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Abstract: Airborne LiDAR bathymetry (ALB) is efficient and cost effective in obtaining shallow
water topography, but often produces a low-accuracy sounding solution due to the effects of ALB
measurements and ocean hydrological parameters. In bathymetry estimates, peak shifting of the
green bottom return caused by pulse stretching induces depth bias, which is the largest error source
in ALB depth measurements. The traditional depth bias model is often applied to reduce the depth
bias, but it is insufficient when used with various ALB system parameters and ocean environments.
Therefore, an accurate model that considers all of the influencing factors must be established. In this
study, an improved depth bias model is developed through stepwise regression in consideration of
the water depth, laser beam scanning angle, sensor height, and suspended sediment concentration.
The proposed improved model and a traditional one are used in an experiment. The results show
that the systematic deviation of depth bias corrected by the traditional and improved models is
reduced significantly. Standard deviations of 0.086 and 0.055 m are obtained with the traditional and
improved models, respectively. The accuracy of the ALB-derived depth corrected by the improved
model is better than that corrected by the traditional model.

Keywords: airborne LiDAR bathymetry; depth bias correction; improved depth bias model;
measurement and hydrological parameters

1. Introduction

Airborne LiDAR bathymetry (ALB) is an accurate, cost-effective, and rapid technique for
shallow water measurements [1–6]. Aside from its use in traditional nautical charting, ALB is also
widely utilized to monitor engineering structures, sand movement, and environmental changes,
as well as in resource management and exploitation [7–10]. ALB can also be used to produce
environmental products, such as seafloor reflectance images, seafloor classification maps, and water
column characterization maps [11].

Figure 1 shows the principle of ALB measurements. Bathymetric accuracy is an essential
requirement for a successful ALB system, and it is primarily affected by ALB measurement and
ocean hydrological parameters. ALB bathymetric errors can be resolved by two components: depth
bias and residuals [12]. For an integrated infrared (IR) and green ALB system in which an additional
IR laser is used to detect the water surface accurately, depth bias is mainly induced by pulse stretching
of the green bottom return [2,13,14]. Geometric dispersion and multiple scattering lead to temporal
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stretching of the received green bottom return, and this phenomenon is known as the pulse stretching
effect [1–3,13–16]. The pulse waveform is distorted (e.g., peak shifting) by the pulse stretching effect.
Peak shifting induces bias in bathymetry estimates that is based on a peak detection of up to 92% of the
true water depth [14]. This depth bias is the largest source of error in ALB depth measurements. Water
surface waves also affect depth bias. As energy is put into the water surface by wind, small capillary
waves develop [17]. As the water gains energy, the waves increase in height and length. When they
exceed 0.0174 m in length, they take on the shape of the sine curve and become gravity waves [17].
Increased energy increases the steepness of the waves [17]. Different surface slope values may steer
laser rays away from the original ray path, resulting in angle and depth biases. Depth bias can be
corrected through theoretical analysis [2,14], empirical modeling [12,18,19], and the error statistics
method [20,21].
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Figure 1. Principle of ALB measurement. d is the water depth. ∆d is the depth bias induced by peak
shifting of the green bottom return. The red and green colors represent infrared (IR) and green lasers,
respectively. (a) Waveform detections with IR and green lasers; (b) propagation ways of the two lasers
and the bias induced by peak shifting of the green bottom return; t0–t3 denote the initial emission time
of the laser pulse, round-trip time of the IR surface return, round-trip time of the actual received green
bottom return distorted by the pulse stretching effect, and round-trip time of the ideal green bottom
return, respectively.

The Monte Carlo numerical method and the analytical approach are two classic theoretical analysis
methods [15]. A Monte Carlo simulation is used to estimate depth biases with the impulse response
function (IRF), which is a function of the beam scanning angle, sea depth, phase function, optical
depth, and single-scattering albedo [2]. Single-scattering albedo is a main parameter in IRF and can be
obtained by estimating the scattering coefficient. However, estimating scattering coefficients accurately
and efficiently is difficult. Depth biases induced by peak shifting can be analyzed with the Water
LiDAR (Wa-LID) simulator [14]. Wa-LID was developed to simulate the reflection of LiDAR waveforms
from water across visible wavelengths [22]. The relationship among the time shifts of waveform peaks,
bottom slope, water depth, and footprint size is modeled with the Wa-LID simulator [14]. However,
the model is based on the assumptions of a vertical incident beam and homogeneous water clarity,
which are inconsistent with actual circumstances.

