of the median class frequency in the training dataset and
the actual class frequency. The cross-entropy classification loss is modified as:

L′cross = −
1
N

N

∑
n=1

w(c) log(x(c)n ), (3)

where w(c) is the corresponding weight defined as:

w(c) =
median({ fc|c ∈ C})

fc
, (4)

where fc denotes the frequency of pixels in the class c, and C denotes the set of all classes.

3. CNN-Based Seamline Detection via Graph Cuts

In this paper, we formulate the optimal seamline detection as an energy minimization optimization
problem based on the semantic image segmentation results, and solve it by using the graph cuts
algorithm as Li et al. [5] do. We first briefly review the optimal seamline detection algorithm proposed
by Li et al. [5]. Then, we will discuss the differences between it and our proposed algorithm, and
present the motivation of our proposed method. Next, we also give more detailed description of our
proposed CNN-based algorithm.

3.1. Brief Review on Li et al. algorithm

Here, we will briefly review the optimal seamline detection algorithm proposed by [5].
Their algorithm can be divided into two stages, namely, energy computation and labeling optimization.
In the first stage, to effectively ensure that the seamlines are optimally detected in the laterally
continuous regions with high image similarity and low object dislocation, Li et al. fused the information
of image color, gradient magnitude and texture complexity to define the energy cost for each pixel.
Especially, they proposed a new texture complexity measurement to distinguish the regions with
smooth texture, such as roads, sky and woodlands. This measurement can be used to constrain the
color differences and gradient magnitudes in the regions with smooth texture or repetitive patterns
without affecting other foreground objects regions with rich and strong edges. In this way, the energy
cost of each pixel in the overlap region can be computed. An example of last normalized energy
cost map is shown in Figure 5c. In the second stage, they formulated the optimal seamline detection
as a unified graph cuts energy minimization problem, as shown in Figure 6. They regarded each
pixel as a node in the graph and assumed that each node has four cardinal neighbors. In this graph,
it has two kinds of links. The first consists of the links between input images and the nodes, namely,
t-link. Another is comprised of the links between two adjacent nodes, namely, n-link. Each link has
corresponding weight cost. The costs of t-links and n-links are often called as the data energy term and
the smooth energy term. For each node, its data energy cost only depends on whether this node is inside the
valid region of one input image. For each pair of nodes, its smooth energy cost is defined as the sum of
energy costs of these two nodes. After all energy functions have been defined as those used in the standard
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graph cuts energy minimization framework, they directly applied the graph cuts algorithm to find the
optimal solution of the seamline in the overlap region between two geometrically aligned images.

(a) (b)

(c) (d)

Figure 5. The comparison between the algorithm proposed by [5] and our proposed method in the
term of the energy cost map: (a,b) the cropped regions of two input aligned images; (c) the energy
cost map generated by [5]; (d) the energy cost map generated by our proposed CNN-based method.
The lighter regions indicate higher energy costs in (c,d), where the seamline avoids to cross.

cut 

 

A 

B 

Image A 

Overlap 

Image B 

Figure 6. An illustration example of detecting the optimal seamline between two images via graph
cuts. The thickness of lines between adjacent pixels represents the value of the energy cost and the
“cut” denotes the minimum cut, which means the optimal seamline.

3.2. CNN-Based Energy Cost Definition

The major difference between our proposed algorithm and the Li et al. algorithm [5] is the
computation of energy cost, namely, the first stage. As shown in Figure 5, we present two normalized
energy cost maps generated by our proposed CNN-based method and the Li et al. algorithm [5].
From Figure 5a,b, we observed that there are many obvious objects (buildings and cars), which are
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unsuitable to be passed through by the seamlines. However, we found that the roofs of those buildings
have smooth textures, and small intensity and gradient differences, just like neighboring roads.
The energy costs of those regions calculated by Li et al. [5] are small too, besides the regions of edges,
as shown in Figure 5c. To solve this problem, we propose to define the energy cost based on the
classification results of semantic image segmentation, as shown in Figure 5d, from which we observed
that our defined energy cost map is more reasonable.