By combining bathymetric ALB and sonar data, an empirical model to depict ALB depth bias
was established in a previous study through regression analysis; the model is a function of water
depth only [12,18]. The ALB depth corrected by this model can meet the requirements of only
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several low-accuracy applications because the two parameters cannot fully reflect ALB depth bias.
Wright et al. [19] improved the depth bias model by adding a constant term. This model is also a
function of water depth only and is simple to establish, but its adaptability to complex and variable
ALB measurement and ocean hydrological parameters is weak. Therefore, an accurate model that
considers all influencing factors must be built.

The error statistics method is often used to correct ALB depth biases in river measurements [20,21].
The magnitude and spatial variation of depth bias can be evaluated by referring to ground surveying
results and can be obtained by subtracting ground surveying elevations from ALB-derived elevations.
The error statistics shows that depth bias has low relevance with local topographic variance or flow
depth and can be corrected by subtracting the mean bias from raw ALB-derived depths. This method
is simple and efficient in correcting depth biases in water areas with small depth variations and has
been applied successfully in rivers by Hilldale et al. [20] and Skinner et al. [21]. However, the method
is difficult to apply in water areas with complicated depth variations.

All of these methods improve the ALB bathymetric accuracy to a certain extent. The error statistics
method is simple and highly efficient, but its adaptability to complex ocean hydrological environments
is weak. The theoretical analysis method provides an understanding of the physical processes involved,
but it is limited by simplified assumptions that may be inconsistent with the actual ocean hydrological
environment; therefore, it requires further improvement. The empirical modeling method can be
used to establish a model of the relationship between ALB depth bias and influencing factors in a
specific environment. This method is simple and easy to implement. However, in the empirical model,
the parameters that influence depth bias should be completely identified, and their significance should
be fully analyzed. Otherwise, the established empirical model may result in low-accuracy correction.

An improved model for ALB depth bias correction is developed in this study by analyzing
ALB bathymetric mechanisms and the factors that influence ALB depth accuracy. The proposed
model considers various parameters, such as the water depth, turbidity, beam scanning angle, and
sensor height.

This paper is structured as follows. Section 2 provides the detailed method of building the
proposed depth bias model. Section 3 presents the validation and analysis of the proposed method
through experiments. Section 4 provides the corresponding discussions. Section 5 presents the
conclusions and recommendations obtained from the experiments and discussions.

2. Building the Depth Bias Model

2.1. Influencing Factors and Depth Bias Model

With the sonar-derived water depth as a reference, ALB depth bias can be obtained by comparing
the ALB-derived depth with the reference. Penny et al. [12] and Brain et al. [18] analyzed the error
distribution, found that ALB depth bias ∆d varies with water depth d, and built a simple linear bias
model Equation (1) to depict the bias.

∆d = βd (1)

where β is the model coefficient. Wright et al. [19] improved Brain’s depth bias model by adding a
constant term, b, as follows:

∆d = βd + b (2)

Model coefficient β indicates the rate by which depth bias changes with water depth. Aside
from water depth d, ∆d should also be related to the hydrological parameters of seawater (i.e.,
water turbidity) and measurement parameters of ALB systems (i.e., beam scanning angle and laser
footprint size) [1–3,14–16]. Therefore, the traditional linear model depicted in Equation (2) needs to be
extended as:

∆d = βd + b
β = α1 + α2 ϕ + α3 ϕ2 + α4F + α5F2 + α6Turb + α7Turb2 (3)
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where b is a constant term, β is the depth bias coefficient, Turb is the water turbidity, φ is the beam
scanning angle, F is the LiDAR footprint size, and α1–α7 are the model coefficients.

The correlations between turbidity and suspended sediment concentration (SSC) have been
investigated through extensive experiments [23–29]. Although turbidity depends on SSC, as well
as particle composition and size distribution, many experiments have shown that a good linear
relationship exists between turbidity and SSC [23,25,27–29]. Therefore, Turb is expressed as follows:

Turb = kC + m (4)

where C is SSC, and k and m are coefficients that vary in different regions and times. However, these
coefficients can be regarded as constants in the same region and in a short period [23,25,27–29].