As we know, to avoid the appearance of artifacts along the seamlines, the detected optimal
seamlines should be located on the regions with high similarity and low object dislocation, such as
roads and grass, and avoid crossing the obvious objects, such as cars and buildings. Therefore,
for different object classes, their penalty coefficients are different. For example, the penalty coefficients
of buildings and cars should be larger than those of roads and grass. We denote all penalty coefficients
as M = {mk}K

k=1, where mk denotes the penalty coefficient of k-th object class and K is the number
of the total object classes. For a pixel x in one input image Ii , i = p or q, we can obtain the
prediction probabilities of belonging to each class based on the semantic image segmentation results.
The probabilities are represented as Pi(x) = {pk(x)}K

k=1, where pk(x) denotes the probability of x
belonging to the k-th object class. Based on these probabilities, we can define the energy cost Ci(x) in
one image as follows:

Ci(x) =
K

∑
k=1

mk × pk(x). (5)

In addition, the final energy cost C(x) of x is defined as the maximal value among two images as:

C(x) = max
i=p,q

Ci(x) + A, (6)

where A is a small constant to ensure that the energy cost C(x) is larger than 0.
In this paper, the test images are classified into six land cover classes, as shown in Figure 3.

We order those classes as: (1) building; (2) car; (3) tree; (4) low vegetation; (5) water; (6) impervious
surface. Of course, the penalty coefficients of low vegetation, water and impervious surface should be
set as 0 because those regions are suitable to be passed through by seamlines. In addition, the penalty
coefficients of buildings and cars should be set as the biggest value among all classes. The regions of
trees are special. On the one hand, the texture of those tree regions is strongly repetitive, so the seams
won’t be obviously visible if the seamlines cross them. On the other hand, the geometric positions
of corresponding pixels on those tree regions from different images are different, and there exist
geometric misalignments on those regions. Thus, we set the penalty coefficient of trees larger than 0
but smaller than the penalty coefficients of buildings and cars. In conclusion, we empirically set all
penalty coefficients as Table 1.

From the above description, we can find that the energy cost of each pixel is decided by two
components. One is the penalty coefficients presented in Table 1. The other is the probabilities of
belonging to each class provided by the semantic segmentation network. Therefore, although there
are some classes that have the equal penalty coefficient, the last energy costs are different due to the
differences of probabilities. Generally, the energy cost of each pixel is larger than 0. However, we also
add a small constant A for all energy costs of pixels, as shown in Equation (6). Therefore, the graph
cuts can find the ’cut’ with the minimum cost and shortest line.

After the CNN-based energy cost definition, according to the algorithm proposed by Li et al. [5],
we construct a weighted graph of the overlapped image region between two aligned images and find
the optimal seamline via graph cuts.
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Table 1. The penalty coefficients setting of all object classes.

Building Car Tree Low Vegetation Water Impervious Surface

Penalty Coefficients 1.0 1.0 0.3 0 0 0

4. Quality Assessment

After the optimal seamline detection, we need to evaluate the quality of detected seamline.
The traditional and popularly used method is to count the number of obvious objects crossed by the
detected seamline [4,5,21]. However, this method has two disadvantages. One problem is that this
measurement is subjective, and different people may give different results. For example, one bad
seamline locates on a region with many buildings, and crosses most of them. In this region, many
buildings are connected together, and we can not accurately distinguish them one by one. One people
may think that this seamline crosses 10 buildings, but another people may think that this seamline
only crosses five buildings. Another problem is that this measurement is not fair enough in some
cases. For example, one seamline crosses a small building, and the artifacts caused by this seamline are
almost invisible. Another seamline crosses a tall building, and the artifacts caused by this seamline are
visible. However, according to this measurement, the qualities of these two seamlines are the same,
and both of them cross one building. Obviously, this is not reasonable.