F can be calculated with the sensor height H and LiDAR divergence angle γ [14] using the
following equation:

F = H tan(γ) (5)

An ALB system determines the transmitted pulse characteristics (i.e., initial radius and
divergence) [30]. Thus, γ should no longer be included in the depth bias model as an independent
variable. The following equation was obtained when Equations (4) and (5) were substituted into
Equation (3):

∆d = βd + b
β = β1 + β2 ϕ + β3 ϕ2 + β4H + β5H2 + β6C + β7C2 (6)

where β is the model coefficient, which is a function of the beam scanning angle φ, sensor height H,
and SSC C. Equation (6) is the initial depth bias model proposed in this study and should be further
optimized. Equation (6) does not consider the effect of the water surface and regards the water surface
as flat. The wave effect will be discussed in Section 4.

2.2. Development of the Depth Bias Model

The initial model depicted in Equation (6) can be built by using the following data:

(1) Seabed elevations derived from ALB and sonar at the same locations.
(2) Ocean hydrological parameters of the ALB survey water (i.e., SSC C) and ALB measurement

parameters (i.e., beam scanning angle φ and sensor height H).

ALB depth bias ∆d can be calculated with the water depths derived from ALB and sonar at the
same location, as follows:

∆d = DALB − Dsonar (7)

where DALB is the ALB-derived water depth after chart datum correction and Dsonar is the sonar-derived
water depth after chart datum correction.

For the seabed topography produced from ALB and sonar, the following equation can be derived:

∆d = (HB
ALB − Hdatum)−

(
HB

Sonar − Hdatum

)
(8)

where Hdatum is the ellipsoid height of the chart datum and HB
ALB and HB

Sonar are the seabed ellipsoid
heights derived by ALB and sonar, respectively. Therefore, ∆d can be obtained by comparing HB

ALB
and HB

Sonar at the same location, as follows:

∆d = HB
ALB − HB

Sonar (9)

For ALB measurements on the spot, Equation (9) can be transformed into:

∆d = (HS
ALB + dALB)− (TSonar + dSonar) (10)
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where HS
ALB and dALB are the sea surface ellipsoid heights derived by the ALB IR channel and the

ALB-derived depth at the time of the ALB measurement, respectively. Tsonar and dsonar are the tidal level
defined on the ellipsoid surface and the sounding result at the time of the sonar sounding, respectively.
dALB can be calculated by subtracting HS

ALB from HB
ALB, as follows:

dALB = HB
ALB − HS

ALB (11)

HB
ALB, φ, and H can be extracted from raw ALB records. HB

Sonar can be extracted from sonar
records. C can be obtained through on-site sampling and a laboratory analysis. After obtaining these
data, the improved depth bias model presented in Equation (6) can be established. The matrix form
can be expressed as:

Vm×1= Bm×8X8×1 − lm×1 (12)

where m is the number of point pairs in the ALB and sonar surveying points at the same locations.

B =


d1 ϕ1d1 ϕ2

1d1 H1d1 H2
1 d1 C1d1 C2

1d1 1
d2 ϕ2d2 ϕ2

2d2 H2d2 H2
2 d2 C2d2 C2

2d2 1
d3 ϕ3d3 ϕ2

3d3 H3d3 H2
3 d3 C3d3 C2

3d3 1
· · · · · · · · · · · · · · · · · · · · · · · ·
dm ϕmdm ϕ2

mdm Hmdm H2
mdm Cmdm C2

mdm 1


m×8

l =
(

∆d1 ∆d2 ∆d3 · · · ∆dm

)T

m×1

X =
(

β1 β2 β3 β4 β5 β6 β7 b
)T

X can be calculated based on the least squares principle as follows:

X =
(

BTB
)−1

BTl (13)

2.3. Variable Selection for the Depth Bias Model

Theory and experience give only a general direction as to which of a pool of candidate variables
(including transformed variables) should be included in the initial depth bias model. The actual
set of predictor variables used in the final regression model must be determined by analysis of
the data. Determining this subset is called the variable selection problem. The goal of variable
selection is conflicting: achieving a balance between simplicity (i.e., as few regressors as possible)
and fit (i.e., as many regressors as needed) [31]. Variable selection for the depth bias model can be
implemented through stepwise regression.