Therefore, to evaluate the quality of detected seamline more reasonable, the quality measurement
should be objective, fair, and quantitative. In this paper, we propose to apply the structural similarity
(SSIM) index [34] to quantitatively evaluate the qualities of detected seamlines, and compare our
method with other state-of-the-art algorithms based on this measurement. In the last several decades, a
great deal of effort has gone into the development of quality assessment methods that take advantage of
known characteristics of the human visual system (HVS). Wang et al. [34] proposed a noticeable quality
metric named the structural similarity (SSIM) index. In the last several years, the SSIM index has been
widely used to evaluate the qualities of color correction [35] and image mosaicking methods [36,37].
Here, we apply the SSIM index to evaluate the quality of the detected seamlines. Let S be the seamline
between image pair Ip and Iq, and I is the last image mosaicked from Ip and Iq based on the seamline
S. The quality measurement SS(I) is defined as:

SS(I) = 1
|S|

|S|

∑
j=1

max(SSIMi(aj, bj)), i = p, q (7)

where SSIMi(aj, bj) denotes the SSIM index between two blocks aj and bj from two images Ii and I ,
respectively, and aj and bj are the image contents at the j-th local window center at the j-th point sj of
S. |S| is the point number of the seamline S. In addition, the SSIM index is computed independently in
each channel of the image in RGB color space, and then the last SSIM index SSIMi(aj, bj) is computed
by averaging them. The SSIM index itself is defined as a combination of luminance, contrast and
structure components as:

SSIM(a, b) = l(a, b)α · c(a, b)β · s(a, b)γ, (8)

where l(a, b) = 2µaµb+A1
µ2

a+µ2
b+A1

, c(a, b) = 2σaσb+A2
σ2

a +σ2
b+A2

, and s(a, b) = σab+A3
σaσb+A3

, where µa and µb are the mean

luminance values of the windows a and b, respectively, and σa and σb are the standard variances of
the windows a and b, respectively. σab is the covariance between the blocks a and b. Here, the small
constants A1, A2 and A3 are included to avoid the divide-by-zero error, and the balancing parameters
α, β and γ are applied to adjust the relative importance of three components. According to the method
presented in [34], we use the default settings: A1 = (0.01× L)2, A2 = (0.03× L)2, A3 = A2/2, L = 255
for images of dynamic range [0, 255] and α = β = γ = 1. The higher the value of SS(I), the higher
quality of detected seamline, and the maximum value of SS(I) is 1.
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5. Experiments and Evaluation

Extensive experiments on three sets of aerial images were conducted to comprehensively evaluate
the performance of our proposed CNN-based optimal seamline detection algorithm. The proposed
CNN-based semantic image segmentation network was trained and tested with a single NVIDIA
TITAN X using the Caffe library. The optimal seamline detection and quality measurement stages were
implemented with C++ under Windows and tested in a desktop computer with an Intel Core i7-4770
at 3.4 GHz and the 16 GB RAM memory. The semantic segmentation was implemented in a single
NVIDIA TITAN X with the Caffe library. For a 544 × 384 image, our network took about 0.58 seconds
to make a pixel-wise segmentation.

The details of used three sets of images are presented in Table 2. For the third dataset, we only
know that those images are captured from a small town of China, but we don’t know the detailed name
of this town. The images of each dataset are firstly geometrically aligned into the same coordinate
according to the digital terrain model (DTM). However, there always exist geometric misalignments in
the regions of obvious objects, e.g., buildings, cars and trees, since those regions are not included in the
DTM in general. In contrast, the geometric misalignments in the regions of earth are almost invisible,
e.g., roads, grass, water and impervious surface. Because they are planar and do not have altitude
with respect to the local earth, they are included in the DTM. This is the main reason why the optimal
seamlines should avoid crossing the obvious objects. In our used datasets, the geometric misalignments
are only existed in the regions of obvious objects, and there are no geometric misalignments in the
regions of planar earth.

Table 2. The details of three datasets used in our experiments.

Descriptions\Dataset Dataset 1 Dataset 2 Dataset 3

Location Vaihingen (Germany) San Francisco (USA) China
Image size 7680 × 13,824 pixel 9328 × 6454 4535 × 6771

The number of images 14 69 53
Spatial resolution 0.1 m 0.2 m 0.2 m

Spectral bands IR-R-G R-G-B R-G-B

Description of the
study area

Small-sized and
detached buildings;

many surrounding trees;
many cars

Densely-distributed
buildings; many cars

non-urban area;
several buildings;

several cars

The experiments are consisted of three parts. In the first experiment, we verified the effectiveness
and superiority of our defined CNN-based energy cost function by using the first set of images. In the
second experiment, we also used the first set of images. We compared our proposed approach with
the Li et al. algorithm step by step. We proved that our proposed approach outperforms the Li et al.
algorithm, and illustrated why our approach is better. In addition, we also compared our proposed
approach with Dijkstra’s approach and OrthoVista. In the last experiment, we conducted our approach
on the rest two sets of images captured form different areas to prove that our proposed approach
can handle different types of images. In addition, we also compared our proposed approach with
the Li et al. algorithm, Dijkstra’s approach and OrthoVista to prove the superiority of our proposed
approach. Noticeably, our proposed approach is semi-automatic, and we need to prepare training data
for semantic images segmentation. However, after the model has been trained, we can automatically
detect the seamline between the images as Li et al. algorithm, Dijkstra’s approach and OrthoVista do.
For the first dataset, according to the method presented in the Section 2.2, we prepared 482 training
images from the ground truth provided by International Society for Photogrammetry and Remote
Sensing (ISPRS). For the second dataset, we prepared 221 training images from the ground truth
generated by manually classifying. For the third dataset, due to those images being captured from
a non-urban area, and this area is relatively simple, so the training images for this dataset are not
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prepared, and we directly use the trained model of the second dataset to test this dataset. The prepared
training images are relatively small in this work, and the models trained by us may be not common.
However, in those experiments, we just want to prove that the key idea of our proposed approach
is effective, namely, the results of semantic segmentation generated by CNN can be used to guide
the searching process of optimal seamlines and can generate better seamlines than state-of-the-art
approaches and software.

5.1. Evaluation on CNN-Based Energy Definition

To verify the effectiveness and superiority of our proposed CNN-based optimal seamline detection
algorithm, the images provided by ISPRS [38] were used to conduct our first experiment, namely, the
first dataset. Those images were captured from Vaihingen, Germany, with the size of 7680× 13, 824.
In addition, for some regions, ISPRS also provides the ground truth images, which can be used to train
our semantic segmentation network. This dataset is comprised of three strips, and there are no overlap
regions between the first strip and the third strip. Therefore, we used the regions with ground truth in
the third strip to train our network, and conducted our experiments in the first strip.

In this experiment, to illustrate the effectiveness of our defined CNN-based energy cost, we
conducted this experiment between two adjacent images. In Equation (6), we define the energy
cost C(x) of x only based on the classification results of semantic segmentation. In this experiment,
we modified C(x) as follows:

C(x) = w× Cs(x) + (1− w)× Cg(x), (9)

where w ∈ [0, 1] is the coefficient to balance two energy cost terms, Cs(x) represents the CNN-based
energy cost defined according to Equation (6), and Cg(x) denotes the intensity difference cost, which is
one of the most widely used energy costs to detect the optimal seamlines for image mosaicking,
which is defined as follows:

Cg(x) =
|Gp(x)− Gq(x)|

max(Gp(x), Gq(x))
, (10)

where Gp(x) and Gq(x) denote the intensity values of x in Ip and Iq, respectively. Obviously, if we
set w = 1, only the CNN-based energy cost term is used to detect the seamlines, and if we set w = 0,
only the intensity difference term is applied to detect the seamlines. In this experiment, we modified
the value of this balancing coefficient to illustrate the effectiveness of our defined CNN-based energy
cost term. Of course, when we set w = 1.0, our proposed approach is used to detect the seamlines.
In Figure 7, we present the seamline detection results generated by different weight settings as w = 0.0,
w = 0.4, and w = 1.0. From the whole seamline detection results and especially the detailed local
regions shown in Figure 7, we observed that the seamlines detected with the use of CNN-based energy
terms are much better than the seamline detected without its use. Noticeably, in the enlarged region, the
seamline crosses two buildings instead of nearby roads when the weight was set as w = 0.0, as shown
in the left column of Figure 7, due to the fact that the roofs of these two buildings are smooth as well
as nearby roads. However, when we set the weight as w = 0.4 or w = 1.0, the seamlines successfully
rounded these two buildings as expected and chose to cross nearby roads when the CNN-based energy
term was considered. In addition, we also applied the SSIM index to quantitatively measure the
qualities of seamlines detected by using different weights, and the quality curve is demonstrated in
Figure 8. From this quality curve, we observed that, as the value of the weight w increased, the quality
of the detected seamline becomes more higher. From this experiment, we convincingly proved that
our proposed CNN-based energy cost is effective.
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Figure 7. The seamline detection results generated by using different weights: w = 0.0, w = 0.4,
and w = 1.0 from left to right. The dash boxes represent the overlapped regions between input images.
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Figure 8. The curve of quantitative qualities of seamlines detected by using different weights.