The depth bias model shown in Equation (6) is only an initial model that considers the main
influencing factors and can be optimized through stepwise regression. A t-test was adopted to conduct
significance tests on the regression coefficients of the depth bias model. Detailed descriptions of the
stepwise regression and t-test theories are provided in Appendix A.

3. Experiment and Analysis

3.1. Data Acquisition

A comprehensive survey was conducted in a high-turbidity water area (5 km × 5 km) near
Lianyungang, Jiangsu Province, China, to evaluate the reliability and accuracy of the proposed
method. Six-line ALB data were collected with Coastal Zone Mapping and Imaging LiDAR (CZMIL).
The primary technical parameters of CZMIL are listed in Table 1. Six flight lines were planned before
the ALB measurement. Three flights (lines 1, 2, and 5) were carried out from northwest to southeast,
and three other flights (lines 3, 4, and 6) were carried out along the opposite direction. Sonar sounding
and suspended sediment sampling were conducted in the same water area. HY1600, an echo sounding
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system that has an accuracy of ±(0.01 m + 0.001 d), was adopted. The sounding tracks are displayed in
Figure 2. Meanwhile, three suspended sediment sampling stations were arranged around the survey
area, as shown in Figure 2. Seawater samples were collected by using horizontal water samplers in
situ and analyzed in the laboratory. Suspended sediment sampling was performed only in the surface,
middle, and bottom layers at each sampling station because of the shallow depth, and the mean of the
different layer results was used as the SSC for each sampling station. The locations and scopes of the
different measurements are shown in Figure 2. The SSCs of the three sampling stations are listed in
Table 2.

Table 1. Main technical parameters of CZMIL.

Parameters Specifications

Operating altitude 400 m (nominal)
Aircraft speed 140 kts (nominal)

Pulse repetition frequency 10 kHz
Circular scan rate 27 Hz

Laser wavelengths IR: 1064 nm; green: 532 nm
Maximum depth single pulse 4.2/Kd (bottom reflectivity > 15%)

Minimum depth <0.15 m
Bathymetric accuracy (0.32 + (0.013d)2)

1
2 m, 2σ

Horizontal accuracy (3.5 + 0.05d) m, 2σ
Scan angle 20◦ (fixed off-nadir, circular pattern)

Swath width 294 m nominal
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Figure 2. Locations and scopes of the different measurements. The yellow, green, and blue colors
denote the land, bottom points of ALB, and bottom points of the sonar, respectively. The black triangles
denote the locations of the three SSC sampling stations. The arrows denote the flight directions. In the
red rectangular box, sonar sounding and ALB data compensated by the improved depth bias model
are used to calculate the residual depth bias and analyze the effects of different flight directions on
depth bias in Section 4.

Table 2. Suspended sediment concentrations (SSC) of different sampling stations.

Sampling Station SSC (mg/L)

1 315
2 122
3 134
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3.2. Model Construction

Raw ALB data were processed with Optech HydroFusion software, and the seabed elevation of
each ALB surveying point was obtained. The seabed elevations were obtained by processing HY1600
data with the Hypack software. The nearest ALB point around a sonar point within a 1.0 m radius can
be used to form a point pair with the sonar point because the seabed topography changes gradually.
With the sonar sounding result as a reference, the ALB depth biases of each point pair, ∆d, can be
calculated with Equation (9).

Figure 3d shows that ∆d varies approximately linearly with the water depth. A constant bias or
an interception exists between them, which indicates that the linear depth bias model in Equation (6) is
appropriate. In addition, the sensor height H and beam scanning angle φ in each measuring point were
extracted from raw ALB records. The SSC in each measuring point was determined through inverse
distance weighting (IDW) interpolation using SSC and the coordinates of the SSC sampling stations
(Table 2). IDW is extensively used to interpolate spatial data (e.g., SSC) and is considered an effective
method [32–34]. A detailed description of IDW theory is provided in Appendix A. The interpolation
in this study adopted the assumption that the change in SSC among the sampling stations is gradual.
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Figure 3. Depth bias ∆d obtained by comparing HB
ALB and HB

Sonar at the same location Equation (9)
changes with different parameters. (a–d) denote depth biases changing with beam scanning angle,
sensor height, SSC, and water depth, respectively.

When the ALB sounding point was approximately in the same location as the sonar sounding
point, the two sounding points from CZMIL and HY1600 were defined as a point pair. A total of
379 point pairs were found in the surveyed water area. A total of 317 point pairs were selected
randomly to construct the depth bias model, and the remaining 62 point pairs were used to assess the
model. The measurement and ocean hydrological parameters used in model construction are shown
in Table 3 and Figure 3. Evidently, ∆d ranges from −0.16 m to 1.22 m and has a mean of 0.16 m and
standard deviation of 0.29 m. This result implies that raw ALB-derived depth bias is significant. Thus,
a depth bias model should be built to improve the accuracy of the ALB-derived depth.
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Table 3. Statistical parameters of the five-type data used in the modeling. ∆d: depth bias; d: water
depth; φ: beam scanning angle; H: sensor height; C: SSC.

∆d (m) d (m) φ (◦) H (m) C (mg/L)

Max. 1.22 −3.1 20.8 440 193
Min. −0.16 −4.6 16.3 394 164
Mean 0.16 −3.4 19.1 420 177
Std. 0.29 0.3 1 11 5.8

With these data, the initial depth bias model depicted in Equation (6) was constructed. A t-test
was performed to conduct hypothesis tests on the regression coefficients and evaluate the significance
of the model parameters. The test results are shown in Table 4. The standard error (SE), t-statistics (t),
and p-value (p) of each coefficient were calculated and the results are shown in Table 4. A comparison
of the p-values of these coefficients showed that all coefficients, except for β6, β7, and b, were higher
than the standard α = 0.05 cutoff, indicating that multicollinearity exists in the initial model shown
in Equation (6) and that the model cannot substantially represent depth bias. To solve this problem,
stepwise regression was adopted to optimize the initial depth bias model. Equation (14) shows
the improved depth bias model optimized through stepwise regression. Compared with that of
Equation (6), the improved model’s coefficient β drops H and C2, indicating that the impact of SSC on
depth bias can be described through a simple linear function. Upon optimization, the p-values of the
remaining parameters in the improved model were below α. Therefore, the parameters in Equation (14)
are statistically significant and should be included in the model. This result also shows the necessity
of considering ALB measurement and ocean hydrological parameters when constructing the depth
bias model.

∆d = µd + b
µ = β1 + β2 ϕ + β3 ϕ2 + β5H2 + β6C

(14)

Table 4. Coefficients and t-test results of the initial and improved depth bias models. SE: standard
error; t: t-statistics.

Item
Coefficient

(Units)
Initial Model Improved Model

Value SE t p Value SE t p

d β1 (1) −2.66 × 10−1 2.38 −1.11 × 10−1 0.9114 1.17 4.46 × 10−1 2.62 0.0093
φd β2 (deg−1) −8.99 × 10−2 4.94 × 10−2 −1.82 0.0699 −1.22 × 10−1 4.50 × 10−2 −2.70 0.0073
φ2d β3 (deg−2) 2.35 × 10−3 1.32 × 10−3 1.78 0.0766 3.24 × 10−3 1.21 × 10−3 2.68 0.0078
Hd β4 (m−1) 2.31 × 10−2 1.30 × 10−2 1.79 0.0752
H2d β5 (m−2) −2.93 × 10−5 1.53 × 10−5 −1.91 0.0577 −1.75 × 10−6 3.34 × 10−7 −5.23 0.0000
Cd β6 (mg−1·L) −4.62 × 10−2 1.74 × 10−2 −2.65 0.0084 −2.95 × 10−3 4.15 × 10−4 −7.12 0.0000
C2d β7 (mg−2·L2) 1.24 × 10−4 4.98 × 10−5 2.49 0.0134