5.2. Comparative Evaluation

In this section, to illustrate the difference between our proposed approach and the state-of-the-art
one proposed by Li et al. [5] more clearly, we conducted the experiment on four adjacent images in the
first strip of the Vaihingen dataset. We compared these two approaches to prove the superiority of
our proposed approach, and illustrated why our approach outperforms the approach proposed by [5].
Then, we also give the quality evaluations of the seamlines detected by two approaches by using both
the traditional measurement and the quantitative one. In addition, we also compared our proposed
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approach with Dijkstra’s approach [39] and OrthoVista [40]. OrthoVista is one of the most popularly
used commercial software programs.

The seamline detection results generated by Li et al. [5] and our proposed approach are shown
in Figure 9a,b, respectively. From the whole seamline detection results and especially the detailed
local regions, we observed that the seamlines detected by our proposed approach is much better than
the seamlines detected by Li et al. [5]. For example, in three local regions, the seamlines detected by
our proposed approach all avoid crossing the buildings, and choose to pass through nearby roads,
but the seamlines detected by Li et al. [5] fail to bypass those obvious objects. To illustrate the reason
of this problem more clear, we also presented the corresponding normalized energy cost maps of
local enlarged regions in the middle column of Figure 9a,b. We found that the energy cost maps
generated by our approach are more reasonable, which can distinguish the obvious objects from the
background more better. In addition, we can find out why the seamlines presented in Figure 9a cross
those buildings. For example, in the first local region, the energy costs of two buildings crossed by the
seamlines are very small due to the fact that the roofs of these two buildings are very smooth. However,
in the energy cost map generated by our proposed semantic-based approach, the energy costs of those
two buildings are so large that the seamlines would avoid crossing them. For the second and third
local regions, the similar reason can be used to illustrate why the seamlines detected by Li et al. [5] fail
to bypass those buildings, but our seamlines avoid crossing them.

(a) Li et al. [5]

(b) Our proposed approach

Figure 9. Visual comparison of the seamline detection results generated by Li et al. [5] (a) and our
proposed approach (b). In (a) or (b), the left pictures are the stitched images drawn with the detected
seamlines, the right pictures are three corresponding local enlarged regions of the stitched images,
and the middle pictures are the corresponding normalized energy cost maps of local regions, where
the brighter regions indicate higher energy costs. The dash boxes represent the overlapped regions
between input images.
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In addition, we present the seamline detection results generated by Dijkstra’s approach [39] and
OrthoVista in Figure 10. We can find that our proposed approach also outperforms Dijkstra’s approach
and OrthoVista. From the local enlarged regions, we observed that the seamlines detected by OrthoVista
cannot avoid crossing obvious objects in some cases. In total, those seamlines cross 21 buildings and
17 cars, but the seamlines detected by our approach only cross two cars. We also observed that the
seamlines generated by Dijkstra’s approach can avoid crossing major obvious objects as our approach
does. However, they also cross two buildings and two cars.

(a) Dijkstra’s approach

(b) OrthoVista

Figure 10. The seamline detection results generated by Dijkstra’s approach (a) and a commercial
software OrthoVista (b). The dash boxes represent the overlapped regions between input images.
The dash boxes represent the overlapped regions between input images.

In addition, to prove the superiority of our proposed approach more powerful, some statistical
results of those seamlines generated by four approaches are presented in Table 3. In the second
column, we presented the results of the traditional quality measurement, namely, the numbers of



Remote Sens. 2017, 9, 701 16 of 22

obvious objects passed through, and we found that the seamlines generated by Li et al.’s approach
cross 15 buildings and two cars, but the seamlines detected by our proposed approach successfully
avoid crossing the buildings, and only cross two cars. In addition, we also evaluated those seamlines
by using the quantitative quality measurement defined in Section 4, which can provide an objective
evaluation, as shown in the third column of Table 3. We found that the score of our seamlines is
0.9585, which is much larger than the scores of the seamlines generated by the rest three approaches.
From those two quality measurements, we proved that our proposed optimal seamline detection
approach outperforms the state-of-the-art approaches and commercial software.