Constant b (m) −2.79 1.39 × 10−1 −20.09 0.0000 −2.53 8.93 × 10−2 −28.37 0.0000

3.3. Influence Analysis

To accurately analyze the effects of the preceding parameters on depth bias, Equation (14) and the
coefficients in the improved depth bias model were used to reflect the relationships of ∆d varying with
d, φ, H, and C. Figure 4 shows these relationships. In a relatively small range of φ, ∆d increased with φ,
whereas ∆d decreased gradually with φ when φ increased to a certain range (Figure 4a). In terms of
CZMIL instruments, the turning point of depth bias changing with the beam scanning angle appeared
at φ as 18.8◦ when the water depth was 4 m, sensor height was 420 m, and SSC was 180 mg/L.
This phenomenon can be explained by Guenther’s theory [2]. Two competing effects existed: path
lengthening due to multiple scattering and path shortening due to energy returning early from the
“undercutting” region [2]. The magnitudes of these effects depend strongly on the beam scanning
angle [2]. The geometric dispersion effect, which causes path shortening, is dominant when the beam
scanning angle is smaller than 18.8◦. The multiple scattering effect, which causes path lengthening,
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is dominant when the beam scanning angle is larger than 18.8◦. The influences of sensor height and
SSC on depth bias exhibited a positive correlation (Figure 4b,c), namely, the depth biases increased
with the two parameters. The larger the sensor height was, the larger the laser spot size and depth bias
were. The larger the SSC was, the more expanded the laser beam was and the larger the depth bias
was. Depth bias decreased linearly with water depth (Figure 4d), which is consistent with the actual
measurement data shown in Figure 3d.
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3.4. Accuracy Analysis

To evaluate the ALB depth bias models, the traditional depth bias model depicted in Equation (2)
and the improved depth bias model depicted in Equation (14) were established with the 317 point
pairs, respectively. The model coefficients and t-test results of the improved and traditional models are
shown in Tables 4 and 5, respectively. The raw ALB-derived depths of the remaining 62 point pairs
were corrected by the two models and compared with the sounding data. The distributions of residual
depth biases after correction varying with SSC are shown in Figure 5, and their statistical parameters
and corresponding probability density functions are shown in Table 6 and Figure 6, respectively.

Table 5. Coefficients and t-test results of the traditional depth bias model.

Item Coefficients Value SE t p

d β −8.3 × 10−1 1.8 × 10−2 −44.7 0.0000
Constant b −2.6 6.3 × 10−2 −42.0 0.0000
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Table 6. Statistical parameters of the depth biases: raw ALB-derived, corrected by the traditional depth
bias model, and corrected by the improved depth bias model.

Depth Bias (m) Max. Min. Mean Std. Worst Case Meets IHO Standard

Raw ALB-derived 1.173 −0.167 0.262 0.327 0.916 ×
Corrected by the traditional model 0.134 −0.235 −0.023 0.086 0.195

√

Corrected by the improved model 0.106 −0.109 0.004 0.055 0.114
√
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The “Order-1” specification of the International Hydrographic Organization (IHO) defines the
maximum allowable total vertical uncertainty (TVU) at the 95% confidence level, which can be
computed as follows:

TVU = ±
√

0.52 + (0.013d)2 (15)

where d is the water depth.
Using a method presented in previous literature [35], we used the mean bias plus twice the

standard deviation as the worst case to determine if the correction results meet the accuracy standard
of IHO. Table 6 and Figure 6 show that the raw ALB-derived depths had a maximum deviation of
1.173 m, standard deviation of 0.327 m, and systematic deviation of 0.262 m. The worst case was
0.916 m, which exceeds the maximum allowable TVU of 0.502 m when the water depth is 5 m and
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cannot meet the “Order-1” specification. The ALB depth corrected by the traditional and improved
models exhibited a better accuracy than the raw ALB depth and can meet the “Order-1” specification.
The systematic deviations weakened, and standard deviations of 0.086 and 0.055 m were obtained by
the traditional and improved models, respectively. The accuracy of the ALB-derived depth corrected
by the improved model was improved relative to that corrected by the traditional model. Moreover,
Figure 5 shows that the depth biases corrected by the traditional model varied linearly with SSC,
whereas those corrected by the improved model changed slightly with SSC. This result is due to
disregarding SSC variation in the traditional depth bias model and considering SSC variation in the
improved depth bias model.

4. Discussion

The proposed method provides a good means to reduce depth bias and obtain an accurate water
depth by ALB. The following factors influence the applications and accuracies of the proposed method.

(a) Different ALB systems

ALB systems are categorized as integrated IR and green ALB systems and green ALB systems
according to the lasers used [36–39]. For integrated IR and green ALB systems in which an additional
IR laser is used to detect the water surface accurately, the improved depth bias model can be used
directly to correct the ALB-derived depth. However, for green ALB systems, the primary IR laser is
no longer used, and the green surface return cannot accurately represent the water surface [1,38,39].
The height models of green ALB systems proposed by Jianhu Zhao et al. [38] that consider near water
surface penetration (NWSP) of the green laser should be used to correct the green water surface and
water bottom heights. Then, the improved depth bias model can be used to correct the ALB-derived
depth bias.

(b) Effects of surface wave and bottom slope

Surface wave and bottom slope affect ALB depth. As mentioned previously, the surface wave
affects depth bias and is difficult to characterize and incorporate within a model [18]. The effect is not
considered in the improved depth bias model but is weakened during data preprocessing. During data
preprocessing, the slope of gravity waves can be estimated by referring to wave height and wavelength
caused by wind speed, and its effect can be compensated for by adding the surface wave slope to
the beam scanning angle when the laser beam footprint is incident on a single water surface facet
or a single slope value. Capillary waves are small. Water surface with small capillary waves can be
regarded as flat. The bottom slope can change the bottom incident angle of the laser beam and affect
the pulse stretching of the green bottom return [14]. The larger the bottom slope is, the more the peak
of the bottom return shifts to the surface return and the larger the depth bias is [14]. In reference [14],
a model was proposed to estimate the effect of the bottom slope on ALB depth, and the effect varying
with the bottom slope is shown in Figure 7. The effect intensifies with the increase in the bottom slope.
If the limitation is set to 0.05 m, then the effect of the bottom slope less than 7◦ can be ignored when
the beam footprint radius is less than 2 m and the water depth is less than 10 m; otherwise, the effect
should be considered. By using the model proposed in reference [14], the effect can be estimated by
integrating the beam footprint size, water depth, and bottom slope for the compensation of ALB depth.
The residual of the compensation remains in the depth bias and should be further corrected by the
improved model proposed in this study.
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Figure 7. Effect of the bottom slope on depth bias.

(c) Effects of flight directions

As shown in Figure 2, the flight directions of the six lines are different. Different flight directions
change the relative location of the sensor to the sun, introduce various background noises in the pulse
waveform, and affect the ALB depth measurements. The effect can be filtered before using a pulse
detection algorithm [40]. Moreover, the effect of the surface wave on depth bias varies with flight
directions [16]. The asymmetry of surface waves also plays an important role, affecting the return
signal. It distorts the signal by altering the downwelling light field, complicating the comparison of
the bottom return signals from two different flightlines. The asymmetry effects are less pronounced
in strongly scattering environments making the effect less important in turbid waters or at greater
depths [16]. Figure 8 shows the residual depth biases of the six flight lines in the red rectangular area
in Figure 2. With the sounding result as a reference, the residual depth biases of different-direction
flight lines were calculated by subtracting the reference from the ALB depth compensated for by
the improved depth bias model. Standard deviations of 0.059 and 0.042 m were obtained by the
northwest–southeast flight lines (lines 1, 2, and 5 in Figure 2) and the southeast–northwest flight lines
(lines 3, 4, and 6), respectively. The residual of the northwest–southeast flight direction was slightly
larger than that of the southeast–northwest flight direction. Large background noise may be introduced
to the northwest–southeast direction ALB measurements because this direction is facing sunlight.
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Figure 8. Residual depth bias induced by different flight lines. Flight lines 1, 2, and 5 are from northwest
to southeast, whereas lines 3, 4, and 6 are along the opposite flight direction.
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(d) Applications

The current experiment was conducted in a shallow water area with a water depth range of 3 to
4.5 m and SSC variation of 164 mg/L to 193 mg/L. The proposed improved model can correct the
depth bias in this area. In other water areas with different water depths and turbidity, the depth bias
model needs to be built according to the corresponding parameters of the measurement area used in
Equation (6). The established depth bias model may be different from the above model in terms of
model coefficients, but the modeling process and model form are the same as those depicted above.

5. Conclusions and Suggestions

An improved model for ALB depth bias correction was developed by considering ALB
measurement and ocean hydrological parameters. The t-test of the model coefficient showed that all of
the parameters in the improved model are significant and should be included, which indicates that the
proposed improved model is reasonable. The traditional model and the proposed improved model
were used to correct raw ALB-derived depth bias. The accuracies of ALB-derived depths corrected by
the two models meet the “Order-1” specification of the IHO and have standard deviations of 0.086 and
0.055 m, respectively. The improved model is better than the traditional model.