Table 3. The quality assessment of seamlines detected by our proposed approach, the approach
proposed by Li et al. [5], Dijkstra’s approach and OrthoVista in the Figures 9 and 10.

Numbers of Obvious
Objects Passed Through Quantitative Quality (SSIM) Time(s)

Our proposed approach 0 building and 2 cars 0.9585 80.89
Li et al. [5] 15 buildings and 2 cars 0.9057 65.31

Dijkstra’s approach [39] 2 buildings and 2 cars 0.9488 96.281
OrthoVista 21 buildings and 17 cars 0.8882 50

In the aspect of computational time, as shown in the last column of Table 3, the approach proposed
by Li et al. [5] took around 65.31 s, consisting of all the elapsed times in energy computation and graph
cuts optimization. Our proposed approach took around 80.89 s, not only including energy definition
and graph cuts optimization, but also including semantic segmentation (27.19 s). Therefore, the time
of seamline detection via graph cuts is just 53.70 s. Dijkstra’s approach took around 96.281 s, which is
the longest one. In addition, OrthoVista took around 50 s.

In conclusion, in this experiment, we firstly made the comparison between two approaches
step-by-step: one is our approach, and the other is one of the state-of-the-art approaches [5]. From the
comparative experimental results, we found that our approach can generate more better seamlines
than this state-of-the-art approach, and just a little time-consuming than this approach due to the
fact that we need to do semantic segmentation in advance. From this visual comparison, we also
can find that the energy cost map defined by our proposed CNN-based approach is more reasonable
than the energy map defined by [5], which is the main reason why our approach performs better than
[5]. In addition, we also proved that our proposed approach is better than Dijkstra’s approach and
OrthoVista too.

5.3. More Comparative Experiments

To prove that our proposed approach can handle more types of aerial images, we firstly tested
our proposed approach on the images captured from San Francisco, namely, the second dataset. In this
dataset, we manually classified those training images into six object classes as a typical example shown
in Figure 11. We selected two groups of images from this dataset to test our proposed approach
and compared it with Li et al.’ approach, Dijkstra’s approach [39] and OrthoVista. The first group is
comprised of three adjacent images, and the second group is comprised of four adjacent images.

Figure 12 shows the seamline detection results of the first group of images. We found that the
seamlines detected by Li et al., approach, Dijkstra’s approach and OrthoVista all cross many buildings,
as shown in Figure 12b–d, especially in the enlarged detailed regions. However, the seamlines detected
by our proposed approach successfully avoid crossing those buildings and choose to cross the nearby
roads, as shown in Figure 12a. The seamlines detected by our approach also cross some buildings,
but all of them are located on the endpoint regions of the seamlines whose endpoints are formed by
the overlapped intersection. Those buildings are also crossed by the seamlines detected by those three
approaches and software. The seamline detection results of the second group of images are shown
in Figure 13. Similar conclusions can be drawn. Namely, our proposed approach outperforms the Li et al.
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approach, Dijkstra’s approach and OrthoVista, and the seamlines detected by our approach can round most
buildings crossed by the seamlines detected by those state-of-the-art approaches and software.

In addition, we also tested our proposed approach on the images captured from one non-urban
area. We selected three adjacent images from this dataset to test our proposed approach. Noticeably,
we have not generated the ground truth images for this dataset. In addition, we applied the trained
model of the second dataset to do semantic segmentation for this non-urban dataset. In addition, we
found that our proposed approach also can generate high-quality seamlines for non-urban area, as
shown in Figure 14a. In addition, we also can find that the rest of the three approaches can also detect
high-quality seamlines, as shown in Figure 14b–d, because only a few obvious objects exist in this
non-urban area.

At last, we present the detailed statical results of those seamlines generated by four approaches in
Table 4. From Table 4, we can easily find that the seamlines generated by our approach cross the least
obvious objects in all experiments by comparing with Li et al.’s approach, Dijkstra’s approach and
OrthoVista. In addition, the buildings crossed by our approach are located on the endpoint regions.
Those buildings are very difficult to bypass. We also applied the SSIM index to evaluate the qualities
of detected seamlines. The results of quantitative evaluation also show that our seamlines have highest
scores in all experiments, as shown in the third column of Table 4. In the aspect of computation time,
the computational times of four approaches are almost the same, and they are all at the same level, as
shown in the last column of Table 4.