In the application of the improved model, various factors, such as different ALB systems, surface
waves, seabed slopes, and measurement areas, should be considered. The process of depth bias
correction depicted in this study is appropriate for integrated IR and green ALB systems, but can be
used for green ALB systems after calculating the water surface and water bottom heights considering
the NWSP of the green laser. The surface wave effect can be estimated by referring to the wave height
and can be compensated for by adding the surface wave slope to the beam scanning angle. The effect
of the bottom slope can be estimated and compensated for by an approximation model. Although
the modeling process and model form are suitable for other water areas, the depth bias model must
be re-established by the local modeling parameters. The authors recommend using the traditional
model in water areas with approximately the same turbidity and using the improved model in water
areas with varying turbidity. In addition, density and representativeness should be considered in
setting SSC sampling stations based on the measured water area to guarantee the accuracy of the
proposed method.
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Appendix A

(1) t-test

To assess the reliabilities of the depth bias model parameters, a t-test was adopted to perform the
hypothesis tests on the regression coefficients of the linear regression model. For the depth bias model,
∆d is a dependent variable, xj is an independent variable, and βj is the partial regression coefficient
of xj. Thereafter, the null hypothesis H0 and the alternative hypothesis H1 can be defined using the
following equation:

H0 : β j = 0
H1 : β j 6= 0

(A1)

where βj reflects the partial effect of xj on ∆d after controlling for all of the other independent variables.
Therefore, H0 indicates that xj does not affect ∆d, which is called a significance test [41,42]. The
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statistic applied to test H0 against any alternative is called the t-statistic (t) and is expressed using the
following equation:

tβ̂ j
=

β̂ j

SE
(

β̂ j
) (A2)

where β̂ j is the least squares estimate of β j and SE
(

β̂ j
)

is the standard error of β̂ j.

SE
(

β̂ j
)
=

√√√√√√
n
∑

i=1
e2

i

n− k

/
n

∑
i=1

(
xj − x

)2 (A3)

where n is the sample size, k is the number of estimated parameters, and ei is the residual.
The t-statistics calculated using Equation (A2) are compared with a theoretical t-distribution

with n–k degrees of freedom. From the t-distribution, we obtain a probability (Prob. > |t|), called
the p-value [42]. p-values (p) refer to the probability of the observed data or data to be more extreme,
given that the null hypothesis is true, and the sampling is done randomly [43]. Once the p-value is
determined, it can be compared with the given significance level α to determine whether to reject or
not reject the null hypothesis [42]. For a typical analysis using the standard α = 0.05 cutoff, the null
hypothesis is rejected when p < 0.05 and not rejected when p > 0.05.

If H0 is rejected, then xj is statistically significant at α, and the depth bias model indicates a linear
relationship between xj and ∆d. Otherwise, a linear relationship does not exist.

(2) Stepwise regression

Stepwise regression is an automated search procedure for selecting variables for a regression
model; this procedure is beneficial when dealing with problems that involve multicollinearity [31].
Multicollinearity encompasses linear relationships between two or more variables [44], and can result
in misleading and occasionally abnormal regression results [42]. If the p-values of nearly all model
parameters are greater than α, then multicollinearity may be present in the model. Thus, the model
should be optimized by stepwise regression. In stepwise regression, variables are added one at a time.
The order of entry of the variables is controlled by a statistical program, and the variable that will
lead to the largest increase in R2 is entered in each step. If an earlier variable becomes statistically
insignificant with the addition of later variables, then such variables can be dropped from the model
to prevent multicollinearity in the final regression model [42].

(3) IDW method

The SSC of all the sounding points can be interpolated as follows:

C =
n

∑
i=1

PiCi (A4)

where n is the total number of sediment sampling stations, i = 1 − n is the ith sampling station, Pi is
the weight of the ith sampling station, and Ci is SSC of the surface layer of the ith sampling station.
The weight Pi is calculated as follows:

Pi =
1

Di

/ n

∑
i=1

1
Di

(A5)

Di =

√
(x− xi)

2 + (y− yi)
2 (A6)

where Di is the distance from the sounding point to the ith sampling station, (x, y) is the plane
coordinates of the sounding point, and (xi, yi) is the plane coordinate of the ith sampling station.
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