Table 4. The quality assessment of seamlines detected by our proposed approach, the approach
proposed by Li et al. [5], Dijkstra’s approach and OrthoVista in Figures 12–14.

Figure 12 Numbers of Obvious
Objects Passed Through Quantitative Quality (SSIM) Time(s)

Our proposed approach 2 buildings and 1 cars 0.8985 20.30
Li et al. [5] 5 buildings and 7 cars 0.866991 15.907

Dijkstra’s approach [39] 8 buildings and 1 cars 0.8681 21.21
OrthoVista 5 buildings and 32 cars 0.8624 23

Figure 13

Our proposed approach 6 buildings and 2 cars 0.8842 30.95
Li et al. [5] 12 buildings and 2 cars 0.8717 31.322

Dijkstra’s approach [39] 23 buildings and 5 cars 0.8418 33.14
OrthoVista 27 buildings and 58 cars 0.8362 31

Figure 14

Our proposed approach 1 buildings and 0 cars 0.9165 48.36
Li et al. [5] 2 buildings and 0 cars 0.859372 42.906

Dijkstra’s approach [39] 1 buildings and 0 cars 0.886896 49.0135
OrthoVista 1 buildings and 0 cars 0.864969 42

Figure 11. A demonstration of a small example image from the San Francisco dataset: (left) the original
image; (right) the corresponding ground truth image classified as buildings (blue), cars (yellow),
trees (green), low vegetation (cyan), water (red) and impervious surface (white).
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(a) Our proposed approach (b) Li et al. [5]

(c) Dijkstra’s approach (d) OrthoVista

Figure 12. The seamlines detected by our proposed approach (a), Li et al. [5] (b), Dijkstra’s approach
(c) and OrthoVista (d) on the first group of images. The dash boxes represent the overlapped regions
between input images.

(a) Our proposed approach (b) Li et al. [5]

Figure 13. Cont.
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(c) Dijkstra’s approach (d) OrthoVista

Figure 13. The seamlines detected by our proposed approach (a); Li et al. [5] (b); Dijkstra’s approach
(c) and OrthoVista (d) on the second group of images. The dash boxes represent the overlapped regions
between input images.

(a) Our proposed approach (b) Li et al. [5]

(c) Dijkstra’s approach (d) OrthoVista

Figure 14. The seamlines detected by our proposed approach (a); Li et al. [5] (b); Dijkstra’s approach
(c) and OrthoVista (d) on one non-urban area. The dash boxes represent the overlapped regions between
input images.
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6. Conclusions

In this paper, we proposed a novel optimal seamline detection approach with the use of the
CNN-based semantic image segmentation and a graph cuts energy minimization framework. In this
algorithm, the overlap regions of two input aligned images are first classified based on the trained
full convolutional network independently. Then, the energy cost of each pixel is designed by combing
the probabilities of belonging to each class provided by the semantic segmentation network. Finally,
the graph cuts energy optimization algorithm is used to find the solution with the minimum energy,
and the seamline is determined at the same time. The energy costs which represent the differences along
the seamline are only defined based on the classified results of the semantic segmentation network,
instead of being defined by combing several features, which means that we don’t need to design
features for seamline detection anymore—we learn it. In addition, the learned semantic informations
are fully used to guide the process of optimal seamline detection. To further prove the superiority of
our proposed approach, we applied the images captured from Vaihingen, San Francisco and one small
town of China to compare our approach with two state-of-the-art approaches [5,39] and one popularly
used commercial software OrthoVista. By comparing with those two state-of-the-art approaches and
one commercial software program, we found that our proposed approach demonstrates a significant
advantage in avoiding the seamlines crossing obvious objects.

Nevertheless, the proposed algorithm may be improved in the future in the following ways.
First, more training datasets should be prepared to train our fully convolutional network. Second,
the superpixel segmentation can be introduced to greatly improve the optimization efficiency by
decreasing the number of elements in graph cuts. Last but not least, the seamline network optimization
framework [20,39,41] can be combined with our approach to produce a complete image mosaic from a
large set of images automatically.
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